
General Yet Computationally
Efficient Aggregation Frameworks

Ronald de Haan
Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

me@ronalddehaan.eu
www.ronalddehaan.eu

me@ronalddehaan.eu
www.ronalddehaan.eu

What do I want to tell you?

General yet computationally efficient
aggregation frameworks

▶ Aggregation of individuals’ opinions

▶ Trade-off between generality and computational efficiency

▶ Description of a research direction, with some recent
(preliminary) results sprinkled throughout

Desiderata

▶ It would be useful to have an aggregation framework:

(1) that is general enough to model different relevant scenarios

and that allows freedom to specify additional constraints
(that differ per application)

(2) that provides a wide range of aggregation rules, that satisfy
different normative properties

(if it’s general enough, we can’t have all properties we want)

(3) that allows efficient computation of outcomes of these rules

▶ We need a trade-off between generality and efficiency!

Example 1: Participatory Budgeting

Budget

e

Projects

 

 

Example 1: Participatory Budgeting

▶ Finite set P = {p1, . . . , pm} of projects,
each associated with a cost ci ∈ N

▶ Budget b ∈ N

▶ Individuals’ votes: a subset Pi ⊆ P of projects s.t.:∑
pj∈Pi

cj ≤ b

▶ Collective outcome: a subset O ⊆ P of projects s.t.:∑
pj∈O

cj ≤ b

▶ Nontrivial setting—e.g., simple majority doesn’t always work

Example 1: additional constraints

▶ Now suppose further that some authority specifies further
constraints on the outcome, e.g.:
▶ “At least x percent of the budget needs to be spent on

sustainable projects.”
▶ “For each infrastructure project that is funded, at least one

cultural project needs to be funded.”

▶ Feature request: be able to specify different constraints on
individual opinions and collective outcome

Example 2: committee elections with constraints

▶ Finite set A = {a1, . . . , am} of alternatives
▶ Specification of the size k ∈ N of the sought committee
▶ Individuals’ votes: a linear order ≻i ∈ L(A)
▶ Collective outcome: a committee C ⊆ A of size |C| = k

▶ Again, consider some external constraints on the outcome,
e.g.:
▶ “The committee should be gender-balanced.”
▶ “The expertise of the committee should cover areas A,B,C.”

One candidate framework: Judgment Aggregation

▶ Perhaps existing toolboxes are enough for what we
need—perhaps not.

▶ The first ‘usual suspect’ to look at: Judgment Aggregation

▶ For this talk, we’ll stick to judgment aggregation.

▶ In general, we should keep an open mind: Should we extend
the framework? Do we want a (new) different framework?

Judgment Aggregation

▶ Issues: a set I = {x1, . . . , xn} of propositional variables

▶ Integrity constraints: propositional ‘statements’ Γin,Γout over
the variables x1, . . . , xn (and possibly more variables)

▶ Ballot: (b1, . . . , bn) ∈ {0, 1}n

▶ equivalently: truth assignment α to the variables x1, . . . , xn

▶ input-consistent if α is consistent with Γin
▶ output-consistent if α is consistent with Γout

▶ Profile: sequence r = (r1, . . . , rm) of input-consistent ballots

▶ Judgment aggregation rule: a function F that assigns to each
profile r a set F (r) of (output-consistent) ballots

Judgment aggregation rules: Kemeny, Slater

▶ The Kemeny rule selects those output-consistent ballots that
minimize the total sum of Hamming distances to the profile:

Kemeny(r) = arg min
r∗∈{0,1}n
r∗|=Γout

∑
ri∈r

Hamming(ri, r∗).

▶ The Slater rule selects those output-consistent ballots that
minimize the Hamming distance to the majority outcome:

Slater(r) = arg min
r∗∈{0,1}n
r∗|=Γout

Hamming(majority(r), r∗).

Encoding Participatory Budgeting in Judgment Aggregation

▶ We can express the budget constraints using logic constraints
▶ E.g., by building a ‘counting circuit’,

or with a formula (using additional variables)

▶ So Judgment Aggregation is expressive enough to capture
(some variant of) Participatory Budgeting

▶ But: we haven’t talked about efficiency yet

Computing outcomes

Decision problem: Outcome(F)

Input: A set I of issues, an integrity constraint Γ,
a profile r, and a partial ballot l.

Question: Is there some r∗ ∈ F (r) such that l agrees
with r∗?

▶ Keep in mind: we also want to solve other computational
tasks, e.g., enumerating outcomes, representing them
compactly, reason over them, etc

Intractability in General

Judgment aggregation rule F complexity of Outcome(F)

Kemeny Θp
2-complete

Slater Θp
2-complete

· · · Θp
2-hard (or worse)

The trade-off between generality and efficiency

▶ Rather than take arbitrary logic formulas/circuits as
constraints, look at restricted languages that:

(i) allow outcomes to be computed efficiently

(ii) are still general enough to model interesting settings

▶ Showcase example:
▶ Boolean circuits in DNNF

(Decomposable Negation Normal Form)

NNF circuits

▶ Boolean circuits in Negation Normal Form (NNF):

DNNF circuits

▶ Decomposability: variables inside conjuncts are disjoint

Why are DNNF circuits so fantastic?

▶ DNNF circuits allow a certain kind of bottom-up computation

▶ For example:

▶ Label literals ℓ with values α(ℓ) ∈ Z,
such that α(ℓ) + α(¬ℓ) = 0.

▶ Associate ∧-nodes with +

and associate ∨-nodes with max.

▶ Then computing the value of a DNNF circuit corresponds to
computing the value for a DNF formula listing all satisfying
truth assignments.

DNNF Circuits

Judgment aggregation rule F complexity of Outcome(F)

Kemeny polynomial time
Slater polynomial time

RdH. Hunting for Tractable Languages for Judgment Aggregation.
Proceedings of the 16th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2018).

Encoding Budget Constraints

▶ A budget constraint (b, {ci}i∈[m]) we can translate to a DNNF
circuit φ in polynomial time

▶ We can add to φ in poly time any constraint of the form:
“Between a and b need to be spent on projects in P ′ ⊆ P”

▶ We can add to φ in poly time any constraint of the form:
“At least as many projects in P1 ⊆ P as in P2 ⊆ P need to be
funded”

▶ So judgment aggregation with DNNF circuits strikes a nice
balance between generality and efficiency for Participatory
Budgeting (with extra constraints)

Zooming out..

▶ For some applications, Judgment Aggregation with DNNF
constraints is a general yet efficient aggregation framework
(for some rules)
▶ Also: committee elections with balance constraints, for weakly

separable committee scoring rules, can be efficiently encoded
in JA/DNNF/Kemeny

▶ Let’s keep looking—what do we want? what can we get?
▶ What can and can’t we encode with DNNF circuits?
▶ Can we get efficient rules based on proportionality?
▶ Do we want rankings/scores/etc built-in in the framework?
▶ (and much more..)

Relax, this is the last slide.. (or: Summary)

General yet computationally efficient
aggregation frameworks

▶ Aggregation in different scenarios, with constraints

▶ Trade-off between generality and computational efficiency

▶ Participatory budgeting, judgment aggregation, DNNF circuits

▶ Questions for discussion:
Do we want to add features to Judgment Aggregation?
Do we want another framework?

