BEGIN:VCALENDAR
VERSION:2.0
PRODID:ILLC Website
X-WR-TIMEZONE:Europe/Amsterdam
BEGIN:VTIMEZONE
TZID:Europe/Amsterdam
X-LIC-LOCATION:Europe/Amsterdam
BEGIN:DAYLIGHT
TZOFFSETFROM:+0100
TZOFFSETTO:+0200
TZNAME:CEST
DTSTART:19700329T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0200
TZOFFSETTO:+0100
TZNAME:CET
DTSTART:19701025T030000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
UID:/NewsandEvents/Archives/2014/newsitem/5695/16-
April-2014-Algebra|Coalgebra-Seminar-Sam-van-Gool
DTSTAMP:20140413T000000
SUMMARY:Algebra|Coalgebra Seminar, Sam van Gool
ATTENDEE;ROLE=Speaker:Sam van Gool
DTSTART;TZID=Europe/Amsterdam:20140416T160000
DTEND;TZID=Europe/Amsterdam:20140416T173000
LOCATION:Room F1.15, Science Park 107
DESCRIPTION:Abstract We give a construction of fi
nitely generated free algebras for Gödel-Löb prova
bility logic, GL. On the semantic side, this const
ruction yields a notion of canonical graded model
for GL and a syntactic definition of those normal
forms which are consistent with GL. Our two main t
echniques are incremental constructions of free al
gebras and finite duality for partial modal algebr
as. In order to apply these techniques to GL, we u
se a rule-based formulation of the logic GL by Avr
on (which we simplify slightly), and the correspon
ding semantic characterization that was recently o
btained by Bezhanishvili and Ghilardi. For more i
nformation, see http://www.illc.uva.nl/alg-coalg/
or contact Sumit Sourabh (sumit.sourabh at gmail.c
om).
X-ALT-DESC;FMTTYPE=text/html:\n **Abstr
act**

\n We give a construction of fi
nitely generated free algebras\n for Gö
;del-Löb provability logic, GL. On the semant
ic side,\n this construction yields a notio
n of canonical graded model\n for GL and a
syntactic definition of those normal forms which\n
are consistent with GL. Our two main techn
iques are\n incremental constructions of fr
ee algebras and finite duality\n for partia
l modal algebras. In order to apply these techniqu
es\n to GL, we use a rule-based formulation
of the logic GL by\n Avron (which we simpl
ify slightly), and the corresponding\n sema
ntic characterization that was recently obtained b
y\n Bezhanishvili and Ghilardi.

\n \n
For more information, see htt
p://www.illc.uva.nl/alg-coalg/ or contact Sumi
t Sourabh (sumit.sourabh at gmail.com).

\n
URL:/NewsandEvents/Archives/2014/newsitem/5695/16-
April-2014-Algebra|Coalgebra-Seminar-Sam-van-Gool
END:VEVENT
END:VCALENDAR