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Lecture 2

Voting is a central topic in social choice theory. Today we will
begin with an introduction to voting theory:

• Many different voting procedures, such as the plurality rule, the
Borda count, approval voting, single transferable vote, . . .

• Discussion of properties (“axioms”) we would like to see
satisfied and paradoxes generated by those procedures.

We will then highlight some applications of complexity theory to
voting, e.g. complexity as a barrier against manipulation.
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Voting Rules

• We’ll discuss voting rules for selecting a single winner from a
finite set of candidates. (The number of candidates is m.)

• A voter votes by submitting a ballot , e.g. the name of a single
candidate, a ranking of all candidates, or something else.

• A voting rule has to specify what makes a valid ballot , and how
the preferences expressed via the ballots are to be aggregated to
produce the election winner.

• All of the voting rules to be discussed allow for the possibility
that two or more candidates come out on top (although this is
unlikely for large numbers of voters). A complete system would
also have to specify how to deal with such ties, but here we are
going to ignore the issue of tie-breaking .
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Plurality Rule

Under the plurality rule (a.k.a. simple majority), each voter
submits a ballot showing the name of one of the candidates
standing. The candidate receiving the most votes wins.

This is the most widely used voting rule in practice.

If there are only two candidates, then it is a very good rule.
However, for more than two candidate there are some problems:

• The information on voter preferences other than who their
favourite candidate is gets ignored.

• Encourages voters not to vote for their true favourite, if that
candidate is perceived to have little chance of winning.
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Plurality with Run-Off

In the plurality rule with run-off , first each voter votes for one
candidate. The winner is elected in a second round by using the
plurality rule with the two top candidates from the first round.

Used to elect the president in France (and heavily criticised after
Le Pen came in second in the first round in 2002).
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Monotonicity

We would like a voting rule to satisfy monotonicity: if a particular
candidate wins and a voter raises that candidate in their ballot,
then that candidate should still win.

The winner-turns-loser paradox shows that plurality with run-off
does not satisfy monotonicity:

27 voters: A � B � C

42 voters: C � A � B

24 voters: B � C � A

B gets eliminated in the first round and C beats A 66:27 in the
run-off. But if 4 of the voters from the first group raise C to the
top (i.e. join the second group), then B will win.
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Anonymity and Neutrality

On the positive side, both variants of the plurality rule (like most
other rules) satisfy these two important properties:

• Anonymity: A voting rule is anonymous if it treats all voters
the same — if two voters switch ballots the election outcome
does not change.

• Neutrality: A voting rule is neutral if it treats all candidates
the same — if the election winner switches names with some
other candidate, then that other candidate will win.

Often the tie-breaking rule can be the source of violation of either
anonymity (e.g. if one voter has the power to break ties) or
neutrality (e.g. if the incumbent wins in case of a tie).
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May’s Theorem

As mentioned before, if there are only two candidates, then the
plurality rule is a pretty good rule to use. Specifically:

Theorem 1 (May, 1952) For two candidates, a voting rule is
anonymous, neutral, and monotonic iff it is the plurality rule.

Remark: In these slides we assume that there are no ties, but
May’s Theorem also works for an appropriate definition of
monotonicity when ties are possible.

K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple

Majority Decisions. Econometrica, 20(4):680–684, 1952.
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Proof Sketch

Clearly, plurality does satisfy all three properties. X

Now for the other direction:

For simplicity, assume the number of voters is odd (no ties).

Anonymity and neutrality ; only number of votes matters.

Denote as A the set of voters voting for candidate a and as B those
voting for b. Distinguish two cases:

• Whenever |A| = |B|+ 1 then a wins. Then, by monotonicity, a

wins whenever |A| > |B| (that is, we have plurality). X

• There exist A, B with |A| = |B|+ 1 but b wins. Now suppose
one a-voter switches to b. By monotonicity, b still wins. But
now |B′| = |A′|+ 1, which is symmetric to the earlier situation,
so by neutrality a should win ; contradiction. X

Ulle Endriss 9



Computational Social Choice ESSLLI-2008

Borda Rule

Under the voting rule proposed by Jean-Charles de Borda, each
voter submits a complete ranking of all the m candidates.

For each voter that places a candidate first, that candidate receives
m−1 points, for each voter that places her 2nd she receives m−2
points, and so forth. The Borda count is the sum of all the points.

The candidate with the highest Borda count wins.

J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie

Royale des Sciences, Paris, 1781.
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Positional Scoring Rules

We can generalise the idea underlying the Borda count as follows:

Let m be the number of candidates. A positional scoring rule is
given by a scoring vector s = 〈s1, . . . , sm〉 with s1 ≥ s2 ≥ · · · ≥ sm.

Each voter submits a ranking of all candidates. Each candidate
receives si points for every voter putting her at the ith position.
The candidate with the highest score (sum of points) wins.

• The Borda rule is is the positional scoring rule with the scoring
vector 〈m−1,m−2, . . . , 0〉.

• The plurality rule is the positional scoring rule with the scoring
vector 〈1, 0, . . . , 0〉.
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Condorcet Principle

Recall the Condorcet paradox:

Voter 1: A � B � C

Voter 2: B � C � A

Voter 3: C � A � B

A majority prefers A over B and a majority also prefers B over C,
but then again a majority prefers C over A. Hence, no single
candidate would beat any other candidate in pairwise contests.

In cases where there is such a candidate beating everyone else in a
pairwise majority contest, we call her the Condorcet winner .

Observe that if there is a Condorcet winner, then it must be unique.

A voting rule satisfies the Condorcet principle if it elects the
Condorcet winner whenever there is one.
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Positional Scoring violates Condorcet

Consider the following example:

3 voters: A � B � C

2 voters: B � C � A

1 voter: B � A � C

1 voter: C � A � B

A is the Condorcet winner ; she beats both B and C 4:3. But any
positional scoring rule assigning strictly more points to a candidate
placed 2nd than to a candidate placed 3rd (s2 > s3) makes B win:

A: 3 · s1 + 2 · s2 + 2 · s3

B: 3 · s1 + 3 · s2 + 1 · s3

C: 1 · s1 + 2 · s2 + 4 · s3

This shows that no positional scoring rule (with a strictly
descending scoring vector) will satisfy the Condorcet principle.
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Copeland Rule

The Copeland rule is defined as follows:

• Compute the Copeland score of each candidate C by awarding
1 point to C for every pairwise majority contest won and 1

2

points for every draw.

• The candidate with the highest Copeland score is the winner.

Clearly, Copeland does satisfy the Condorcet principle.

Many more such Condorcet-consistent voting rules have been
proposed in the literature, each taking a different slant on what it
means to be the candidate closest to being a Condorcet winner.

A.H. Copeland. A ‘Reasonable’ Social Welfare Function. Seminar on Mathe-

matics in Social Sciences, University of Michigan, 1951.
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Approval Voting

In approval voting , a ballot may consist of any subset of the set of
candidates. These are the candidates the voter approves of. The
candidate receiving the most approvals wins.

Intuitive advantages of approval voting include:

• No need not to vote for a preferred candidate for strategic
reasons, when that candidate has a slim chance of winning.

• Form of balloting seems like a good compromise between
plurality (too simple) and Borda (too complex).

Approval voting has been used by several professional societies,
such as the American Mathematical Society (AMS).

S.J. Brams and P.C. Fishburn. Approval Voting. The American Political

Science Review 72(3):831-847, 1978.
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Single Transferable Vote (STV)

Also known as the Hare system. To select a single winner, voters
rank all candidates, and we repeat until there is a winner:

• If one of the candidates is the 1st choice for over 50% of the
voters (quota), she wins.

• Otherwise, the candidate who is ranked 1st by the fewest
voters (the plurality loser) gets eliminated from the race.

• Votes for eliminated candidates get transferred: delete removed
candidates from ballots and “shift” rankings (e.g. if your 1st
choice got eliminated, then your 2nd choice becomes 1st).

In practice, voters need not be required to rank all candidates
(non-ranked candidates are assumed to be ranked lowest).

STV is used in several countries (e.g. Australia, New Zealand, . . . ).

Th. Hare. The Machinery of Representation. 1857.
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Manipulation: Plurality Rule

Suppose the plurality rule (as in most real-world situations) is used
to decide the outcome of an election. Recall the Florida situation:

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

Bush will win the plurality contest.

It would have been in the interest of the Nader supporters to
manipulate, i.e. to misrepresent their preferences.
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The Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite Theorem is widely regarded as the
central result in voting theory. Broadly, it states that there can be
no “reasonable” voting rule that would not be manipulable.

Our formal statement of the theorem follows Barberà (1983). We
won’t prove it here. A proof that is similar to the one we have
discussed for Arrow’s Theorem is given by Benôıt (2000).

A. Gibbard. Manipulation of Voting Schemes: A General Result. Economet-

rica, 41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of

Economic Theory, 10:187–217, 1975.

S. Barberà. Strategy-proofness and Pivotal Voters: A Direct Proof of the

Gibbard-Satterthwaite Theorem. Intl. Economic Review, 24(2):413–417, 1983.

J.-P. Benôıt. The Gibbard-Satterthwaite Theorem: A Simple Proof. Economic

Letters, 69:319–322, 2000.
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Setting and Notation

• Finite set A of candidates (alternatives);
finite set I = {1, . . . , n} of voters (individuals).

• A preference ordering is a strict linear order on A. The set of
all such orderings is denoted P. Each voter i has an individual
preference ordering Pi. A preference profile 〈P1, . . . , Pn〉 ∈ Pn

consists of a preference ordering for each voter.

• The top candidate top(P ) of a preference ordering P is defined
as the unique x ∈ A such that xPy for all y ∈ A \ {x}.

• We write (P−i, P
′) for the preference profile we obtain when

we replace Pi by P ′ in the preference profile P .

• A voting rule is a function f : Pn → A mapping preference
profiles to winning candidates (so the Pi are used as ballots).
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Statement of the Theorem

A voting rule f is dictatorial if the winner is always the top
candidate of a particular voter (the dictator):

(∃i ∈ I)(∀P ∈ Pn)[f(P) = top(Pi)]

A voting rule f is manipulable if it may give a voter an incentive to
misrepresent their preferences:

(∃P ∈ Pn)(∃P ′ ∈ P)(∃i ∈ I)[f(P−i, P
′) Pi f(P)]

A voting rule that is not manipulable is also called strategy-proof .

Theorem 2 (Gibbard-Satterthwaite) If |A| > 2, then every
voting rule must be either dictatorial or manipulable.
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Complexity as a Barrier against Manipulation

The Gibbard-Satterthwaite Theorem shows that manipulation is
always possible. But how hard is it to find a manipulating ballot?

The seminal paper by Bartholdi, Tovey and Trick (1989) starts by
showing that manipulation is in fact easy for a range of commonly
used voting rules, and then presents one system (a variant of the
Copeland rule) for which manipulation is NP-complete. Next:

• We first present a couple of these easiness results, namely for
plurality voting and for the Borda count .

• We then present a result from a follow-up paper by Bartholdi
and Orlin (1991): the manipulation of STV is NP-complete.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty

of Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic

Voting. Social Choice and Welfare, 8(4):341–354, 1991.
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Manipulability as a Decision Problem

We can cast the problem of manipulability, for a particular voting
rule f , as a decision problem:

Manipulability(f)

Instance: Set of ballots for all but one voter; candidate C.

Question: Is there a ballot for the final voter such that C wins?

We will be interested in the computational complexity of this
problem in terms of the number of candidates.

If the Manipulability(f) is computationally intractable, then
manipulability may be considered less of a worry for voting rule f .
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Manipulating the Plurality Rule

Recall the plurality rule:

• Each voter submits a ballot showing the name of one of the
candidates. The candidate receiving the most votes wins.

The plurality rule is easy to manipulate (trivial):

• Simply vote for C, the candidate to be made winner by means
of manipulation. If manipulation is possible at all, this will
work. Otherwise not.

That is, we have Manipulability(plurality) ∈ P.

General: Manipulability(f) ∈ P for any rule f with polynomial
winner determination problem and polynomial number of ballots.
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Manipulating the Borda Rule

Recall Borda: submit a ranking (super-polynomially many choices!)
and give m−1 points to 1st ranked, m−2 points to 2nd ranked, etc.

The Borda rule is also easy to manipulate. Use a greedy algorithm:

• Place C (the candidate to be made winner through
manipulation) at the top of your declared preference ordering.

• Then inductively proceed as follows: Check if any of the
remaining candidates can be put next into the preference
ordering without preventing C from winning. If yes, do so.
If no, terminate and say that manipulation is impossible.

After convincing ourselves that this algorithm is indeed correct, we
also get Manipulability(Borda) ∈ P.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty

of Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.
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Intractability of Manipulating STV

Recall STV: eliminate plurality losers until a candidate gets > 50%

Theorem 3 (Bartholdi and Orlin, 1991) Manipulation of STV
for electing a single winner is NP-complete.

Proof sketch: We need to show NP-hardness and NP-membership.

• NP-membership is clear: checking whether a given ballot
makes C win can be done in polynomial time.

• NP-hardness: Bartholdi and Orlin (1991) give a reduction from
3-Cover. The basic idea is to build a large election instance
introducing all sorts of constraints on the ballot of the
manipulator, such that finding a ballot meeting those
constraints solves a given instance of 3-Cover as a by-product.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic

Voting. Social Choice and Welfare, 8(4):341–354, 1991.
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More on Complexity of Voting

Other questions that have been investigated include:
• What is the complexity of other forms of election manipulation,

such as bribery? See Faliszewski et al. (2006) for a survey.
• What is the complexity of the winner determination problem?

For Dodgson’s rule (electing the candidate requiring the fewest
“flips” in ballots to become a Condorcet winner) it is NP-hard
(and not in NP). See Faliszewski et al. (2006) for references.

• After some of the ballots have been counted, certain candidates
may be possible winners or even necessary winners. How hard
is it to check this? See e.g. Konczak and Lang (2005).

P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. A Richer

Understanding of the Complexity of Election Systems. Technical Report TR-

2006-903, Dept. of Computer Science, University of Rochester, 2006.

K. Konczak and J. Lang. Voting Procedures with Incomplete Preferences.

Proc. Advances in Preference Handling 2005.
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Even More on Complexity of Voting

• What is the communication complexity of different voting rules,
i.e. how much information needs to be exchanged to determine
the winner of an election? See Conitzer and Sandholm (2005).

• After having counted part of the vote, can we compile this
information into a more compact form than just storing all the
ballots? And how complex is it to reason about this
information? See Chevaleyre et al. (2008).

V. Conitzer and T. Sandholm. Communication Complexity of Common Voting

Rules. Proc. ACM Conference on Electronic Commerce 2005.

Y. Chevaleyre, J. Lang, N. Maudet, and G. Ravilly-Abadie. Compiling the

Votes of a Subelectorate. Proc. COMSOC-2008.
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Summary

We have given an introduction to voting theory and seen several
voting procedures and discussed their properties. Specifically:

• May’s Theorem

• Gibbard-Satterthwaite Theorem

We have also seen that complexity theory offers an interesting
perspective on voting procedures:

• Complexity can serve as a barrier against manipulation.

But beware: this is only a worst-case result . Manipulation may
well be easy on average (ongoing discussion).

• We have also mentioned other forms of control, winner
determination, communication complexity, . . .

Ulle Endriss 28



Computational Social Choice ESSLLI-2008

Literature

For a definition of the voting procedures introduced (and many
more), their properties and the paradoxes they generate, see:

• S.J. Brams and P.C. Fishburn. Voting Procedures. In
K.J. Arrow et al. (eds.), Handbook of Social Choice and
Welfare, Elsevier, 2002.

They also briefly cover the Gibbard-Satterthwaite Theorem and
May’s Theorem (more details are available in several textbooks).

For a nice introduction to work on (computational) complexity in
voting, refer to this survey:

• P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and
J. Rothe. A Richer Understanding of the Complexity of
Election Systems. Technical Report TR-2006-903, Dept. of
Computer Science, University of Rochester, 2006.
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Tuesday Morning Quiz

If a candidate loses to every other candidates in pairwise majority
contests, then that candidate is called the Condorcet loser .

A voting rule satisfies the Condorcet loser principle if it never
elects a Condorcet loser.

Which of the following rules satisfies this principle, and why?

• Plurality: elect the candidate ranked first most often

• STV : eliminate plurality losers until someone gets > 50%

• Borda: positional scoring rule with vector 〈m−1,m−2, . . . , 0〉
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