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Our goal

Obtain a way of evaluating objects (alternatives),
by sorting them into preference-ordered categories, e.g.
{Good, Medium, Bad},
on the basis of several (objective) performance measures
(criteria).

Resulting sorting function must be consensual among multiple
Decision Makers (DMs).
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General framework

Alternatives A
Criteria J
Performances gj : A → Xj, ∀j ∈ J
Preference orders ⪰j, ∀j ∈ J (total orders)
Preference ordered set of categories C

C1 worst category
Set of decision makers T

..

.. ..g1 ..g2 ..g3 ..g4

..a1 ..5 ..6 ..1 ..++

..a2 ..4 ..7 ..8 ..+

..a3 ..2 ..8 ..4 ..−

..a4 ..4 ..6 ..9 ..+

..... .. .. .. ..

.

C3

.
C2

.

C1

.

?

. ?.
?

.

?
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Example: student evaluation
Determine a way of evaluating students at the end of the year

Obtain a sorting function
A, space of all possible evaluations (may be infinite or large)
We may reason on specific cases (possibly fictitious)
Involves subjective appreciations

DMs may have different opinions

..

.. ..math. ..lang. ..phys. ..partic.

..St 1 ..B ..D ..A ..++

..St 2 ..A ..A ..B ..+

..St 3 ..A ..C ..C ..−

..St 4 ..C ..A ..A ..+

..... .. .. .. ..

.

C4: highest d.

. C3: distinction.

C2: succeeds

.

C1: fails

.

?

. ?.
?

.

?
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Example: research projects

Researchers submit projects to the board
The board wants some way of evaluating these research
projects
Criteria: Redaction quality, scientific quality, experience of the
team, publication score, …

..

.. ..redac. ..sci. ..exp. ..publ.

..Pr 1 ..2 ..5 ..3 ..75.1

..Pr 2 ..5 ..5 ..4 ..32.2

..Pr 3 ..5 ..3 ..3 ..63.4

..Pr 4 ..3 ..5 ..4 ..61.7

..... .. .. .. ..

.
C2: fund project

.

C1: reject

.

?

. ?.
?

.

?
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Example: green labelling

Evaluate ecological quality of consumer products
Criteria: amount of pollutants of different sorts, road
distance, ...
Use a representative set of products
Obtain a transparent decision procedure

..

.. ..pol. 1 ..pol. 2 ..rd dist.

..Pr 1 ..2 ..5 ..3

..Pr 2 ..5 ..5 ..4

..Pr 3 ..5 ..3 ..3

..Pr 4 ..3 ..5 ..4

..... .. .. ..

.

A+

.
A

.
B

.

C

.

D

.

?

.
?

.
?

.

?
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Important features of the problem setting

.Hypothesis..

......The situation is not about bargaining.

Sorting function depends on objective and subjective data.
Objective, or consensual, data: most importantly,
performances;
subjective data: how the performances relate.
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Modelling subjectivity

Sorting function is parameterized
Vector of parameters ω captures the subjective aspect of the
sorting
Set of possible parameter values is Ω∗

Choosing Ω∗ defines the set of possible sorting functions
Can be done for one individual or for the group

..
pref. model ω ∈ Ω∗

. fω

.a1

.

a2

.

a3

.

…

.
C3

.

C2

.

C1
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Example: weighted sum with thresholds

Criteria J , |J | = n, with functions gj : A → R
Preference model ω = ⟨W, L⟩:

a vector of weights W ∈ Rn
+,

a set of thresholds L ∈ RK−1
+ (K categories), lC is the low

threshold for category C.
Class of models is Ω∗ = Rn

+ × RK−1
+

Sorting function fω : A → C compares the score of a to the
thresholds lC2 , lC3 , . . .

..
.. ..math. ..lang.
..St 1 ..7 ..2
..St 2 ..4 ..9
..... .. ..

.

pref. model ω =
⟨
w1,w2, lC2

⟩
.

fω
. C2: succeeds.

C1: fails
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An obvious way
.Two difficulties..

......

...1 Multiple criteria to aggregate

...2 Multiple DMs whose points of view must be aggregated

A simple way to get around the second difficulty and come back to
the mono-DM case:

Come up with individual preference models ωt,∀t ∈ T
(typically using utility functions)
The group preference model is some aggregation of the
individual preference models;
or the group sorting function is some aggregation of the
individual sorting functions {fωt , t ∈ T }.

Why not?
13 / 39
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What we want

Avoid unneccessary sacrifices
use of preference lability

Achieve a better understanding of the points of consensus and
disaggrements
Explore non utility-based classes of preference models
Ask questions in terms of the problem

effects on the sorting results
Ask easy questions

assignment examples

(Not all of these points are specific to the approach presented
here.)
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Preference lability

Preferences are labile: not determined precisely in one’s head
DMs may not know their own preferences
Maybe several equally good ways of aggregating the criteria,
for a given DM
Documented (with a different perspective) in numerous
experiments
[Kahneman and Tversky, 2000, Lichtenstein and Slovic, 2006]

“Preferences are constructed in context”
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Sketch of the procedure

We work with (a variant of) Electre Tri as the class of
sorting functions
Parameters to be elicited: ω = ⟨L,W, λ⟩
We ask for assignment examples (e.g. a1 → C2)
These constrain the set of candidate preference models

We must have fω(a1) = C2

If no preference model satisfy all examples:
Search which constraints should be removed to restore
consistency
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Defining the group sorting function
Explanation proceeds in two steps.

Show how (the variant of) Electre Tri works: how fω is
defined, assuming the preference model ω is defined
Then, explain how we find a suitable preference model for the
group of DMs.

..pref. model ω ∈ Ω∗.

fω

.

a1

.

a2

.

a3

.

…

.

C3

.

C2

.

C1
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Sorting method: a variant of Electre Tri
.Preference parameters..

......

Category limits L =
⟨
lC,C ∈ C \ C1

⟩
: determine when the

alternative is good enough on a criterion
Weights W = ⟨wj, j ∈ J ⟩, and a majority threshold λ:
determine when the alternative is globally good enough

.Alternatives A..

......

g1 g2 g3
a1 3 1 1
a2 5 3 3
a3 0 5 1
a4 2 0 2

.Cat. limits L..

......

g1 g2 g3
C3: Good

lC3 4 4 3
C2: Average

lC2 3 3 2
C1: Bad

.Weights W, λ..

......

g1 g2 g3
W 0.2 0.6 0.2

λ = 0.8
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Sorting method: a variant of Electre Tri

a may reach at least C iff
∑

j in favor wj ≥ λ (C ̸= C1).
j in favor of a reaching C iff gj(a) ≥ lCj .
Thus, a sorted into the best category s.t.∑

j|gj(a)≥lCj

wj ≥ λ.

.Alternatives A..

......

g1 g2 g3
a1 3 1 1
a2 5 3 3
a3 0 5 1
a4 2 0 2

.Cat. limits L..

......

g1 g2 g3
C3: Good

lC3 4 4 3
C2: Average

lC2 3 3 2
C1: Bad

.Weights W, λ..

......

g1 g2 g3
W 0.2 0.6 0.2

λ = 0.8
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Strengths of Electre Tri

A variant has been axiomatized
[Bouyssou and Marchant, 2007a,
Bouyssou and Marchant, 2007b].
Justification of assignment easy to grasp (no complex
computation needed).
Might ease discussion among DMs.
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Determining a group preference model

We want to determine a suitable ω = ⟨L,W, λ⟩ for the group of
DMs.

We ask for assignment examples
A∗ ⊆ A the set of alternatives used as examples
∀a ∈ A∗, we know the category a should go into, according to
one DM at least
Assignment examples should be non contradictory
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Mathematical program

Having assignment examples E ⊆ A∗ × C,
We want to find ω = ⟨L,W, λ⟩ such that

∀(a,C) ∈ E : fω(a) = C.

Idea (finding ω satisfying examples) existed already
[Mousseau and Słowiński, 1998] but no efficient tools to solve
it.
We solve a Mixed Integer Program (MIP)
[Cailloux et al., 2012].
The MIP must represent the assignment examples as
constraints on the decision variables L,W, λ.
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Defining (some of) the constraints: idea
Consider example a → Ck, with Ck ̸= C1,C|C|.

Criterion j thinks that a deserves to reach Ck iff
gj(a) ≥ lCk

j .

Introduce binary variable ba,Ck
j = 1 iff a may reach Ck

according to j.

.Examples E..

......

g1 g2 g3 C
a 3 1 5 Ck
. . .

.Cat. limits L..

......

g1 g2 g3
C3: Good

lC3 lC3
1 lC3

2 lC3
3

C2: Average
lC2 lC2

1 lC2
2 lC2

3

C1: Bad

.Weights W, λ..

......
g1 g2 g3
w1 w2 w3
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Defining (some of) the constraints: idea
Consider example a → Ck, with Ck ̸= C1,C|C|.

a deserves to reach at least Ck iff∑
j|ba,Ck

j

wj ≥ λ.

.Examples E..

......

g1 g2 g3 C
a 3 1 5 Ck
. . .

.Cat. limits L..

......

g1 g2 g3
C3: Good

lC3 lC3
1 lC3

2 lC3
3

C2: Average
lC2 lC2

1 lC2
2 lC2

3

C1: Bad

.Weights W, λ..

......
g1 g2 g3
w1 w2 w3
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Defining (some of) the constraints
Consider example a → Ck, with Ck ̸= C1,C|C|.
We want that

a reaches at least Ck;
a does not reach Ck+1:∑

j|ba,Ck
j

wj ≥ λ ∧
∑

j|ba,Ck+1
j

wj < λ.

Define continuous variable [Meyer et al., 2008]:

va,Ck
j =

{
wj if ba,Ck

j = 1,

0 otherwise.

Therefore: ∑
j

va,Ck
j ≥ λ ∧

∑
j

va,Ck+1

j < λ.
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Recap of the procedure

Obtain assignment examples
Run the MIP
Find a preference model ω = ⟨L,W, λ⟩ such that fω satisfies
the examples
Present the results to the DMs by applying the function to a
larger set of alternatives, or by explaining how it “reasons”
They might want to correct or add examples

Also possible:
No satisfying model exist
Then some examples must be changed
Existing procedures can find minimal sets of constraints to
remove [Mousseau et al., 2006]
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Assignments stability

Typically, DMs provide few examples compared to number of
examples required to define a sorting function.
Thus, great variability in possible assignments of other
alternatives (from A \ A∗).
When one example changes (thus ω is changed to ω′), the
other assignments may completely change (fω may be
completely different than fω′).
This is called instability.
As the procedure is used interactively, instability can occur at
some point.
Convergence may be slow and hard to see.
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Improving the procedure

Possible instability
Possibly no consensus from the start
What if starting examples are contradictory?
We want the procedure to be more incremental
First, agree on the category limits (L), then on the weights
(W, λ).
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Partially shared parameters

We ask for examples Et to each DM t ∈ T .
These can be contradictory, e.g.

(
a1 t1−→C3

)
,
(
a1 t2−→C2

)
.

For each DM t ∈ T , we search for individual preference
models ωt = ⟨L,W t, λt⟩ satisfying examples Et.
Thus, category limits are shared but weights are chosen
individually.
This may exist even though there is no shared model
satisfying all examples.
This decomposes the problem into two simpler problems.
Once shared category limits are found, better stability.
Connects with existing procedures to find shared weights
[Damart et al., 2007].

29 / 39



Context and motivation An obvious solution? Our framework Improving the procedure Conclusions & Future
Insatisfactory aspects Finding partial parameters Performance test Computing restrictions Extensions

Implementation

Search procedure may be implemented with a MIP.
Has been implemented in a Java free (libre) package:
www.decision-deck.org/j-mcda/ [Cailloux, 2012].
Available as a web service in the Decision Deck framework.
Can be used through a client program (diviz):
http://www.decision-deck.org/diviz/.
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Performance test

.Objective..

......
Examine whether the MIP is able to find shared profiles within a
reasonable time frame.

Random generation : [3–10] criteria, [1–4] DMs, [2–5]
categories, [1–700] examples per DM.
Random performances gj(a).
Shared profiles used to sort examples, then forgotten.
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Performances

Nb binaries = |J | × |A∗| × (|C| − 1).
6 criteria, 3 categories, 3 DMs giving each 30 different
examples: ≈ 1000 binaries

.Results..

......

Solved within 90 minutes using less than 3 GB disk space:
Binary variables Sample size Problems solved
[0, 399] 477 100%
[400, 799] 441 87%
[800, 1199] 362 80%
[1200, 1599] 290 78%
[1600, 1999] 268 75%
[2000, 2199] 121 69%

Mainly depend on the number of criteria.
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Computing restrictions on weights

We can now propose shared L to the DMs.
For each t ∈ T , accepting L imposes a restriction on
possibility of choosing weights W t satisfying the examples Et.
We define an LP to compute these restrictions,
∀t ∈ T , j1, j2 ∈ J :

j1 ▷t j2 ⇔ wt
j1 > wt

j2 , ∀
⟨
wt

j , j ∈ J , λt⟩ satisfying Et.

This may help the DMs in choosing shared category limits.
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Variants and extensions

Possible to set direct constraints on the model parameters.
Possible to search for models including Electre Tri vetoes.
Possible to specify constraints on the (weighted) category size
[Zheng et al., 2011].

Select research projects that fit the budget.
Mainly for consensual constraints.

DMs may give imprecise assignments
(
a t−→ [C1,C2]

)
.

Also implemented in software.
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Possible use

This approach can be considered as a supplementary tool in the
analyst’s toolbox. Here is only one possible use.

Ask for examples Et.
Resolve possible individual inconsistencies.
Search for consensual model ω.
If no such model, search for shared category limits.
If still no model, allow for vetoes.
Present resulting category limits and individual weights with
restrictions on the weights.
If not acceptable, DMs may provide supplementary examples
or other constraints.
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Conclusion

A path out of the “average of individual opinions” strategy.
We search for consensus instead of compromise.
We use a “divide and conquer” approach.
Using a model possibly more intuitive than utility functions.
Asks easy questions.
Results are easily interpretable.
Computation time: could be improved.
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Future work

Generalise the idea and separate the specifics to Electre
Tri.
May also apply to other classes of models (such as utility
functions)
May apply to other problem types, e.g. ranking instead of
sorting.
Separate parameters in different manners?
Formal description of the relation between “what we want”
and “what we do”.
Validation of the model class.
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max s s.t. 
∑
j∈J

wj = 1

lCh
j ≤ lCh+1

j

.Variables..

......



lCh
j ,∀j ∈ J,Ch ∈ C
wj,∀j ∈ J
λ

ba,Ch
j (binaries)

va,Ch
j

n(a,Ch) (binaries)



(gj(a)− lCh
j ) + ε

M ≤ ba,h
j ≤

gj(a)− lCh
j

M + 1

va,Ch
j ≤ wj; ba,Ch

j + wj − 1 ≤ va,Ch
j ≤ ba,Ch

j∑
j∈J

va,Ch
j ≥ λ+ s ∀a −→ h, h ≥ 2

∑
j∈J

va,Ch+1

j + s ≤ λ− ε ∀a −→ h, h < k

n(a,Ch) ≤ 1 +
∑
j∈J

va,Ch
j − λ

n(a,Ch) ≤ 1 + λ−
∑
j∈J

va,Ch+1

j − ε

∑
1≤h≤k

n(a,Ch) = 1

nh ≤
∑
a∈A

n(a,Ch)P(a) ≤ nh ∀
⟨
Ch,P, nh, nh

⟩
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All constraints (with qualifiers)
max s s.t. 

(gj(a)− lCh
j ) + ε

M ≤ ba,h
j ≤

gj(a)− lCh
j

M + 1 ∀j ∈ J, a ∈ A, h ≥ 2

va,Ch
j ≤ wj; ba,Ch

j + wj − 1 ≤ va,Ch
j ≤ ba,Ch

j ∀j ∈ J, a ∈ A, h ≥ 2


∑
j∈J

wj = 1

lCh
j ≤ lCh+1

j ∀j ∈ J,Ch ∈ C


∑
j∈J

va,Ch
j ≥ λ+ s ∀a −→ h, h ≥ 2

∑
j∈J

va,Ch+1

j + s ≤ λ− ε ∀a −→ h, h < k

.Variables..

......



lCh
j ,∀j ∈ J,Ch ∈ C
wj,∀j ∈ J;λ
ba,Ch

j (binaries); va,Ch
j ;

n(a,Ch) (binaries),
∀j ∈ J, a ∈ A,Ch ∈ C



n(a,Ch) ≤ 1 +
∑
j∈J

va,Ch
j − λ ∀a ∈ A, h ≥ 2

n(a,Ch) ≤ 1 + λ−
∑
j∈J

va,Ch+1

j − ε ∀a ∈ A, h ≤ k − 1

∑
1≤h≤k

n(a,Ch) = 1 ∀a ∈ A

nh ≤
∑
a∈A

n(a,Ch)P(a) ≤ nh ∀
⟨
Ch,P, nh, nh

⟩
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