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Chapter 1

Introduction

Every organised society of individuals calls for procedures to stage collective deci-
sions. Since the first democracies to the advent of social networks and interactive
software agents, the interest in the development of efficient procedures for collec-
tive decision making has only been increasing.

This dissertation provides a systematic study of a particular class of collective
decision making problems, in which several individuals each need to make a yes/no
choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Inspired by potential applications in Artificial Intelligence,
we put forward a systematic and flexible framework that aims to account for the
wide variety of situations that can be encountered when dealing with the problem
of collective choice.

1.1 Background

The literature on Economic Theory, in particular its branches of Welfare Eco-
nomics, Public Choice and Social Choice Theory, comprises a centuries-old tra-
dition of studies of the problem of collective decision making. Dating back as far
as the 18th century, the work of Condorcet initiated a line of research in which
renowned scholars such as Charles Dodgson (also known as Lewis Carroll) have
contributed to the design and the analysis of voting procedures to be used in pub-
lic elections or committee decisions (McLean and Urken, 1995). In more recent
times, starting from the seminal work of Arrow (1963), Social Choice Theory has
become a well-established formalism for the study of collective decision making.

Today’s world is not quite similar to the one in which Condorcet and his
colleagues carried out their research. The rise of new information technologies has
endowed society with the possibility of taking collective decisions between large
groups of people in a network, and novel theoretical problems have originated from
the design of systems of autonomous software agents. Researchers in Artificial
Intelligence, particularly from the field of Multiagent Systems (Sandholm, 1999;
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2 Chapter 1. Introduction

Shoham and Leyton-Brown, 2009; Wooldridge, 2009), soon became interested in
the work of social choice theorists, and started to borrow techniques from the
literature on Economic Theory to analyse and study problems of collective choice
in a new light.

Notable examples include the analysis of ranking systems carried out by Alt-
man and Tennenholtz (2008, 2010), in which problems related to the design of
a search engine are given a formal axiomatic treatment using tools from Social
Choice Theory. Similar techniques have also been used to compare and evaluate
the design of online recommender systems (Pennock et al., 2000), and to formalise
the problem of aggregating the result of different search engines (Dwork et al.,
2001). This line of research has proved useful not only for the study of the in-
teraction of automatic software agents, but also for the implementation and the
enhancement of existing procedures for collective decision making. As an exam-
ple, Duke University in the U.S. has implemented a complex ranking procedure
known as the Kemeny rule (Kemeny, 1959) to rank Ph.D. applicants, exploiting
efficient heuristics developed by computer scientists (Conitzer, 2010).

Growing collaboration between Artificial Intelligence and Social Choice The-
ory has led to the creation of an entirely new research agenda under the name of
Computational Social Choice (Chevaleyre et al., 2007; Procaccia, 2011; Brandt
et al., Forthcoming). One particular problem of interest for this new community
is the case of social choice in combinatorial domains, in which the space of al-
ternatives from which individuals have to choose has a multi-attribute structure
(Chevaleyre et al., 2008). Classical examples include voting in multiple referenda,
in which individuals are asked to decide which propositions in a given set they
accept; or electing a committee, in which a number of seats need to be filled with
a set of possible candidates. The problem of decision making in combinatorial
domains was first pointed out by political scientists (Brams et al., 1998; Lacy and
Niou, 2000) and is now also receiving attention from researchers in Economic The-
ory (Ahn and Oliveros, 2012). In Artificial Intelligence such questions have been
the subject of numerous publications. Starting from the work of Lang (2004), to
a series of more recent developments (Lang, 2007; Xia et al., 2010; Xia, 2011),
there have been several attempts to tackle the high complexity that arises in this
context by using tools from Artificial Intelligence, such as methods for modelling
preferences inspired by knowledge representation (Rossi et al., 2004; Lang and
Xia, 2009; Li et al., 2011; Airiau et al., 2011).

1.2 Research Question

A central problem in Social Choice Theory, and, in view of our previous discussion,
in all of its applications to Artificial Intelligence, is the problem of aggregation:
Suppose a group of agents each supply a particular piece of information regarding
a common problem and we want to aggregate this information into a collective
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view to obtain a summary of the individual views provided. A classical example is
that of preferences (Arrow, 1963): each agent declares their individual preferences
over a set of alternatives by providing an ordering over this set, and we are
asked to amalgamate this information into a collective ranking that represents
the individual preferences provided. The same methodology has also been applied
more recently to a number of other types of information, among others beliefs
(Maynard-Zhang and Lehmann, 2003; Konieczny and Pino Pérez, 2002, 2011)
and judgments (List and Pettit, 2002).

One of the main features of the study of aggregation is the problem of collective
rationality : given a rationality assumption that binds the choices of individuals,
we ask whether the output of an aggregator still satisfies the same rationality
assumption. Consider the following example:

Example 1.2.1. Three autonomous agents need to decide on whether to perform
a collective action. This action is performed if two parameters are estimated to
exceed a certain threshold. We can model the choice situation with a multi-
attribute domain in which there are three issues at stake: “the first parameter is
above the threshold” (T1), “the second parameter is above the threshold” (T2),
and “the action should be performed” (A). The rationality assumption that links
the three issues together can be modelled using a simple propositional formula,
namely T1∧T2 → A. Consider now the following situation, in which the individual
views on the three issues are aggregated using the majority rule, accepting an issue
if a majority of the individual agents do:

T1 T2 A

Agent 1 Yes Yes Yes
Agent 2 No Yes No
Agent 3 Yes No No

Majority Yes Yes No

In this situation the collective action A is not performed, even though a major-
ity of the individuals think that the first parameter exceeds the threshold and a
(different) majority agree that also the second parameter exceeds the threshold.
Situations like the one above are often considered paradoxical: even if each indi-
vidual agent is rational (i.e., each of them satisfies the rationality assumption),
the collective view derived using the majority rule is not. That is, the majority
rule fails to lift the integrity constraint T1 ∧ T2 → A from the individual to the
collective level. This example shows that the majority rule violates collective
rationality in certain specific cases.

In this dissertation we put forward a general framework that encompasses most
of the classical studies of collective rationality in Social Choice Theory, and that
can prove useful to diverse research areas in Artificial Intelligence. We base our
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framework on binary aggregation, in which individuals are required to choose
from a multi-issue domain in which issues represent different binary choices. We
model rationality assumptions using a simple propositional language, and we
give a precise definition of collective rationality with respect to a given rational-
ity assumption. Classical work in Social Choice Theory has studied aggregation
procedures with the axiomatic method, using axioms to express desirable prop-
erties of a procedure. For example, the principle that all individuals should be
given equal weight is formalised in the axiom of anonymity, and the axiom of neu-
trality expresses a similar requirement of impartiality between issues. We classify
rationality assumptions with respect to their syntactic properties, and we give a
systematic treatment of the question of how we can relate collective rationality
with respect to a syntactically defined sublanguage on the one hand, to classical
axiomatic properties from Social Choice Theory on the other. For instance, Ex-
ample 1.2.1 shows that the majority rule is not collectively rational with respect
to the integrity constraint T1 ∧ T2 → A, which formalises the rationality assump-
tion in the example. A similar phenomenon can be observed when considering
the 3-clause T1∨T2∨A as rationality assumption: to see this, consider a scenario
in which each of three agents accepts exactly one issue, and no two agents accept
the same issue. On the other hand, any 2-clause (i.e., disjunctions of size 2) will
always be lifted, i.e., the majority rule is collectively rational with respect to the
language of 2-clauses. We will then be able to describe the majority rule in terms
of classical axioms from Social Choice Theory or in terms of the languages for
integrity constraints it lifts. It is results of this kind that we shall explore in depth
in this dissertation.

Research in Computational Social Choice have mainly focused on the study of
voting procedures (Brandt et al., Forthcoming), i.e., mechanisms for the selection
of candidates depending on the preferences of a set of individuals (Brams and
Fishburn, 2002). The study of voting procedures is strongly related to the problem
of aggregation, since the selection of candidates can take place by aggregating
individual preferences into a collective one. However, we shall not treat the
problem of voting in this dissertation, referring to our conclusions for a discussion
of the impact of our results on voting theory.

Nevertheless, two frameworks for the study of aggregation have been consid-
ered in Computational Social Choice, namely preference and judgment aggrega-
tion. Of the two, the former has received the most attention, being the subject
of a growing number of papers (Conitzer, 2006; Pini, 2007; Gonzales et al., 2008;
Endriss et al., 2009; Betzler et al., 2009; Pini et al., 2009; Hudry, 2010; Pini et al.,
2011; Rossi et al., 2011). On the other hand, the framework of judgment aggre-
gation, which was recently established as a central topic in Social Choice Theory
(List and Pettit, 2002; List and Puppe, 2009), has to date given rise to only a
small amount of publications in Artificial Intelligence, most of which focus on
investigating the the computational complexity of the framework (Endriss et al.,
2010a,b; Baumeister et al., 2011; Lang et al., 2011).
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Both the framework of preference and the framework of judgment aggrega-
tion can be embedded into binary aggregation by devising suitable integrity con-
straints. An ordering over three alternatives, for instance, can be represented in
binary aggregation with a binary ballot over three issues, one for each pair of
alternatives. If Pa>b, Pb>c and Pa>c are three binary issues, with their natural
interpretation, then we can represent the ordering a > c > b with ballot (1, 0, 1),
signifying that both issues Pa>b and Pa>c are accepted and issue Pb>c is rejected.
The rationality assumption of transitivity can be represented with formulas like
the following: Pa>b ∧Pb>c → Pa>c. The embedding is less straightforward for the
case of judgment aggregation, and can be achieved by explicitly representing the
logical correlations between the propositional formulas that constitute the object
of judgment.

The problem of collective rationality is central to both preference and judg-
ment aggregation, and theoretical results in these frameworks can thus be com-
pared with our findings in binary aggregation. Inspired by situations like the one
presented in the introductory Example 1.2.1, we provide a general definition of
paradox in binary aggregation to account for situations in which the collective
outcome does not fulfill the integrity constraint which is satisfied by all indi-
viduals. Making use of the embeddings of aggregation frameworks into binary
aggregation, we are able to show that most paradoxes in aggregation theory, such
as the Condorcet paradox (1785) and the discursive dilemma (List and Pettit,
2002), can be seen as instances of our general definition. Moreover, we analyse in
depth the relation between our characterisation results and known impossibility
theorems in both preference and judgment aggregation, putting forward a new
proof method which attempts to identify the source of impossibilities in a clash
between axiomatic properties and particular requirements of collective rationality.

All the results achieved in this dissertation are of a theoretical kind, and
their presentation aims at proposing a theory of collective rationality in binary
aggregation rather than developing solutions which are specific to a certain class
of applications. This dissertation aims at providing sound foundations to more
domain specific research, building a framework that takes into account the variety
of new problems that may be encountered by researchers in Artificial Intelligence.

1.3 Chapter Overview

The structure of this dissertation is summarised in Figure 1.1. In Chapter 2 we
give the basic definitions of the framework of binary aggregation with integrity
constraints, which is the principal object of study of this dissertation. The two
crucial definitions of paradox and of collective rationality are presented in the
same chapter, as well as several axiomatic properties for the study of aggrega-
tion procedures. Chapter 4 constitutes the mathematical core of the dissertation,
providing a number of characterisation results in binary aggregation that link clas-
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sical axiomatic properties from Social Choice Theory with collective rationality.
The generality of the framework of binary aggregation with integrity constraints
is investigated along two lines of argument. First, by concentrating on the study
of paradoxical situations, in Chapter 3 we show that our definition of paradox
accounts for many of the classical occurrences of paradoxes in aggregation theory.
Second, we show how characterisation results in binary aggregation can serve as
a starting point for the investigation of new results in other frameworks of aggre-
gation. Chapter 5 focuses on preference aggregation and Chapter 6 on judgment
aggregation. In Chapter 7 we bring together the two lines of work by defining and
analysing practical aggregation procedures for collectively rational aggregation.
Chapter 8 concludes and contains a list of directions for future research.

Binary Aggregation with Integrity Constraints
Chapter 2

Unifying Paradoxes
Chapter 3

Lifting Integrity Constraints
Chapter 4

Unifying Proofs
Chapters 5 and 6

Collectively Rational Aggregation
Chapter 7

Figure 1.1: Structure of the dissertation.

The remaining part of this introduction provides a brief overview of the results
presented in the dissertation following the structure in Figure 1.1. As shown in
Figure 1.1, Chapters 2 and 4 constitute the core of the dissertation. However,
Chapter 4 may be skipped by following the dashed line in Figure 1.1, forming a co-
herent presentation of aggregation paradoxes and possible escape routes towards
collectively rational aggregation.

1.3.1 Binary Aggregation with Integrity Constraints

Chapter 2 is devoted to introducing the framework of binary aggregation with
integrity constraints, which we put forward as a general framework for the study
of aggregation problems. The chapter provides basic definitions for this setting,
including the two crucial notions of paradox and of collective rationality, as well as
a list of axiomatic properties that shall be used to study aggregation procedures.
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Binary Aggregation

The ingredients of a decision problem are a set of individuals (possibly one) and
a set of alternatives from which to make a choice. In this work, we concentrate on
decision problems in which there are at least two individuals (a collective choice
problem), and where the set of alternatives has a binary combinatorial structure,
i.e., it is a product space of several binary domains associated with a set of issues,
or attributes. We assume that each individual submits a yes/no choice for each
of the issues and these choices are then aggregated into a collective one.

In Section 2.1.3 we provide several motivating examples showing the generality
of this setting. The most natural example is that of collective decisions over
multiple issues, e.g., multiple referenda and situations such as the one presented
in Example 1.2.1. More complex objects such as preferences and judgments can
also be modelled as elements of specific binary combinatorial domains.

At a very abstract level, virtually every individual expression has the potential
to be described using a finite number of binary parameters. This is a common as-
sumption when, for instance, the focus is on describing the diversity of elements
in a set of alternatives (Nehring and Puppe, 2002), or distinguishing between
possible worlds in an epistemic framework (Hintikka, 1962). Binary aggrega-
tion can therefore be summarised as the study of the aggregation of
individual expressions described by means of binary variables.

Rationality Assumptions/Integrity Constraints

Individuals can be rational in many different ways. When they express preferences
over a set of alternatives, like in the case of preference aggregation (Gaertner,
2006), a common assumption is to assume the transitivity of such preferences.
Thus, if an alternative a is preferred to a second one b, and this is in turn preferred
to a third alternative c, then the individual is also assumed to prefer a to c.
Different assumptions are made in the field of judgment aggregation (List and
Puppe, 2009), in which individuals express judgments over a set of correlated
propositions. In that case, the rationality of a judging agent relates to the logical
consistency of the set of propositions she accepted.

As shown by our initial Example 1.2.1, rationality assumptions in binary ag-
gregation can be expressed by means of formulas in a simple propositional lan-
guage. Rationality assumptions characteristic for other settings can also be for-
malised in this language, exploiting the embedding of the different frameworks
into binary aggregation. We call a propositional formula enforcing a rationality
assumption in binary aggregation an integrity constraint. An individual expres-
sion, i.e., a binary ballot, is called rational if it satisfies the formula in question.

This fact represents our first crucial observation: rationality assumptions
can be represented as propositional formulas, and can thus be classi-
fied and analysed in terms of their syntactic properties. This is where
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mathematical logic will play a small but very important role.

Collective Rationality

Given a set of individuals each expressing a rational ballot, the natural question
that arises is whether the collective outcome will be rational as well. As testified
by the introductory Example 1.2.1, this is not always the case, even when one of
the most natural aggregation procedures like the majority rule is being used.

We call a situation in which all individual ballots satisfy a given rationality
assumption, but the aggregation results in an irrational outcome a paradox (see
Definition 2.1.9). Chapter 3 is devoted to showing how most paradoxes of aggre-
gation that are traditionally studied in the literature on Social Choice Theory can
be seen as instances of our general definition of paradox in binary aggregation.

We call an aggregation procedure collectively rational for a given rationality
assumption if, whenever all the ballots submitted by the individuals are rational,
so is the outcome of aggregation (see Definition 2.1.8). The majority rule, for
instance, is not collectively rational with respect to the integrity constraint T1 ∧
T2 → A, as shown by our Example 1.2.1. Thus, an aggregation procedure
is collectively rational with respect to an integrity constraint if it lifts
the rationality assumption given by the integrity constraint from the
individual to the collective level. In Chapter 4 we analyse how the notion of
collective rationality varies depending on the syntactic structure of the integrity
constraint at hand, and we look for axiomatic conditions that guarantee collective
rationality of a given procedure.

1.3.2 Unifying Paradoxes

The observation of paradoxical situations has traditionally been the starting point
of most theoretical work in Social Choice Theory. One of the most striking
example was observed by Condorcet (1785) when analysing the use of majority
aggregation for preferences. Consider for instance the following toy example,
in which three colleagues are helping in choosing a colour for the cover of this
dissertation:

Joel Orange � Red � Green
Daniele Red � Green � Orange
Stéphane Green � Orange � Red

Majority Orange � Red � Green � Orange

Table 1.1: A cyclical majority outcome.

In spite of the fact that all colleagues have rational (in this case, transitive)
preferences, in the situation described by Table 1.1 the conclusion of the majority
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rule is that orange is both the best and the worst colour for the cover of this
dissertation! Thus, we obtain an irrational majoritarian outcome starting from a
profile of rational ballots.

In Chapter 3 we analyse the most important paradoxes arising from the use
of the majority rule in different settings. Our analysis focuses on the Condorcet
paradox (1785), the discursive dilemma in judgment aggregation (List and Pettit,
2002), the Ostrogorski paradox (1902) and the more recent work of Brams et al.
(1998) on multiple election paradoxes. The purpose of Chapter 3 is to show that
most paradoxes in aggregation theory can be seen as instances of our definition of
paradox in binary aggregation (see Definition 2.1.9). Hence, we provide a unified
treatment of aggregation paradoxes that enables us to analyse the syntactical
properties of paradoxical rationality assumptions.

We can thus make in Section 3.4 our second important observation: when
the majority rule is concerned, all paradoxical integrity constraints
feature a clause (i.e., a disjunction) of size at least 3. For instance, our
introductory Example 1.2.1 describes a paradoxical situation with respect to the
integrity constraint T1∧T2 → A, which is equivalent to the 3-clause ¬T1∨¬T2∨A.

This observation can be formalised into a general result: in Theorem 4.4.8 we
show that the majority rule is collectively rational (i.e., it does not generate a
paradox) if and only if the integrity constraint under consideration is equivalent
to a conjunction of clauses of size at most 2.

1.3.3 Lifting Integrity Constraints

The observation of paradoxical situations is usually generalised into impossibility
theorems, proving that aggregation is unfeasible under certain axiomatic condi-
tions. Classical work in Social Choice Theory was restricted to particular studies
of collective rationality in a given aggregation situation, and for given classes of
aggregation procedures. The aim was to identify the appropriate set of axiomatic
properties (e.g., to model real-word economies, specific moral ideals, etc.) and
then to prove a characterisation (or impossibility) result for those axioms. Given
the wide variety of potential applications in Artificial Intelligence, on the other
hand, in this context we require a systematic study that, depending on the sit-
uation at hand, can give answers to the problem of collective rationality. With
every new application the principles underlying a system may change, so we may
be more interested in devising languages for expressing a range of different ax-
iomatic properties rather than identifying the “right” set of axioms. Furthermore,
we may be more interested in developing methods that will help us to understand
the dynamics of a range of different social choice scenarios rather than in technical
results for a specific such scenario.

We group integrity constraints into syntactically defined fragments of the
propositional language, e.g., the set of conjunctions, or the set of disjunctions
of limited size, and we study the class of procedures that are collectively ratio-



10 Chapter 1. Introduction

nal with respect to all integrity constraints in a given language. We discover
that requiring collective rationality with respect to certain natural syn-
tactically defined languages corresponds to known classical axiomatic
properties from Social Choice Theory.

Formally, we define classes of aggregation procedures in two ways. On the one
hand, given a language L, we define the class CR[L] as the set of procedures that
are collectively rational with respect to all integrity constraints in L. On the other
hand, given a set of axiomatic properties AX and a language L, we define the
class FL[AX] as the set of procedures satisfying axioms AX on domains defined
by L. What we seek are characterisation results of the following form, providing
necessary and sufficient axiomatic conditions for an aggregation to be collectively
rational with respect to a given language L:

CR[L] = FL[AX].

In Section 4.2 we prove a series of characterisation results for several fragments of
the propositional language. A simple example can be obtained by considering the
language of literals, i.e., propositional atoms together with their negation. We
prove that a necessary and sufficient condition for an aggregation procedure to
be collectively rational with respect to any literal is that the procedure be unan-
imous, i.e., it accepts/rejects an issue when all individuals agree to accept/reject
it (Theorem 4.2.1).

Results of this form can also be interpreted as characterising classical ax-
iomatic properties in terms of collective rationality. While providing a character-
isation for many standard axioms from the literature, in Section 4.3 we also show
that for some other natural properties such a characterisation is not possible.

A very interesting case is given by the class of aggregation procedures that are
collectively rational with respect to all possible integrity constraints. We prove
that each such procedure copies the ballot of a (possibly different) individual in
every situation (Theorem 4.2.8), and we call these procedures generalised dicta-
torships. In Chapter 7 we argue that a meaningful choice of the individual ballot
that best represents all the other ballots submitted by the individuals may gener-
ate new interesting aggregation procedures. We present one such rule, called the
average voter rule, and we evaluate its axiomatic and computational properties.

1.3.4 Unifying Proofs

Classical frameworks in Social Choice Theory like preference aggregation (Gaert-
ner, 2006) and judgment aggregation (List and Puppe, 2009) can be seen as
instances of binary aggregation by devising suitable integrity constraints. Having
shown in Chapter 3 that paradoxes in these settings can be seen as instances of
a general definition in binary aggregation, in Chapter 5 and 6 we turn to the
analysis of theoretical results.
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We are able to obtain new (im)possibility theorems in both preference and
judgment aggregation, by employing the characterisation results in binary aggre-
gation presented in Chapter 4. More importantly, we devise a new uniform proof
method for theoretical results in aggregation theory that sheds new light on the
problems that lie behind impossibilities. The method consists of three basic steps:

(i) Given an aggregation problem, translate it into binary aggregation, obtain-
ing, first, an integrity constraint that describes the domain of aggregation
and, second, a set of axiomatic properties.

(ii) Use a characterisation result from binary aggregation to check whether col-
lective rationality with respect to the given integrity constraint clashes with
the axiomatic requirements.

(iii) Translate the result back into the original setting to obtain a possibility or
an impossibility result.

Using this method, we look for clashes between the syntactic shape of the integrity
constraints defining an aggregation problem on the one hand, and a given com-
bination of axiomatic postulates on the other. The results that can be obtained
by using this proof method may share similarities or may be weaker than known
results from the literature on Social Choice Theory. However, the focus is not on
the novelty or strength of single results, but rather on the generality and flexibil-
ity of the proof method we put forward. By unifying proofs in aggregation theory
we gain a deeper understanding of the common problem behind many classical
results: impossibilities arise from clashes between axiomatic properties
and requirements of collective rationality.

We employ this methodology in Chapter 5 for the case of preference aggrega-
tion, proving both possibility and impossibility results for various combinations
of axioms and different representations of preferences. We also present an alter-
native proof of Arrow’s Theorem (Arrow, 1963), which focuses on the effect of
collective rationality with respect to preferential integrity constraints on the set
of winning coalitions for an aggregation procedure.

Chapter 6 is devoted to a study of the framework of judgment aggregation
(List and Pettit, 2002). In particular we focus on the new problem of the safety of
the agenda (Endriss et al., 2010a). An agenda, i.e., a set of formulas, is called safe
with respect to a given class of judgment aggregation procedures if all aggregators
in the class output consistent judgments on all profiles of consistent judgment
sets. For several classes of procedures defined in axiomatic terms, we provide
necessary and sufficient conditions for an agenda to be safe. The resemblance
with the characterisation results presented in Chapter 4 is immediate, and in
Section 6.3.4 we compare these findings. We conclude the chapter by analysing
in Section 6.4 the computational complexity of recognising safe agendas, proving
that it is Πp

2-complete for all classes we considered (Theorem 6.4.7). Our findings
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thus suggest that this problem is highly intractable for all the classes of procedures
under consideration.

We can therefore conclude, as pictured in Figure 1.2, that binary aggrega-
tion with integrity constraints constitutes a general framework for the analysis
of collective rationality. It provides a unifying definition of paradox and gen-
eral characterisation results that encompass the other frameworks of aggregation
present in the literature.

Preference Aggregation
Condorcet paradox
Arrow’s Theorem

Judgment Aggregation
Discursive dilemma
Agenda properties

Voting in
Combinatorial Domains
Multiple election paradox

...

Binary Aggregation
with Integrity Constraints

Paradox (Definition 2.1.9)
Characterisation results

(Chapter 4)

Figure 1.2: A general framework for aggregation theory.

1.3.5 Collectively Rational Aggregation

Having established the importance of the notion of collective rationality, the dis-
sertation is completed with the analysis of some concrete aggregation procedures
that are especially designed to be collectively rational. We propose in Chapter 7
the definition of three collectively rational rules, and we investigate the compu-
tational complexity of two classical problems: winner determination (WinDet)
and strategic manipulation (Manip).

The former problem of winner determination for a given aggregation proce-
dure demands to assess how difficult it is to compute the outcome in a given
situation. The latter problem, Manip, focuses on the incentives that individuals
may have in reporting their vote truthfully. A celebrated theorem by Gibbard
(1973) and Satterthwaite (1975) shows that every reasonable voting procedure
can be manipulated, i.e., individuals always have the opportunity to change the
outcome of an election in their favour. The problem Manip asks how difficult it
is to recognise whether an agent has incentives to deviate from her truthful ballot
in a given situation.
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The first rule we analyse is a generalised dictatorship which selects in each
situation the ballots of those individuals that minimise the amount of disagree-
ment with the other individual ballots. We call this rule the average voter rule
(AVR) and we show that both the problems WinDet and Manip can be solved
in polynomial time for this rule (Proposition 7.2.4 and Theorem 7.2.5).

The second rule we study is the premise-based procedure (PBP) for judgment
aggregation, in which the judgment over a set of independent formulas called
premises is aggregated by using the majority rule, and this collective judgment
is then used to infer the acceptance or rejection of a a set of complex propo-
sitions defined over the premises (see, e.g., List and Puppe, 2009). We prove
that WinDet for the PBP can be solved in polynomial time, while Manip is
NP-complete (Proposition 7.3.2 and Theorem 7.3.3), thus showing the “jump”
in computational complexity between winner determination and manipulability
that is a good indicator of an aggregation rule which resists manipulation.

We end by analysing a well-known rule called the distance-based rule (DBP)
(see, e.g., Konieczny and Pino Pérez, 2002; Pigozzi, 2006; Miller and Osherson,
2009). We limit our analysis to the problem of winner determination, showing that
it is already highly unfeasible. We prove that WinDet for the DBP is complete
for the class Θp

2, which contains those problems that can be solved in polynomial
time using a logarithmic number of queries to an NP oracle (Theorem 7.4.5).

The results we obtain can be summarised in the following table:

WinDet Manip

AVR P P
PBP P NP-complete
DBP Θp

2-complete –

Table 1.2: Complexity of collectively rational aggregation.

1.3.6 Summary

Collective decision making in multi-issues domains is a problem of high interest
to the Artificial Intelligence community, and has recently received considerable
attention in the literature on Computational Social Choice. This dissertation
provides a systematic study of aggregation in binary combinatorial domains, with
particular attention to the problem of collective rationality.
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Chapter 2

Binary Aggregation with Integrity Constraints

In this chapter we provide the basic definitions of the framework of binary aggre-
gation with integrity constraints, which constitutes the main object of study of
this dissertation. In this setting, several individuals each need to make a yes/no
choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Depending on the application at hand, different combi-
nations of yes/no may be considered rational and we describe such assumptions
with an integrity constraint expressed in a simple logical language. The question
then arises whether or not a given aggregation procedure will lift the rationality
assumptions from the individual to the collective level, i.e., whether the collective
choice will be rational whenever all individual choices are. We name this problem
collective rationality, and we give it central status throughout this dissertation.

We provide formal definitions for the framework of binary aggregation with in-
tegrity constraints in Section 2.1, including the two crucial definitions of collective
rationality and of paradox. In Section 2.2, we provide a list of desirable properties
for aggregation procedures in the form of axioms. For some classes of procedures
defined axiomatically we provide a mathematical representation in Section 2.3,
and in Section 2.4 we compare our framework to the existing literature on binary
aggregation.

2.1 Basic Definitions

Many aggregation problems can be modelled using a finite set of binary issues,
whose combinations describe the set of alternatives on which a finite set of indi-
viduals need to make a choice. In this section, we give the basic definitions of
the framework of binary aggregation with integrity constraints, and we define the
two crucial concepts of paradox and of collective rationality. We present several
practical examples of binary aggregation problems, taken from the literature on
Social Choice Theory or inspired by practical cases of collective decision making.

15



16 Chapter 2. Binary Aggregation with Integrity Constraints

2.1.1 Binary Aggregation

Let I = {1, . . . ,m} be a finite set of issues , and let D = D1 × · · · × Dm be
a boolean combinatorial domain, i.e., |Di| = 2 for all i ∈ I. Without loss of
generality we assume that Dj = {0, 1} for all j. Thus, given a set of issues I, the
domain associated with it is D = {0, 1}I . A ballot B is an element of D.

Let N = {1, . . . , n} be a finite set of individuals . Each individual submits a
ballot Bi ∈ D to form a profile B = (B1, . . . , Bn). Thus, a profile consists of a
binary matrix of size n ×m. We write bj for the jth element of a ballot B, and
bi,j for the jth element of ballot Bi within a profile B = (B1, . . . , Bn).

Definition 2.1.1. Given a finite set of issues I and a finite set of individuals N ,
an aggregation procedure is a function F : DN → D, mapping each profile of
binary ballots to an element of D. Let F (B)j denote the result of the aggregation
of profile B on issue j.

Aggregation procedures are defined for all possible profiles of binary ballots, a
condition that takes the name of universal domain in the literature on Social
Choice Theory. Aggregation procedures that are defined on a specific restricted
domain, by making use of particular characteristics of the domain at hand, can
always be extended to cover the full boolean combinatorial domain (for instance,
by mapping all remaining profiles to a constant value).

2.1.2 Integrity Constraints

In many applications it is necessary to specify which elements of the domain are
rational and which should not be taken into consideration. Since the domain
of aggregation is a binary combinatorial domain, propositional logic provides a
suitable formal language to express possible restrictions of rationality. In the
sequel we shall assume acquaintance with the basic concepts of propositional
logic. A list of the basic notions of propositional logic that we make use of in this
dissertation can be found in Appendix A.

If I is a set of m issues, let PS = {p1, . . . , pm} be a set of propositional
symbols, one for each issue, and let LPS be the propositional language constructed
by closing PS under propositional connectives. For any formula ϕ ∈ LPS, let
Mod(ϕ) be the set of assignments that satisfy ϕ.

Definition 2.1.2. An integrity constraint is any formula IC ∈ LPS.

Integrity constraints can be used to define what tuples in D we consider rational
choices. Any ballot B ∈ D is an assignment to the variables p1, . . . , pm, and we
call B a rational ballot if it satisfies the integrity constraint IC, i.e., if B is an
element of Mod(IC). A rational profile is an element of Mod(IC)N . In the se-
quel we shall use the terms “integrity constraints” and “rationality assumptions”
interchangeably.
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2.1.3 Examples

Let us now consider several examples of aggregation problems that can be mod-
elled in binary aggregation by devising a suitable integrity constraint:

Example 2.1.3. (Multi-issue elections under constraints) A committee N has
to decide on each of the three following issues: (U) financing a new university
building, (S) financing a sports centre, (C) increasing catering facilities. As an
approval of both a new university building and a sports centre would bring an
unsustainable demand on current catering facilities, it is considered irrational to
approve both the first two issues and to reject the third one. We can model
this situation with a set of three issues I = {U, S, C}. The integrity constraint
representing this rationality assumption is the following formula: pU ∧ pS →
pC . To see an example of a rational profile, consider the situation described in
Table 2.1 for the case of a committee with three members. All individuals are
rational, the only irrational ballot being B = (1, 1, 0).

B:

U S C

i1 0 1 0
i2 1 0 0
i3 1 1 1

Table 2.1: A rational profile for pU ∧ pS → pC .

The two examples that follow are classical settings from the literature on Social
Choice Theory and will be studied in more detail in later chapters.

Example 2.1.4. (Preference aggregation) A set N of individuals has to agree on
a ranking of three alternatives a, b and c. Each individual submits its own ranking
of the alternatives from the most preferred to the least preferred, e.g., b > a > c.
We can model this situation using a binary issue for every pair of alternatives:
issue ab stands for “alternative a is preferred to alternative b”. The set of issues
is therefore I = {ab, ba, bc, cb, ac, ca}. However, not every binary evaluation over
this set of issues corresponds to a preference order. An integrity constraint needs
to be devised to encode the properties of a strict preference relation: transitiv-
ity, completeness and anti-symmetry. This can be done by considering, for each
combination of pairs of issues, the following integrity constraints: pab ∧ pbc → pac
standing for transitivity, and pab ↔ ¬pba, encoding the remaining two conditions
of completeness and anti-symmetry. The correspondence between preference ag-
gregation and binary aggregation is spelled out in detail in Section 3.1.2 and
Chapter 5.

Example 2.1.5. (Judgment aggregation) A court composed of three judges has
to decide on the liability of a defendant under the charge of breach of contract.
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According to the law, the individual is liable if there was a valid contract and her
behaviour was such as to be considered a breach of the contract. The court takes
three majority decisions on the following issues: there was a valid contract (α),
the individual broke the contract (β), the defendant is liable (α ∧ β). We can
model this situation using a set of six issues I = {α,¬α, β,¬β, α ∧ β,¬(α ∧ β)}
to model the decision of a judge on the three issues at stake, and a set of integrity
constraints that reflect the consistency of a possible verdict. To do so, we need
to rule out explicitly every inconsistent set that can be created using issues in I:

Inconsistent sets of size 2: ¬(px ∧ p¬x) for all x ∈ {α, β, α ∧ β},
¬(pα∧β ∧ p¬α) and ¬(pα∧β ∧ p¬β)

Inconsistent set of size 3: ¬(p¬(α∧β) ∧ pα ∧ pβ)

Situations like the one described in this example are the subject of a wide lit-
erature in Social Choice Theory under the name of judgment aggregation (List
and Puppe, 2009). See Section 3.2.1 and Chapter 6 to see the correspondence
between judgment aggregation and binary aggregation in more detail.

We conclude with two classical examples from voting theory:

Example 2.1.6. (Voting for candidates) A winning candidate has to be chosen
from a set C = {1, . . . ,m} by an electorate N . Let the set of issues be I=C.
Assume that we are using approval voting as voting procedure, in which indi-
viduals are submitting a set of candidates they approve (Brams and Fishburn,
2007). Then, we can model the situation without any integrity constraint, since
every binary ballot over I corresponds to a set of candidates. Instead, if we con-
sider more restrictive ballots like in the case of the plurality rule, in which each
individual submits only its favourite candidate, we need to devise an integrity
constraint that forces each individual to approve a single candidate in the list.
This can only be done by taking the disjunction of all possible ballots:

(p1 ∧ ¬p2 ∧ · · · ∧ ¬pm) ∨ (¬p1 ∧ p2 ∧ · · · ∧ ¬pm) · · · ∨ (¬p1 ∧ . . .¬pm−1 ∧ pm)

The voting rule known as k-approval voting, in which individuals submit a set of
k approved candidates, can be modelled in a similar fashion.

Example 2.1.7. (Voting for a committee) An electorate N needs to decide on
a steering committee composed of a director, a secretary and a treasurer. Can-
didates can be chosen between c1 and c2, proposed by party F, and c3 and c4,
proposed by party P. For political reasons, if the chosen director belongs to a cer-
tain party, then the remaining vacancies must be filled with candidates belonging
to the other party. Let the set of issues be I = {D=cj, T=cj, S=cj | j = 1, . . . , 4}.
In order for each ballot to correspond to a committee we need to add the following
integrity constraints:1 D=cj →

∧
k 6=j ¬D=ck and

∨
j=1,...,4D=cj and similarly for

1As a shorthand for pD=cj , which stands for the propositional variable associated to issue
D=cj , we directly use the name of the issue.
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T and S. Finally, to encode the requirement of political balance, we add the
following formulas:

(D=c1 ∨D=c2)→ (T=c3 ∨ T=c4) ∧ (S=c3 ∨ S=c4)

(D=c3 ∨D=c4)→ (T=c1 ∨ T=c2) ∧ (S=c1 ∨ S=c2)

2.1.4 Paradoxes and Collective Rationality

Consider the situation introduced in Example 2.1.3: There are three issues at
stake, and the integrity constraint is represented by the formula IC = pU ∧ pS →
pF . Suppose there are three individuals, choosing ballots (0, 1, 0), (1, 0, 0) and
(1, 1, 1), as in Table 2.1. Their choices are rational (they all satisfy IC). Assume
now that we accept an issue j if and only if a majority of individuals do, employing
what we will call the majority rule. Then, we would obtain the ballot (1, 1, 0) as
collective outcome, which fails to be rational. This kind of observation is often
referred to as a paradox.

In the literature on Social Choice Theory, situations like the one above are
ruled out by requiring aggregation procedures to satisfy a property called col-
lective rationality , which forces the output of an aggregation procedure to be of
the same form as the input, i.e., a rational ballot. In preference aggregation, for
instance, the output of an aggregation procedure is often required to be a linear
(or weak) order over a set of alternatives (Gaertner, 2006). In judgment aggrega-
tion the output is required to be a complete and consistent judgment over a set of
propositional formulas (List and Puppe, 2009). In view of our general perspective
on aggregation problems, we give here a definition of collective rationality that
depends on the integrity constraint at hand:

Definition 2.1.8. Given an integrity constraint IC ∈ LPS, an aggregation pro-
cedure F : DN → D is called collectively rational (CR) with respect to IC, if for
all rational profiles B ∈ Mod(IC)N we have that F (B) ∈ Mod(IC).

Thus, F is CR with respect to IC if it lifts the rationality assumption given
by IC from the individual to the collective level, i.e., if F (B) |= IC whenever
Bi |= IC for all i ∈ N . An aggregation procedure that is CR with respect to IC
cannot generate a paradoxical situation with IC as integrity constraint. From
Definition 2.1.8 we can obtain a general definition of paradoxical behaviour of an
aggregation procedure:

Definition 2.1.9. A paradox is a triple (F,B, IC), where F : DN → D is an
aggregation procedure, B is a profile in DN , IC is an integrity constraint in LPS,
and Bi ∈ Mod(IC) for all i ∈ N but F (B) 6∈ Mod(IC).

In Chapter 3 we explore the generality of Definition 2.1.9 by showing that classical
paradoxes introduced in several frameworks of aggregation are instances of this
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definition. In Chapter 4 we study, for several fragments of the propositional lan-
guage the class of procedures that are CR with respect to all integrity constraints
in a given language, characterising it in axiomatic terms.

2.1.5 Rationality Constraints vs. Feasibility Constraints

An important remark needs to be made about the nature of integrity constraints.
In the previous section, we have introduced the concept of integrity constraint
as formalising a rationality assumption that separates ballots that are rational
from those to which a meaning cannot even be attached. In our framework, both
the individuals and the collective outcome should comply with the constraints
that define a problem. This, however, is not the only way in which integrity
constraints can be used. Consider the following example.

Example 2.1.10. A committee N has to decide on whether to accept or reject
three bills A, B and C. For budgetary reasons, only two of the three bills can be
financed. This can be modelled in binary aggregation using a set of three issues
I = {A,B,C} and integrity constraint ¬(pA ∧ pB ∧ pC).

In this example, the integrity constraint expresses a condition of feasibility rather
than rationality, partitioning the set of ballots into those that are feasible and
those that are not. Similar constraints are usually enforced on the outcome, but
may not be imposed on individuals. This is because we may be interested in
knowing the sincere evaluations of individuals, even if unfeasible, rather than
having them misrepresent their judgment to satisfy the integrity constraint.

In this dissertation we use integrity constraints in their first interpretation,
i.e., as rationality assumptions that need to be satisfied by both the collective and
the individuals. Feasibility constraints in aggregation theory have been studied
extensively using the framework of logic-based belief merging (Konieczny and
Pino Pérez, 2002, 2011). A combination of the two approaches constitutes a
highly promising direction for future work.

2.2 The Axiomatic Method

Aggregation procedures are traditionally studied using the axiomatic method.
Axioms are used to express desirable properties of an aggregation procedure, and
these axioms are then combined in an attempt to find the most desirable aggrega-
tion system. This methodology is widespread in the whole literature on Economic
Theory, as testified by several important results which were proven using the ax-
iomatic method in a number of disciplines: notable examples are the definition
of the Nash solution for bargaining problems (Nash, 1950), the treatment by von
Neumann and Morgenstern (1947) of decision making under uncertainty and, fi-
nally, Arrow’s Theorem in preference aggregation (Arrow, 1963). In this section,
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we adapt the most important axioms familiar from standard Social Choice The-
ory, and more specifically from judgment aggregation (List and Puppe, 2009) and
binary aggregation (Dokow and Holzman, 2010a), to our framework.

Let X ⊆ DN be a subset of the set of profiles. The first axiomatic property
we take into consideration is called unanimity:

Unanimity (U): For any profile B ∈ X and any x ∈ {0, 1}, if bi,j = x for all
i ∈ N , then F (B)j = x.

Unanimity postulates that, if all individuals agree on issue j, then the aggregation
procedure should implement that choice for j. This axiom stems from a reformu-
lation of the Paretian requirement, which is traditionally assumed in preference
aggregation. In Chapter 5 we discuss this correspondence in more detail. Several
weaker versions of this axiom have been proposed. The most common assump-
tion in the literature on judgment aggregation (List and Puppe, 2009) requires
the individuals to agree on all issues in order for the collective outcome to agree
with the individual ballot. This notion is considerably weaker than our axiom of
unanimity, but the two formulations are equivalent for procedures satisfying the
additional axiom of independence (which we shall see soon).

Another common property is the requirement that an aggregation procedure
should treat all issues in the same way. We call this axiom issue-neutrality:

Issue-Neutrality (NI): For any two issues j, j′ ∈ I and any profile B ∈ X , if
for all i ∈ N we have that bi,j = bi,j′ , then F (B)j = F (B)j′ .

The axiom of issue-neutrality often comes paired with another requirement of
symmetry between issues, that focuses on the possible values that issues can
take.2 We propose this axiom under the name of domain-neutrality:

Domain-Neutrality (ND): For any two issues j, j′ ∈ I and any profile B ∈ X ,
if bi,j = 1− bi,j′ for all i ∈ N , then F (B)j = 1− F (B)j′ .

This axiom is a generalisation to the case of multiple issues of the axiom of
neutrality introduced by May (1952). The two notions of neutrality above are
independent from each other but dual: issue-neutrality requires the outcome on
two issues to be the same if all individuals agree on these issues; domain-neutrality
requires them to be reversed if all the individuals make opposed choices on the
two issues.

The following property requires the aggregation to be a symmetric function
of its arguments, and it is traditionally called anonymity.

2Sometimes the two conditions are paired together in a single requirement of neutrality (see,
e.g., Riker, 1982, Chapter 3).



22 Chapter 2. Binary Aggregation with Integrity Constraints

Anonymity (A): For any profile B ∈ X and any permutation σ : N → N , we
have that F (B1, . . . , Bn) = F (Bσ(1), . . . , Bσ(n)).

The next property we introduce has played a crucial role in several studies in
Social Choice Theory, and comes under the name of independence:

Independence (I): For any issue j ∈ I and any two profiles B,B′ ∈ X , if
bi,j = b′i,j for all i ∈ N , then F (B)j = F (B′)j.

This axiom requires the outcome of aggregation on a certain issue j to depend
only on the individual choices regarding that issue. In preference aggregation
the corresponding axiom is called independence of irrelevant alternatives. In
the literature on judgment aggregation, the combination of independence and
issue-neutrality takes the name of systematicity. This axiom is at the basis of the
“welfaristic view” for ordinal utility in Social Choice Theory (see Roemer, 1996, p.
28). This research assumption states that a society, in making its choices, should
only be concerned with the well-being of its constituents, discarding all “non-
utility information”; in particular, past behaviour or hypothetical situations other
than the one a society is facing (independence), and particular characteristics or
correlations between the issues at hand (issue-neutrality). In the same spirit, the
axiom of anonymity requires that the collective decision should disregard names,
weights or importance of the individuals in a society.

We now introduce two axioms of monotonicity. The first, which we call I-
monotonicity, is often called positive responsiveness and is formulated as an (inter-
profile) axiom for independent aggregation procedures. The second version of
monotonicity is designed for neutral procedures, and it was introduced by Endriss
et al. (2010a):

I-Monotonicity (MI ): For any issue j ∈ I and any two profiles B,B′ ∈ X ,
if bi,j = 1 entails b′i,j = 1 for all i ∈ N , and for some s ∈ N we have that
bs,j = 0 and b′s,j = 1, then F (B)j = 1 entails F (B′)j = 1

N-Monotonicity (MN ): For any two issues j, j′ ∈ I and any profile B ∈ X ,
if for all i ∈ N we have that bi,j = 1 entails bi,j′ = 1 and for some s ∈ N
we have that bs,j = 0 and bs,j′ = 1, then F (B)j = 1 entails F (B)j′ = 1.

MI expresses that, if an issue j is collectively accepted and receives additional
support (from an individual s), then it should continue to be collectively accepted.
On the other hand, axiom MN says that, if issue j is collectively accepted and
issue j′ is accepted by a strict superset of the individuals accepting j, then j′

should also be collectively accepted. Under the assumption of systematicity the
two versions of monotonicity are equivalent.

Not all aggregation procedures satisfy each of these axioms. The literature
on Social Choice Theory is plagued with impossibility results showing that there
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is no aggregator satisfying certain combinations of axioms. To see an example,
consider a simple constant procedure that outputs the same ballot in every profile.
This procedure is independent and issue-neutral, since it treats all issues in the
same way in every profile. On the other hand, it is neither domain-neutral nor
unanimous.

The last property for aggregation procedures that we are going to introduce
is traditionally considered a negative one. We choose not to state it as an axiom,
but rather as a property defining a class of functions.

Definition 2.2.1. An aggregation procedure F is called a dictatorship if there
exists an individual i ∈ N such that F (B) = Bi for all profiles B.

A dictatorship copies the ballot of the same individual in every profile. This
notion is in clear conflict with the axiom of anonymity previously introduced. In
Definition 4.2.7 we will generalise this notion by defining the class of generalised
dictatorships as those procedures that copy the ballot of a (possibly different)
individual in every profile.

We conclude with an important remark. It is crucial to observe that all axioms
are domain-dependent : It is possible that an aggregation procedure satisfies an
axiom only on a subdomain X ⊆ D in which individuals can choose their ballots.
For instance, consider the following example. With two issues, let IC = (p2 → p1)
and let F accept the first issue if a majority of the individuals accept it, and accept
the second issue only if the first one was accepted and the second one has the
support of a majority of individuals. This procedure is clearly not independent on
the full domain, but it is easy to see that it satisfies independence when restricted
to X = Mod(IC)N . We will make extensive use of this fact in Chapter 4.

One last observation: Note that the notion of integrity constraint never oc-
curs in the definition of an axiom. This choice reflects the view that axiomatic
properties should be separate from the behaviour of an aggregation procedure
with respect to domain specific problems like that of collective rationality.

2.3 Representation Results

Axiomatic properties like the ones we introduced in Section 2.2 can be used
to define classes of procedures, and in Chapter 4 we are going to make use of
this construction extensively. In this section, we start investigating some of these
classes providing, for some of them, a useful mathematical representation. All the
results proved in this section are adaptations of known results from the literature,
even if those results are rarely stated explicitly.

Let us first introduce some further notation: denote with NB
j = {i ∈ N |

bi,j = 1} the set of individuals accepting issue j in profile B. We begin by con-
sidering aggregation procedures that satisfy the axiom of independence, proving
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a representation result in terms of winning coalitions :3

Proposition 2.3.1. An aggregation procedure F satisfies I if and only if for every
issue j there exists a collection of subsets Wj ⊆ P(N ) such that F (B)j = 1 if
and only NB

j ∈ Wj. Let Wj be the set of winning coalitions of F for issue j.

Proof. Let F be an independent procedure, and let j be an issue in I. Define
Wj as the set of all sets A ⊆ N such that there exists a profile B with NB

j = A

and F (B)j = 1. As F is independent, for every profile B′ with NB′

j = A we
have that F (B′)j = 1. Thus, F is defined by the set of winning coalitions Wj.
On the other hand, given a set of winning coalitions Wj for F , let B and B′ be
two distinct profiles such that bi,j = b′i,j. It is straightforward to observe that this

implies that NB
j = NB′

j , and hence that F has the same outputs on j in the two
profiles. Thus, F is independent.

When combined with issue-neutrality, independence generates procedures that
are defined by a single set of winning coalitions, the same for every issue:

Corollary 2.3.2. An aggregation procedure F satisfies I and NI if and only if
there exists a collection of subsets W ⊆ P(N ) such that F (B)j = 1 if and only
if NB

j ∈ W.

Let us now consider the case of procedures that satisfy the axioms of anonymity,
independence and issue-neutrality. We prove that for these procedures the accep-
tance of an issue depends solely on the number of individuals accepting it.4

Proposition 2.3.3. An aggregation procedure F satisfies A, I and NI on the full
domain D if and only if there exists a function h : {0, . . . , |N |} → {0, 1} such
that F (B)j = 1⇔ h(|NB

j |) = 1.

Proof. We prove that if F satisfies A, I and NI over the full domain D, then
|NB

j | = |NB′

j′ | for profiles B,B′ and issues j, j′ implies F (B)j = F (B′)j′ . Thus,
the fact that a set of individuals is a winning coalition depends only on the
cardinality of the set, which can be specified using a function h : {0, . . . , |N |} →
{0, 1} as in the statement of Proposition 2.3.3.

Let F be an anonymous, independent and issue-neutral procedure. Since
|NB

j | = |NB′

j′ |, we can rearrange the individuals in profile B′ obtaining profile C
such that ci,j′ = bi,j. By anonymity the result of F on issue j does not change
moving from profile B′ to C. Let us now construct a fourth profile D such
that di,j = bi,j and di,j′ = ci,j′ for all i ∈ N . By independence, we have that
F (B)j = F (D)j. By issue-neutrality, we have that F (D)j = F (D)j′ . It is now
sufficient to apply independence one more time to obtain that F (D)j′ = F (C)j′
and conclude the chain of equalities by using the axiom of anonymity.

3Rules defined in terms of winning coalitions are sometimes referred to as “voting by com-
mittee” in the literature on Social Choice Theory (Barberà et al., 1991).

4This is a known result. List and Pettit (2002), for instance, use this insight (adapted to
the case of judgment aggregation) in the proof of their impossibility theorem.
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Representation results along the lines of Proposition 2.3.3 can easily be obtained
for various classes of procedures. Examples can be found, for instance, in our
previous work (Endriss et al., 2010a).

Note that a (somewhat surprising) consequence of Proposition 2.3.3 is the
following corollary:5

Corollary 2.3.4. If the number of individuals is even and there are at least two
issues, then there exists no aggregation procedure that satisfies A, I, NI and ND

on the full domain.

Proof. Let j and j′ be two issues, and let B be a profile such that exactly half of
the individuals accept j and reject j′, and the other half reject j and accept j′. By
ND we have that F (B)j = 1−F (B)j′ . Since the number of individuals accepting
the two issues is exactly the same, by Proposition 2.3.3 we obtain the additional
requirement that F (B)j = F (B)j′ , in contradiction with the requirement given
by domain-neutrality.

2.3.1 Quota Rules

An aggregation procedure F for n individuals is a quota rule if for every issue
j there exists a quota 0 6 qj 6 n + 1 such that F (B)j = 1 if and only if
|NB

j | > qj. The class of quota rules, which we denote as QR, was introduced by
Dietrich and List (2007a) in the framework of judgment aggregation. Quota rules
are axiomatised as the class of procedures satisfying the axioms of anonymity,
independence and I-monotonicity, as we prove in the following result:6

Proposition 2.3.5. An aggregation procedure F satisfies A, I, and MI on the
full domain D if and only if it is a quota rule.

Proof. First, observe that if we add the assumption of anonymity to the statement
of Proposition 2.3.1, we obtain a representation for independent and anonymous
aggregation procedures. These functions can be characterised in terms of a set
of acceptance functions indicating, for each issue j, the size of possible winning
coalitions, i.e., functions hj : |N | → {0, 1} for each j such that F (B)j = 1 ⇔
hj(|NB

j |) = 1. If we now add the assumption of monotonicity in its independence
version, and we apply it to issue j, we can infer that whenever hj(m) = 1 for a
certain m, then for all t > m it must be the case that hj(t) = 1. Thus, we can
define an acceptance quota for each issue by letting qj be the minimal m 6 |N |
such that hj(m) = 1. In case such an m does not exist (i.e., in case hj(t) = 0 for
all t), it is sufficient to fix qj = n+ 1.

5Observe that Corollary 2.3.4 is an impossibility result which does not feature any require-
ment of collective rationality. This result is related to the known fact that there exists no
resolute voting procedure for 2 alternatives and an even number of individuals which is anony-
mous and neutral (see, e.g., Moulin, 1983, for a generalisation of this result).

6An analogous version of Proposition 2.3.5 for the framework of judgment aggregation can
be found in the work of Dietrich and List (2007a).
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A quota rule is called uniform if the quota is the same for all issues. We can
obtain an axiomatisation of this class by adding the axiom of issue-neutrality to
Proposition 2.3.5:

Corollary 2.3.6. An aggregation procedure F satisfies A, I, NI and MI on the
full domain D if and only if it is a uniform quota rule.

2.3.2 The Majority Rule

A particular quota rule, which we study in detail in Section 4.4.2, is the majority
rule. The majority rule is the uniform quota rule that accepts an issue if and
only if a majority of individuals accept it. In case the number of individuals is
odd, the majority rule has a unique definition by setting the quota to q = n+1

2
. In

case the number of individuals is even, the majority rule does not have a unique
definition, to account for ties between acceptances and rejections. One possibility
is to favour rejection, defining the strict majority rule with quota q = n+2

2
, or to

favour acceptance, defining the weak majority rule with quota q = n
2
. We study

these rules in more detail in Section 4.4.2. We now make the assumption that the
number of individuals is odd and we provide an axiomatisation of the majority
rule in this case.

May (1952) provided an axiomatisation of the majority rule in the case of
preference aggregation over two alternatives. We can obtain a more general ver-
sion of his result, which accounts for the case of multiple issues, by adding the
axioms of issue-neutrality and domain-neutrality to Proposition 2.3.5:

Proposition 2.3.7. If the number of individuals is odd, an aggregation procedure
F satisfies A, NI, ND, I and MI if and only if it is the majority rule.

Proof. By Corollary 2.3.6, we know that F is a uniform quota rule. The ax-
iom of domain-neutrality then forces us to treat the two sets NB

j and N \ NB
j

symmetrically. Hence, the only possibility is to fix the quota at n+1
2

.

2.4 Previous Work on Binary Aggregation

Wilson (1975) has been the first to define and study the framework of binary
aggregation. His seminal paper contains several impossibility results for indepen-
dent aggregation procedures, including a generalisation of the famous impossibil-
ity result by Arrow (1963). Wilson starts from an attribute space A of properties
that can be assigned to individuals, and studies the aggregation of such assign-
ments. This setting corresponds to aggregating binary ballots using A as the
set of issues. Given a collection B of subsets of the space of all assignments D,
Wilson calls an aggregation procedure “responsive” with respect to B if, when-
ever all individual assignments belong to a subset X ∈ B, then the outcome also
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belongs to X . He then proves several representation results for independent and
responsive procedures depending on the structure of the collection of subsets B.
Arrow’s Theorem is obtained as a corollary of one of his results. Wilson’s notion
of responsive aggregator corresponds to our notion of collective rationality with
respect to a family of integrity constraints. We will follow the same approach in
Chapter 4, when we concentrate on the study of collectively rational procedures
with respect to a language of integrity constraints.

A similar setting has been investigated more recently by Dokow and Holzman
(2009, 2010a). Their definition of collective rationality is the same as Wilson’s,
although they consider a single subdomain X ⊆ D of rational ballots at a time
rather than a family of such subsets. As previously remarked, propositional logic
is fully expressive with respect to subsets of D, hence our approach is equivalent
to that of Dokow and Holzman. Our choice of using formulas rather than sets
is motivated by the possibility of classifying integrity constraints by means of
syntactic properties and by the the compactness of this representation. Consider
for instance the subset defined by any non-complete cube, i.e., a conjunction in
which not all literals occur. The representation of this set by means of a formula
is exponentially more concise than the full list of elements of the same set.

Another framework for binary aggregation is adopted by Nehring and Puppe
(2007, 2010). Although their aim is more general, they also concentrate on the
study of aggregation procedures over property spaces, a setting that is closer to
the original framework of Wilson (1975). We refer to Section 6.2.3 for a more
detailed discussion of this framework.

In several papers (see, e.g., List and Puppe, 2009; Nehring and Puppe, 2010;
Dokow and Holzman, 2010a) it has been observed that the framework of judgment
aggregation for propositional logic is equivalent to that of binary aggregation (see
also our Example 2.1.5). In Chapter 6, in particular Section 6.2.3, we discuss in
detail the relation between these diverse frameworks for aggregation.

Rubinstein and Fishburn (1986) generalised Wilson’s framework allowing indi-
viduals to choose elements of certain vector spaces. The case of binary aggregation
is subsumed by considering the vector space D = {0, 1}I .

An important, although not substantial, difference between our framework and
classical approaches to binary aggregation resides in our definition of aggregation
procedure. Both Dokow and Holzman (2010a) and Nehring and Puppe (2007)
define an aggregation procedure on a specific domain X ⊆ {0, 1}m, including in
this definition the notion of collective rationality with respect to the integrity
constraint that defines X . The same approach is also used in the literature on
judgment aggregation (List and Puppe, 2009). Instead, we define aggregation
procedures on all possible profiles, studying collective rationality as an additional
property. As already pointed out at the end of Section 2.2, our choice is motivated
by an attempt to separate the definition of an aggregation procedure and its
axiomatic properties from the notion of collective rationality, which depends on
the domain of rational ballots on which the aggregation is performed.





Chapter 3

Paradoxes of Aggregation

Most work in Social Choice Theory started with the observation of paradoxical
situations. From the Marquis de Condorcet (1785) and Jean-Charles de Borda
(1781) to more recent American court cases (Kornhauser and Sager, 1986), a
wide collection of paradoxes have been analysed and studied in the literature on
Social Choice Theory (see, e.g., Nurmi, 1999). In this chapter we present some
of the most well-known paradoxes that arise from the use of the majority rule in
different contexts, and we show how they can be expressed in binary aggregation
as instances of our Definition 2.1.9. Such a uniform representation of the most
important paradoxes in Social Choice Theory enables us to make a crucial ob-
servation concerning the syntactic structure of paradoxical integrity constraints:
they all feature a disjunction of literals of size at least 3. This observation will
give rise to one of the main theorems of this dissertation (Theorem 4.4.8).

In Section 3.1, we introduce one of the most notable paradoxes in Social Choice
Theory, the Condorcet paradox, and we show how settings of preference aggrega-
tion can be seen as instances of binary aggregation by devising a suitable integrity
constraint. Section 3.2 repeats this construction for the framework of judgment
aggregation and for the paradoxical example which gave rise to this area of re-
search, namely the doctrinal paradox. In Section 3.3 we deal with the Ostrogorski
paradox, in which a paradoxical feature of representative majoritarian systems is
analysed. In Section 3.5 we introduce two further paradoxes generated by the use
of the majority rule on multiple issues: the paradox of divided government and
the paradox of multiple elections. In Section 3.6 we conclude.

3.1 The Condorcet Paradox and Preference

Aggregation

During the Enlightment period in France, several active scholars dedicated them-
selves to the problem of collective choice, and in particular to the creation of

29
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new procedures for the election of candidates. Although these are not the first
documented studies of the problem of social choice (McLean and Urken, 1995),
Marie Jean Antoine Nicolas de Caritat, the Marquis de Condorcet, was the first
to point out a crucial problem of the most basic voting rule that was being used,
the majority rule (Condorcet, 1785). The paradox he discovered, that now comes
under his name, is explained in the following paragraphs:

Condorcet Paradox. Three individuals need to decide on the rank-
ing of three alternatives {4,#,�}. Each individual expresses her own
ranking in the form of a linear order, i.e., an irreflexive, transitive and
complete binary relation over the set of alternatives. The collective
outcome is then aggregated by pairwise majority: an alternative is
preferred to a second one if and only if a majority of the individ-
uals prefer the first alternative to the second. Consider the profile
described in Table 3.1.

4 <1 # <1 �
� <2 4 <2 #
# <3 � <3 4

4 < # < � < 4

Table 3.1: The Condorcet paradox.

When we compute the outcome of the pairwise majority rule on this
profile, we notice that there is a majority of individuals preferring the
circle to the triangle (4 < #); that there is a majority of individuals
preferring the square to the circle (# < �); and, finally, that there is a
majority of individuals preferring the triangle to the square (� < 4).
The resulting outcome fails to be a linear order, giving rise to a circular
collective preference between the alternatives.

Condorcet’s paradox was rediscovered in the second half of the XXth century
while a whole theory of preference aggregation was being developed, starting with
the work of Black (1958) and Arrow’s celebrated result (Arrow, 1963). In this
section, we review the framework of preference aggregation, we show how this
setting can be embedded into the framework of binary aggregation with integrity
constraints, and we show how the Condorcet paradox can be seen as an instance
of our general definition of paradox (Definition 2.1.9).
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3.1.1 Preference Aggregation

The framework of preference aggregation (see, e.g., Gaertner, 2006) considers a
finite set of individuals N expressing preferences over a finite set of alternatives
X . A preference relation is represented by a binary relation over X . Preference
relations are traditionally assumed to be weak orders , i.e., reflexive, transitive
and complete binary relations. In some cases, in order to simplify the frame-
work, preferences are assumed to be linear orders , i.e., irreflexive, transitive and
complete binary relations. In the first case, we write aRb for “alternative a is
preferred to alternative b or it is equally preferred as b”, while in the second case
aPb stands for “alternative a is strictly preferred to b”. In the sequel we shall
assume that preferences are represented as linear orders. We refer to Chapter 5
for a more detailed presentation of other assumptions in preference aggregation.

Each individual submits a linear order Pi, forming a profile P = (P1, . . . , P|N |).
Let L(X ) denote the set of all linear orders on X . Aggregation procedures in this
framework are called social welfare functions (SWFs):

Definition 3.1.1. Given a finite set of individuals N and a finite set of alterna-
tives X , a social welfare function is a function F : L(X )N → L(X ).

Note that a SWF is defined for every logically possible profile of linear orders,
a condition that traditionally goes under the name of universal domain, and
that it always outputs a linear order. This last condition was given the name
of “collective rationality” by Arrow (1963). As we have seen in Table 3.1, the
Condorcet paradox proves that the pairwise majority rule is not a SWF because,
in Arrow’s words, it fails to be “collectively rational”. In the following section we
will formalise this observation by devising an integrity constraint that encodes
the assumptions underlying Arrow’s framework of preference aggregation.

3.1.2 Translation

Given a preference aggregation problem defined by a set of individualsN and a set
of alternatives X , let us now consider the following setting for binary aggregation.
Define a set of issues IX as the set of all pairs (a, b) in X . The domain DX of
aggregation is therefore {0, 1}|X |2 . In this setting, a binary ballot B corresponds
to a binary relation P over X : B(a,b) = 1 if and only if a is in relation to b
(aPb). Given this representation, we can associate with every SWF for X and
N an aggregation procedure that is defined on a subdomain of DNX . We now
characterise this domain as the set of models of a suitable integrity constraint.

Using the propositional language LPS constructed over the set IX , we can
express properties of binary ballots in DX . In this case the language consists
of |X |2 propositional symbols, which we shall call pab for every issue (a, b). As
we already anticipated in Example 2.1.4, the properties of linear orders can be
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enforced on binary ballots using the following set of integrity constraints, which
we shall call IC<:1

Irreflexivity: ¬paa for all a ∈ X

Completeness: pab ∨ pba for all a 6= b ∈ X

Transitivity: pab ∧ pbc→pac for a, b, c ∈ X pairwise distinct

Note that the size of this set of integrity constraints is polynomial in the number
of alternatives in X . It is now straightforward to see that every SWF corresponds
to an aggregation procedure that is collectively rational with respect to IC< and
vice versa.2

In case preferences are expressed using weak orders rather than linear orders,
it is sufficient to modify the integrity constraint IC< to obtain a similar corre-
spondence between SWFs and aggregation procedures. Recall that a weak order
is a reflexive, transitive and complete binary relation over X . Let therefore IC6
be the following set of integrity constraints:

Reflexivity: paa for all a ∈ X

Completeness: pab ∨ pba for all a 6= b ∈ X

Transitivity: pab ∧ pbc→pac for a, b, c ∈ X pairwise distinct

3.1.3 The Condorcet Paradox in Binary Aggregation

The translation presented in the previous section enables us to express the Con-
dorcet paradox in terms of Definition 2.1.9. Let X = {4,#,�} and let N contain
three individuals. Consider the profile B for IX described in Table 3.2, where
we have omitted the values of the reflexive issues (4,4) (always 0 by IC<), and
specified the value of only one of (4,#) and (#,4) (the other can be obtained
by taking the opposite of the value of the first), and accordingly for the other
alternatives. Every individual ballot in Table 3.2 satisfies IC<, but the outcome
obtained using the majority rule Maj (which corresponds to pairwise majority in
preference aggregation) does not satisfy IC<: the formula p4#∧p#� → p4� is fal-
sified by the outcome. Therefore, (Maj ,B, IC<) is a paradox by Definition 2.1.9.

The integrity constraint IC< can be further simplified for the case of 3 alter-
natives {a, b, c}. The formulas encoding the transitivity of binary relations are
equivalent to just two positive clauses: The first one, pba ∨ pcb ∨ pac, rules out the
cycle a<b<c<a, and the second one, pab ∨ pbc ∨ pca, rules out the opposite cycle
c<b<a<c. That is, these constraints correspond exactly to the two Condorcet
cycles that can be created from three alternatives.

1We will use the notation IC both for a single integrity constraint and for a set of formulas—
in the latter case considering as the actual constraint the conjunction of all the formulas in IC.

2A technicality: to every SWF correspond many binary aggregation procedures, depending
on how we extend the procedure outside of Mod(IC<)N .
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4# #� 4�
Agent 1 1 1 1
Agent 2 1 0 0
Agent 3 0 1 0

Maj 1 1 0

Table 3.2: Condorcet paradox in binary aggregation.

3.2 The Discursive Dilemma and Judgment

Aggregation

The discursive dilemma emerged from the formal study of court cases that was
carried out in recent years in the literature on law and economics, generalising
the observation of a paradoxical situation known as the “doctrinal paradox” (Ko-
rnhauser and Sager, 1986, 1993). Such a setting was first given mathematical
treatment by List and Pettit (2002), giving rise to an entirely new research area
in Social Choice Theory known as judgment aggregation. Earlier versions of this
paradox can be found in work by Guilbaud (1952) and Vacca (1922). We now
describe one of the most common versions of the discursive dilemma:

Discursive Dilemma. A court composed of three judges has to
decide on the liability of a defendant under the charge of breach of
contract. According to the law, the individual is liable if there was
a valid contract and her behaviour was such as to be considered a
breach of the contract. The court takes three majority decisions on
the following issues: there was a valid contract (α), the individual
broke the contract (β), the defendant is liable (α ∧ β). Consider a
situation like the one described in Table 3.3.

α β α ∧ β
Judge 1 yes yes yes
Judge 2 no yes no
Judge 3 yes no no

Majority yes yes no

Table 3.3: The discursive dilemma.

All judges are expressing consistent judgments: they accept the third
proposition if and only if the first two are accepted. However, when
aggregating the judgments using the majority rule we obtain an incon-
sistent outcome: even if there is a majority of judges who believe that
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there was a valid contract, and even if there is a majority of judges
who believe that the individual broke the contract, the individual is
considered not liable by a majority of the individuals.

In this section we review the framework of judgment aggregation (List and Puppe,
2009), and we provide a characterisation of judgment aggregation procedures as
collectively rational procedures with respect to a suitable set of integrity con-
straints. This in turn enables us to show that the discursive dilemma is also an
instance of our general definition of paradox. For a more detailed introduction to
the framework of judgment aggregation we refer to Chapter 6.

3.2.1 Judgment Aggregation

Judgement aggregation (JA) considers problems in which a finite set of individuals
N has to generate a collective judgment over a set of interconnected propositional
formulas3 (List and Puppe, 2009). Formally, given a finite propositional language
L, an agenda is a finite nonempty subset Φ ⊆ L that does not contain any doubly-
negated formulas and that is closed under complementation (i.e, α ∈ Φ whenever
¬α ∈ Φ, and ¬α ∈ Φ for every non-negated α ∈ Φ).

Each individual in N expresses a judgment set J ⊆ Φ, as the set of those
formulas in the agenda that she judges to be true. Every individual judgment set
J is assumed to be complete (i.e., for each α ∈ Φ either α or its complement are
in J) and consistent (i.e., there exists an assignment that makes all formulas in
J true). If we denote by J (Φ) the set of all complete and consistent subsets of
Φ, we can give the following definition:

Definition 3.2.1. Given a finite agenda Φ and a finite set of individuals N , a
JA procedure for Φ and N is a function F : J (Φ)N → 2Φ.

Note that no additional requirement is imposed on the collective judgment set.
A JA procedure is called complete if the judgment set it returns is complete on
every profile. A JA procedure is called consistent if, for every profile, the outcome
is a consistent judgment set.

3.2.2 Translation

Given a judgment aggregation framework defined by an agenda Φ and a set of
individuals N , let us now construct a setting for binary aggregation with integrity
constraints that interprets it, generalising from our previous Example 2.1.5. Let
the set of issues IΦ be equal to the set of formulas in Φ. The domain DΦ of
aggregation is therefore {0, 1}|Φ|. In this setting, a binary ballot B corresponds

3We shall not treat here the case of judgment aggregation in more general logics (Dietrich,
2007). We refer to Appendix A for a brief introduction of propositional logic.
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to a judgment set: Bα = 1 if and only if α ∈ J . Given this representation, we can
associate with every JA procedure for Φ and N a binary aggregation procedure
on a subdomain of DNΦ .

It is important to remark that is not exactly the standard way of interpreting
JA in binary aggregation. The embedding that is given, for instance, by Dokow
and Holzman (2009, 2010a), associates with every judgment set a binary ballot
over a set of issues representing only the positive formulas in Φ, considering a
rejection of the issue associated with a formula ϕ as an acceptance of its nega-
tion ¬ϕ. The same embedding is given by List and Puppe (2009, Section 2.3).
In our translation we made the choice of introducing both an issue for ϕ and one
for ¬ϕ, adding an additional integrity constraint to enforce the completeness of
a judgment set. This allow us to easily generalise the framework to the case of
incomplete ballots (see, e.g., Dietrich and List, 2008a), without having to resort
to an additional symbol for abstention (see, e.g., Dokow and Holzman, 2010b)

As we did for the case of preference aggregation, we now define a set of integrity
constraints for DΦ to enforce the properties of consistency and completeness of
individual judgment sets. Recall that the propositional language is constructed
in this case on |Φ| propositional symbols pα, one for every α ∈ Φ. Call an
inconsistent set of formulas each proper subset of which is consistent minimally
inconsistent set (mi-set). Let ICΦ be the following set of integrity constraints:

Completeness: pα∨p¬α for all α ∈ Φ

Consistency: ¬(
∧
α∈S pα) for every mi-set S ⊆ Φ

While the interpretation of the first formula is straightforward, we provide some
further explanation for the second one. If a judgment set J is inconsistent, then
it contains a minimally inconsistent set, obtained by sequentially deleting one
formula at the time from J until it becomes consistent. This implies that the
constraint previously introduced is falsified by the binary ballot that represents
J , as all issues associated with formulas in a mi-set are accepted. Vice versa, if
all formulas in a mi-set are accepted by a given binary ballot, then clearly the
judgment set associated with it is inconsistent.

Note that the size of ICΦ might be exponential in the size of the agenda.
This is in agreement with considerations of computational complexity (see, e.g.,
Papadimitriou, 1994): Since checking the consistency of a judgment set is NP-
hard, while model checking on binary ballots is polynomial, the translation from
JA to binary aggregation must contain a superpolynomial step (unless P=NP). A
more detailed discussion of the computational complexity of these two frameworks
can be found in Section 7.5.

In conclusion, the same kind of correspondence we have shown for SWFs
holds between complete and consistent JA procedures and binary aggregation
procedures that are collectively rational with respect to ICΦ.
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3.2.3 The Discursive Dilemma in Binary Aggregation

The same procedure that we have used to show that the Condorcet paradox is
an instance of our general definition of paradox applies here for the case of the
discursive dilemma. Let Φ be the agenda {α, β, α∧β}, in which we have omitted
negated formulas, as for any J ∈ J (Φ) their acceptance can be inferred from the
acceptance of their positive counterparts. Consider the profile B for IΦ described
in Table 3.4.

α β α ∧ β
Judge 1 1 1 1
Judge 2 0 1 0
Judge 3 1 0 0

Maj 1 1 0

Table 3.4: The discursive dilemma in binary aggregation.

Every individual ballot satisfies ICΦ, while the outcome obtained by using the
majority rule contradicts one of the constraints of consistency, namely ¬(pα∧pβ∧
p¬(α∧β)). Hence, (Maj ,B, ICΦ) constitutes a paradox by Definition 2.1.9.

3.3 The Ostrogorski Paradox

Another paradox listed by Nurmi (1999) as one of the main paradoxes of the
majority rule on multiple issues is the Ostrogorski paradox. Ostrogorski (1902)
published a treaty in support of procedures inspired by direct democracy, pointing
out several fallacies that a representative system based on party structures can
encounter. Rae and Daudt (1976) later focused on one such situation, presenting
it as a paradox or a dilemma between two equivalently desirable procedures (the
direct and the representative one), giving it the name of “Ostrogorski paradox”.
This paradox, in its simplest form, occurs when a majority of individuals are
supporting a party that does not represent the view of a majority of individuals
on a majority of issues.

Ostrogorski Paradox. Consider the following situation: there is a
two party contest between the Mountain Party (MP) and the Plain
Party (PP); three individuals (or, equivalently, three equally big groups
in an electorate) will vote for one of the two parties if their view agrees
with that party on a majority of the three following issues: economic
policy (E), social policy (S), and foreign affairs policy (F ). Consider
the situation described in Table 3.5.
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E S F Party supported

Voter 1 MP PP PP PP
Voter 2 PP PP MP PP
Voter 3 MP PP MP MP

Maj MP PP MP PP

Table 3.5: The Ostrogorski paradox.

The result of the two party contest, assuming that the party that has
the support of a majority of the voters wins, declares the Plain Party
the winner. However, we notice that a majority of individuals support
the Mountain Party both on the economic policy E and on the foreign
policy F. Thus, the elected party, the PP, is in disagreement with a
majority of the individuals on a majority of the issues.

Bezembinder and van Acker (1985) generalised this paradox, defining two differ-
ent rules for compound majority decisions. The first, the representative outcome,
outputs as a winner the party that receives support by a majority of the individu-
als. The second, the direct outcome, outputs the party that receives support on a
majority of issues by a majority of the individuals. An instance of the Ostrogorski
paradox occurs whenever the outcome of these two procedures differ.

Stronger versions of the paradox can be devised, in which the losing party
represents the view of a majority on all the issues involved (see, e.g., Rae and
Daudt, 1976; see also our Table 3.7). Further studies of the “Ostrogorski phe-
nomenon” have been carried out by Deb and Kelsey (1987) as well as by Eckert
and Klamler (2009). The relation between the Ostrogorski paradox and the Con-
dorcet paradox has been investigated in several papers (Kelly, 1989; Rae and
Daudt, 1976), while a comparison with the discursive dilemma was carried out
by Pigozzi (2005).

3.3.1 The Ostrogorski Paradox in Binary Aggregation

In this section, we provide a binary aggregation setting that represents the Os-
trogorski paradox as a failure of collective rationality with respect to a suitable
integrity constraint.

Let {E, S, F} be the set of issues at stake, and let the set of issues IO =
{E, S, F,A} consist of the same issues plus an extra issue A to encode the sup-
port for the first party (MP).4 A binary ballot over these issues represents the

4We hereby propose a model that can be used for instances of the Ostrogorski paradox
concerning at most two parties. In case the number of parties is bigger than two, the framework
can be extended adding one extra issue for every party.
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individual view on the three issues E, S and F : if, for instance, bE = 1, then
the individual supports the first party MP on the first issue E. Moreover, it also
represents the overall support for party MP (in case issue A is accepted) or PP (in
case A is rejected). In the Ostrogorski paradox, an individual votes for a party if
and only if she agrees with that party on a majority of the issues. This rule can
be represented as a rationality assumption by means of the following integrity
constraint ICO:

pA ↔ [(pE ∧ pS) ∨ (pE ∧ pF ) ∨ (pS ∧ pF )]

An instance of the Ostrogorski paradox can therefore be represented by the profile
B described in Table 3.6.

E S F A

Voter 1 1 0 0 0
Voter 2 0 0 1 0
Voter 3 1 0 1 1

Maj 1 0 1 0

Table 3.6: The Ostrogorski paradox in binary aggregation.

Each individual in Table 3.6 accepts issue A if and only if she accepts a majority
of the other issues. However, the outcome of the majority rule is a rejection of
issue A, even if a majority of the issues gets accepted by the same rule. Therefore,
the triple (Maj ,B, ICO) constitutes a paradox by Definition 2.1.9.

Using this formalism we can easily devise a stronger version of the Ostrogorski
paradox, in which the winning party disagrees with a majority of the individuals
on all issues. Such a profile is described in Table 3.7.

E S F A

Voter 1 1 0 0 0
Voter 2 0 1 0 0
Voter 3 0 0 1 0
Voter 4 1 1 1 1
Voter 5 1 1 1 1

Maj 1 1 1 0

Table 3.7: Strong version of the Ostrogorski paradox.
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3.4 The Common Structure of Paradoxical

Integrity Constraints

Let us make an important remark concerning the syntactic structure of the in-
tegrity constraints that formalise the three paradoxes we have presented so far.
The first formula, encoding the transitivity of a preference relation in the Con-
dorcet paradox, is the implication pab ∧ pbc → pac. This formula is equivalent to
¬pab∨¬pbc∨pac, which is a clause of size 3, i.e., it is a disjunction of three different
literals. The second formula, presented in Section 3.2 to represent the discursive
dilemma, is also equivalent to a clause of size 3, namely ¬pα∨¬pβ∨¬p¬(α∧β). The
last formula, which formalises the majoritarian constraint underlying the Ostro-
gorski paradox, is equivalent to the following conjunction of clauses of size 3:

(pA ∨ ¬pE ∨ ¬pF ) ∧ (pA ∨ ¬pE ∨ ¬pS) ∧ (pA ∨ ¬pS ∨ ¬pF ) ∧
∧(¬pA ∨ pE ∨ pF ) ∧ (¬pA ∨ pE ∨ pS) ∧ (¬pA ∨ pS ∨ pF )

The observation that the integrity constraints formalising the most classical para-
doxes in aggregation theory all feature a clause of size at least 3 is not a coin-
cidence. In Section 4.4.2 we will formalise this observation with a theorem that
characterises the class of integrity constraints that are lifted by the majority rule
as those and only those that can be expressed as a conjunction of clauses of
maximal size 2 (see Theorem 4.4.8).5

3.5 Further Paradoxes on Multiple Issues

In this section we describe two further paradoxes that can be analysed using our
framework of binary aggregation with integrity constraints: the paradox of di-
vided government and the paradox of multiple elections. Both situations concern
a paradoxical outcome obtained by using the majority rule on an aggregation
problem defined on multiple issues. The first paradox can be seen as an instance
of a more general behaviour described by the second paradox.

3.5.1 The Paradox of Divided Government

The paradox of divided government is a failure of collective rationality that was
pointed out for the first time by Brams et al. (1993). Here we follow the presen-
tation of Nurmi (1997).

5This observation is strongly related to a result proven by Nehring and Puppe (2007) in the
framework of judgment aggregation, which characterises the set of paradoxical agendas for the
majority rule as those agendas containing a minimal inconsistent subset of size at least 3. See
also our previous work (Grandi, 2012).
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The paradox of divided government. Suppose that 13 voters
(equivalently, groups of voters) can choose for Democratic (D) or Re-
publican (R) candidate for the following three offices: House of Rep-
resentatives (H), Senate (S) and the governor (G). It is a common
assumption that in case the House of Representatives gets a Republi-
can candidate, then at least one of the remaining offices should go to
Republicans as well. Consider now the profile in Table 3.8.

H S G

Voters 1-3 D D D
Voter 4 D D R
Voter 5 D R D
Voter 6 D R R
Voters 7-9 R D R
Voters 10-12 R R D
Voter 13 R R R

Maj R D D

Table 3.8: The paradox of divided government.

As shown in Table 3.8, it is exactly the combination that had to be
avoided (i.e., RDD) that is elected, even if no individual voted for it.

This paradox can be easily seen as a failure of collective rationality: it is sufficient
to replace the letters D and R with 0 and 1, and to formulate the integrity
constraint as ¬(pH ∧¬pS ∧¬pG). The binary ballot (1, 0, 0) is therefore ruled out
as irrational, encoding the combination (R,D,D) that needs to be avoided.

This type of paradox can be observed in cases like the elections of a committee,
such as in our Example 2.1.7. Even if it is recognised by every individual that
a certain committee structure is unfeasible (i.e., it will not work well together),
this may be the outcome of aggregation if the majority rule is being used.

In view of our discussion in Section 2.1.5, we may consider the constraint
underlying the paradox of divided government as a feasibility constraint, rather
than a constraint of rationality. Under such an interpretation this situation would
cease to be paradoxical, while still showing the failure of the majority rule to
output a feasible outcome.

3.5.2 The Paradox of Multiple Elections

Whilst the Ostrogorski paradox was devised to stage an attack against repre-
sentative systems of collective choice based on parties, the paradox of multiple
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elections (MEP) is based on the observation that when voting directly on multi-
ple issues, a combination that was not supported nor liked by any of the voters
can be the winner of the election (Brams et al., 1998; Lacy and Niou, 2000).
While the original model takes into account the full preferences of individuals
over combinations of issues, if we focus on only those ballots that are submitted
by the individuals, then an instance of the MEP can be represented as a paradox
of collective rationality. Let us consider a simple example described in Table 3.9.

Multiple election paradox. Suppose three voters need to take
a decision over three binary issues A, B and C. Their ballots are
described in Table 3.9.

A B C

Voter 1 1 0 1
Voter 2 0 1 1
Voter 3 1 1 0

Maj 1 1 1

Table 3.9: The multiple election paradox (MEP).

The outcome of the majority rule in Table 3.9 is the acceptance of all
three issues, even if this combination was not voted for by any of the
individuals.

While there seems to be no integrity constraint directly causing this paradox, we
may represent the profile in Table 3.9 as a situation in which the three individual
ballots are bound by a budget constraint ¬(pA ∧ pB ∧ pC) (like in our Exam-
ple 2.1.10). Even if all individuals are giving acceptance to two issues each, the
result of the aggregation is the unfeasible acceptance of all three issues.

As can be deduced from our previous discussion, every instance of the MEP
gives rise to several instances of a binary aggregation paradox for Definition 2.1.9.
To see this, it is sufficient to find an integrity constraint that is satisfied by all
individuals and not by the outcome of the aggregation.6 On the other hand,
every instance of Definition 2.1.9 in binary aggregation represents an instance
of the MEP, as the irrational outcome cannot have been voted for by any of
the individuals. In Section 7.2 we define an interesting aggregation procedure,
called the average voter rule, which avoids both the MEP and any other failure
of collective rationality.

6Such a formula always exists. Consider for instance the disjunction of the formulas specify-
ing each of the individual ballots. This integrity constraint forces the result of the aggregation
to be equal to one of the individual ballots on the given profile, thus generating a binary
aggregation paradox from a MEP.
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The multiple election paradox gives rise to a different problem than that of
consistency, to which this dissertation is dedicated, as it is not directly linked
to an integrity constraint established in advance. The problem formalised by the
MEP is rather the compatibility of the outcome of aggregation with the individual
ballots. Individuals in such a situation may be forced to adhere to a collective
choice which, despite it being rational, they do not perceive as representing their
views (Grandi and Pigozzi, 2012).

In their paper, Brams et al. (1998) provide many versions of the multiple
election paradox, varying the number of issues and the presence of ties. Lacy
and Niou (2000) enrich the model by assuming that individuals have a preference
order over combinations of issues and submit just their top candidate for the
election. They present situations in which, e.g., the winning combination is a
Condorcet loser (i.e., it loses in pairwise comparison with all other combinations).
Some answers to the problem raised by the MEP have already been proposed in
the literature on Artificial Intelligence. For instance, a sequence of papers have
studied the problem of devising sequential elections to avoid the MEP in case the
preferences of the individuals over combinations of multiple issues are expressed
in a suitable preference representation language (Lang, 2007; Lang and Xia, 2009;
Xia et al., 2011; Conitzer and Xia, 2012).

3.6 Conclusions

The first lesson that can be drawn from this chapter dedicated to paradoxes of
aggregation is that the majority rule is not a good aggregation procedure to be
employed when dealing with collective choices over multiple issues. This fact
stands out as a counterpart to May’s Theorem (1952), which proves that the
majority rule is the only aggregation rule for a single binary issue that satisfies
a set of highly desirable conditions. The sequence of paradoxes we have analysed
in this chapter shows that this is not the case when multiple issues are involved.
While this fact may not add anything substantially new to the existing literature,
the wide variety of paradoxical situations encountered in this chapter stresses even
further the negative features of the majority rule for multi-issue domains.

A second conclusion is that most paradoxes of Social Choice Theory share a
common structure, and that this structure is formalised by our Definition 2.1.9,
which stands out as a truly general definition of paradox in aggregation theory.
Moreover, by analysing the integrity constraints that underlie some of the most
classical paradoxes, we were able to identify a common syntactic feature of para-
doxical constraints (cf. Section 3.4). This observation is the starting point of the
following chapter, in which we build a systematic theory of collective rationality
depending on the syntactic properties of integrity constraints.

The paradoxical situations presented in this chapter constitute a fragment of
the problems that can be encountered in the formalisation of collective choice
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problems. First, all the paradoxes we presented feature the majority rule as the
procedure used for aggregation. Paradoxical situations can be encountered in
the study of many other aggregation procedures, e.g., in the case of the Borda
paradox (McLean and Urken, 1995). Second, all paradoxes concern problems of
aggregation in which the input given by the individuals is of the same form as
the output. Paradoxical situations concerning voting procedures (Nurmi, 1999),
which take as input a set of preferences and output a set of winning candidates,
are therefore not included in our analysis.

We close this section with an observation regarding the interpretation of some
of the paradoxes presented in this chapter. We have already remarked how some
of these examples have been employed in the literature to show weaknesses and
advantages of either the direct approach to democratic choice (represented by
issue-by-issue aggregation) or the representative one. The last two paradoxes
especially (the paradox of divided government and the MEP) seem to suggest
that direct decisions over multiple issues should be avoided, at least when issues
are not completely independent from one another. In our view, elections over
multi-issue domains cannot be escaped: not only do they represent a model for
the aggregation of more complex objects like preferences and judgments, as seen
in Section 3.1 and 3.2, but they also stand out as one of the biggest challenges to
the design of more complex automated systems for collective decision making.

A crucial problem in the modelling of real-world situations of collective choice
is that of identifying the set of issues that best represent a given domain of aggre-
gation, and devising an integrity constraint that models correctly the correlations
between those issues. This problem obviously represents a serious obstacle to a
mechanism designer, and is moreover open to manipulation. However, we believe
that structuring collective decision problems with more detailed models before
the aggregation takes place, e.g., by discovering a shared order of preferential
dependencies between issues (Lang and Xia, 2009; Airiau et al., 2011), facilitates
the definition of collective choice procedures on complex domains without having
to elicit the full preferences of individuals. Such models can be employed in the
design and the implementation of automated decision systems, in which a safe
aggregation, i.e., one that avoids paradoxical situations, is of the utmost neces-
sity. One of the main aims of this dissertation is exactly to provide tools allowing
to stage direct elections on correlated issues in a safe way.





Chapter 4

Lifting Individual Rationality

Individual agents may be considered rational in many different ways, and for most
cases, as exposed in Chapter 3, it is possible to devise paradoxical situations
leading to an irrational collective outcome. The purpose of this chapter is to
develop a theoretical analysis of the relation between axiomatic properties and
collective rationality with respect to given integrity constraints, generalising what
observed in the previous chapter to a full-fledged theory of collective rationality
for aggregation procedures in binary aggregation.

In Section 4.1 we introduce two definition schemas for classes of aggregation
procedures: the first in terms of collective rationality with respect to a given
language for integrity constraints, and the second by using classical axiomatic
requirements. The relation between these two definitions is studied in detail
in Section 4.2. For several fragments of the propositional language we provide
necessary and sufficient axiomatic conditions for an aggregation procedure to be
collectively rational with respect to all integrity constraints in the given fragment.
The analysis is continued in Section 4.3, this time focusing on axioms rather than
on languages for integrity constraints. For several axiomatic requirements we
provide negative results that rule out possible characterisations of such properties
in terms of collective rationality. In Section 4.4 we concentrate on the class of
quota rules, providing precise bounds on quotas to ensure collective rationality
with respect to languages of clauses. We also characterise the set of integrity
constraints that are lifted by the majority rule, thus formalising our observations
from Chapter 3. Section 4.5 discusses related work and concludes.

4.1 Classes of Aggregation Procedures

Recall that a binary aggregation problem is given by a set of agents N having
to take a decision on which combination of binary issues I to choose. Depending
on the situation at hand, a subset of such combinations is designated as the set
of rational choices, and is specified by means of a propositional formula in the
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language LPS associated to I (cf. Section 2.1).
Let therefore I be a finite set of issues and let LPS be the propositional

language associated with it. We call any subset L of LPS a language. Examples
include the set of atoms PS, or the set of formulas of a given size, as well as
more classical fragments obtained by restricting the set of connectives that can
be employed in the construction of formulas, like the set of clauses, obtained from
the set of literals using only disjunctions. In Section 2.1.4 we called an aggregation
procedure collectively rational with respect to a formula IC ∈ LPS if the outcome
of aggregation satisfies the same integrity constraint IC as the individuals on every
rational profile. We now extend this definition to collectively rational procedures
with respect to a given language L:

Definition 4.1.1. Given a language L ⊆ LPS, define CR[L] to be the class of
aggregation procedures that lift all integrity constraints IC ∈ L:

CR[L] := {F : DN → D | N is finite and F is CR for all IC ∈ L}.

Note that in this definition we do not fix the number of individuals, making I the
only parameter that is fixed in advance. This choice is arguably a natural one, as
a decision problem is usually defined before specifying the number of individuals
that are going to take part in the decision process. However, its appeal does not
only reside in its practical use; rather is it a mathematical assumption that allows
us to gain clarity in some of the results that follows. Many of our results, e.g.
Theorems 4.2.1 and Corollary 4.3.3, still hold if we fix the number of individuals
in Definition 4.1.1, as shown in our previous work (Grandi and Endriss, 2010).

The next step is to introduce notation for defining classes of aggregation pro-
cedures in terms of classical axioms as the ones we listed in Section 2.2. Recall
that an axiom may be satisfied on a subdomain of interest X ⊆ D, but not on
the full domain DN (see the observation on page 23). Here, we are interested in
domains defined by means of integrity constraints (i.e., propositional formulas),
as this is interpreted as the domain of rational ballots. We therefore need a no-
tation to identify procedures that satisfy an axiom on the subdomain Mod(IC)N

induced by a given integrity constraint IC.
Let F�Mod(IC)N denote the restriction of the aggregation procedure F to the

subdomain of rational ballots Mod(IC)N . We give the following definition:

Definition 4.1.2. An aggregation procedure F satisfies a set of axioms AX with
respect to a language L ⊆ LPS, if for all constraints IC ∈ L the restriction
F�Mod(IC)N satisfies the axioms in AX. This defines the following class:

FL[AX] := {F : DN→D | N is finite and F�Mod(IC)N sat. AX for all IC ∈ L}

In particular, F := {F : DN → D | N is finite} is the class of all aggregation
procedures for a given I. In the sequel we shall omit mentioning explicitly that
N is finite, keeping it as a general underlying assumption.
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4.1.1 Collective Rationality and Languages

In this section we study the behaviour of the classes defined in the previous section
with respect to set-theoretic and logical operations performed on the languages
and on the axioms. In particular, we give a definition of languages for integrity
constraints that is specific to the study of collectively rational procedures.

Let L be a language. Define L∧ to be the closure of L under conjunction,
i.e., the set of finite conjunctions of formulas in L. We now prove that the class
of collectively rational procedures is invariant under closing the language under
conjunction, i.e., that the set of collectively rational procedures for L and for L∧
coincide:

Lemma 4.1.3. CR[L∧] = CR[L] for all L ⊆ LPS.

Proof. CR[L∧] is clearly included in CR[L], since L ⊆ L∧. It remains to be shown
that, if an aggregation procedure F lifts every constraint in L, then it lifts any
conjunction of formulas in L. This fact is rather straightforward; however, we now
prove it in detail to get acquainted with the definition of CR[L]. Let

∧
k ICk with

ICk ∈ L be a conjunction of formulas in L, and let B ∈ Mod(
∧
k ICk)

N be a pro-
file satisfying this integrity constraint. Note that Mod(

∧
k ICk) =

⋂
k Mod(ICk),

thus B ∈ Mod(ICk)
N for every k. Now suppose that F ∈ CR[L], then when we

apply F to profile B we have that F (B) ∈ Mod(ICk) for every k by collective
rationality of F . This in turn implies F (B) ∈ Mod(

∧
k ICk), thus proving that

F is CR with respect to
∧
k ICk.

This lemma entails that different languages for integrity constraints can define the
same class of CR procedures. For instance, we have that the language of cubes
(conjunctions of literals) generates the same class as the language of literals,
i.e., CR[cubes] = CR[literals], since the former is obtained from the latter by
closing it under conjunction. A more interesting fact is that procedures that
are CR with respect to clauses (disjunctions of literals) are CR with respect to
any integrity constraint in LPS, i.e., CR[clauses] = CR[LPS]. This holds because
every propositional formula is equivalent to a formula in conjunctive normal form
(CNF), where it is expressed precisely as a conjunction of clauses.

One last remark about this lemma. In Section 2.1 we defined collective ratio-
nality with respect to a single formula, rather than with respect to a set of in-
tegrity constraints. Lemma 4.1.3 provides a formal underpinning for this choice:
an aggregation procedure is CR with respect to a set of formulas if and only if
it is CR with respect to a single formula given by the conjunction of all integrity
constrains in the set.

We have just proven that the class CR[L] is invariant under closing the lan-
guage under conjunction. Another such property is the closure under logical
equivalence.1 Recall that two formulas are logically equivalent when they share

1It is important to stress the fact that we consider logical equivalence inside the language
LPS, not allowing the use of additional propositional variables.
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the same set of models. Let us indicate with L≡ the set of formulas in LPS that
are equivalent to a formula in L. We have the following lemma:

Lemma 4.1.4. CR[L≡] = CR[L] for all L ⊆ LPS.

The proof of the lemma is straightforward from our definitions. It is sufficient to
observe that an equivalent formulation of our definition of collective rationality
can be given by substituting formulas with the set of rational ballots given by
their models. Two formulas that are logically equivalent have the same set of
models, giving rise to the same requirement of collective rationality.2

Bringing together the results of Lemma 4.1.3 and of Lemma 4.1.4, we can now
give the following definition:

Definition 4.1.5. A language for integrity constraints L is a subset of LPS that
is closed under conjunction and logical equivalence.

In the following sections we often characterise languages by means of syntactic
properties, e.g., cubes or clauses, denoting the language for integrity constraints
generated by these formulas, i.e., the subset of LPS obtained by closing the original
language under conjunction and logical equivalence. For instance, the language of
2-clauses (i.e., disjunctions of size at most two) indicates the language of formulas
that are equivalent to a conjunction of clauses of size at most two3. The language
of literals and that of cubes coincide, as well as the language of clauses and the
full language LPS, as we have previously remarked.

Tautologies and contradictions play a special role in languages for integrity
constraints. First, observe that if a language L includes a tautology (or a con-
tradiction, respectively), then by closure under logical equivalence L contains all
tautologies (all contradictions, respectively). Thus, we indicate with > ∈ L the
fact that L contains all tautologies, and with ⊥ ∈ L the fact that L contains all
contradictions. Second, not all languages for integrity constraints include both
tautologies and contradictions, or either of them. For instance, the language of
literals includes the contradiction p∧¬p but it does not contain any tautology. On
the other hand, the language of positive clauses, composed by clauses in which all
literals occur positively, does not include neither tautologies nor contradictions.

Nevertheless, it is easy to see that collective rationality with respect to tau-
tologies and contradictions corresponds to a vacuous requirement: In the first
case, the outcome of a procedure will always satisfy a tautology, and in the sec-
ond case the set of rational ballots is empty. These remarks constitute a proof of
the following lemma.

2This is the standard approach in the literature on binary aggregation (cf. Dokow and
Holzman, 2010a). Our choice of using formulas rather than sets is motivated by the compactness
of this representation (see the observation at page 27) and by the possibility of using syntax to
classify rationality assumptions.

3The language of 2-clauses can be equivalently defined by closing the set of 2-CNF under
logical equivalence.
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Lemma 4.1.6. CR[L ∪ {>}] = CR[L ∪ {⊥}] = CR[L] for all L ⊆ LPS.

We now move to answering the question of whether the operations that we have
included in Definition 4.1.5 are all the operations that we can perform on L
leaving the set CR[L] invariant. The following result provides a positive answer
to this question, provided that a language include tautologies and contradictions:

Lemma 4.1.7. Given two languages for integrity constraints L1 and L2 contain-
ing > and ⊥, if it is the case that L1 6= L2, then CR[L1] 6= CR[L2].

Proof. As the two languages both contain tautologies and contradictions, they
must differ on a contingent formula ϕ. Without loss of generality we can consider
a formula ϕ ∈ L2 such that ϕ 6∈ L1. We want to prove that there exists an
aggregation procedure F ∈ CR[L1] that is not CR with respect to ϕ. This
in turn implies that F is not in CR[L2], and that the two classes CR[L1] and
CR[L2] are different.

Let |N | = n where n = |Mod(ϕ)| and let F be a procedure in CR[L1] defined
for N .4 Observe that n 6= 0, 2|I|, since ϕ is a contingent formula. We claim that
it is possible to modify the behaviour of F on a single profile B in order to create
another procedure F ′ that is still CR with respect to L1 but sends the profile B of
ϕ-rational ballots to an outcome that does not satisfy ϕ. To do so it is sufficient
to find a profile B = (B1, . . . , Bn) of models of ϕ and a ballot Bc outside Mod(ϕ)
such that whenever each of B1, . . . , Bn satisfy the same formula ψ ∈ L1 then
also Bc |= ψ. If we can find such a B and Bc, then by setting F ′(B) = Bc and
F ′(B′) = F (B′) for all remaining B′ 6= B we obtain an aggregator procedure
that is in CR[L1] but not in CR[L2].

Mod(ϕ)

Bc•

Bc′
•

ψc

ψc′

Figure 4.1: ψc separates Bc from Mod(ϕ).

Suppose for the sake of contradiction that such a profile does not exist, i.e., that
for every choice of n ballots in Mod(ϕ) and ballot Bc outside Mod(ϕ), there is a
formula ψ ∈ L1 that separates them: for all i we have that Bi |= ψ but Bc 6|= ψ.
Note that |Mod(ϕ)| = n, as well as the size of the profile B we are looking for.

4In Section 4.2 we will prove that CR[L] can never be empty for any language L and any
set of agents N (see Theorem 4.2.8), i.e., that it is always possible to find an F meeting our
requirement. For the sake of this proof it is sufficient to consider a dictatorship of the first
individual, i.e., a procedure that outputs the first coordinate of a profile.
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This entails that we can construct a profile Bϕ which contains all distinct models
of ϕ, and that for every Bc 6|= ϕ there is a formula in L1, that we shall call ψc,
that separates the set Mod(ϕ) from Bc.

We have assumed that ϕ 6∈ L1, i.e., ϕ is not equivalent to a conjunction of
formulas in L1. Let us now consider the conjunction

∧
ψc for Bc 6|= ϕ. We claim

that ϕ ≡
∧
ψc, in contradiction with our assumption, since all ψc are in L1 and L1

is closed under conjunction. By construction we know that Mod(ϕ) ⊆ Mod(
∧
ψc),

as all models of ϕ are individual ballots in the profile Bϕ. We need to prove
the other inclusion. Assume for the sake of contradiction that there exists a
B∗ in Mod(

∧
ψc) \ Mod(ϕ). By construction, there exists a formula ψ∗ ∈ L1

that separates B∗ from Mod(ϕ), and this formula is included in
∧
ψc. But by

construction B∗ 6|= ψ∗, therefore it cannot be included in Mod(
∧
ψc).

By reaching this contradiction we have concluded the proof: it is possible to
modify F on the profile B of all models of ϕ to output a ballot that is not a
model of ϕ but respects all integrity constraints in L1. That is, F ′ so defined is
in CR[L1] but not in CR[ϕ].

A crucial assumption used in the previous proof is that CR[L] contains procedures
defined for arbitrarily large sets of individuals.5 The construction we used in the
previous proof would not be possible if we had fixed in advance the number
of individuals. An example can be obtained in the special case of |N | = 1,
considering the language L obtained from {p,¬p, q,¬q}. This language cannot
express the formula ϕ = p↔ q, even if the class CR[L∪{ϕ}] = CR[L], as can be
seen with some easy calculation. Similar counterexamples involving bigger sets
of individuals are hard to obtain.

We conclude this section by establishing some easy properties of CR[L] and
of FL[AX] that shall be useful in the next sections.

Lemma 4.1.8. The following facts hold:
(i) If L1 ⊆ L2, then CR[L1] ⊇ CR[L2];

(ii) CR[L1 ∪ L2] = CR[L1] ∩ CR[L2] for all L1,L2 ⊆ LPS;
(iii) CR[L1 ∩ L2] = CR[L1] ∪ CR[L2] for all L1,L2 ⊆ LPS.

The proof is straightforward from our definitions. Similar properties can be
proven for classes of procedures defined in terms of axioms. We write F[AX]
as a shorthand for F{>}[AX], the class of procedures that satisfy the axioms in
AX over the full domain D. It is easy to see that the following lemma holds:

Lemma 4.1.9. The following facts hold:
(i) if L1 ⊆ L2 then FL1 [AX] ⊇ FL2 [AX];

(ii) in particular, if > ∈ L, then F[AX] ⊇ FL[AX];
(iii) FL[AX1,AX2] = FL[AX1] ∩ FL[AX2].

5This is the only result in this chapter the proof of which hinges on this assumption.
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Observe that for most axioms an additional fact holds: if the axiomatic property
AX is satisfied on the full domain D, then AX is also satisfied on every sub-
domain of D. This is true in particular for all the axioms we considered.6 Thus,
for most axioms AX it holds that F[AX] ⊆ FL[AX] for all L ⊆ LPS. Moreover,
by (ii) of Lemma 4.1.9, if > ∈ L then F[AX] = FL[AX] for all L ⊆ LPS.

4.1.2 From Classes of Aggregation Procedures to Integrity
Constraints and Back

In the first part of Section 4.1 we have associated with any language for integrity
constraints L a class of aggregation procedures CR[L] that are collectively ra-
tional with respect to all formulas in L. Once a set of issues I is fixed, CR[−]
can therefore be viewed as an operator from the set of languages for integrity
constraints (i.e., subsets of LPS closed under conjunction and logical equivalence)
to subsets of the class F of all aggregation procedures for I. In this section we
introduce an inverse operation, that we shall call LF [−], which, given a class of
procedures, outputs the set of integrity constraints that are lifted by all proce-
dures in that class. As we will see, LF is the left inverse of CR, but on the other
side the two operators do not commute.

L ⊆ LPS G ⊆ F

CR[−]

LF [−]

Figure 4.2: The operators CR[−] and LF [−].

Definition 4.1.10. Given a class of aggregation procedures G ⊆ F , let LF [G]
be the set of integrity constraints that are lifted by all F ∈ G:

LF [G] = {ϕ ∈ LPS | F is CR with respect to ϕ for all F ∈ G}

LF [G] is the intersection of all LF [{F}] for F ∈ G. We now prove the following:

Proposition 4.1.11. Let I be a set of issues, L a language for integrity con-
straints containing > and ⊥, and G ⊆ F a class of aggregation procedures on I.
Then the following facts are true:

(i) LF [CR[L]] = L
(ii) CR[LF [G]] ⊇ G and this inclusion is strict for some classes.

6See the observation at the end of Section 4.3.2 for an example of an axiomatic property
that can be satisfied on the full domain but falsified on a proper subset of it.
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Proof. (i) We start by proving that LF is a left inverse of CR. A direct conse-
quence of our definitions is that L ⊆ LF [CR[L]], and we now prove the other
inclusion. We want to show that if an integrity constraint ϕ is lifted by all
procedures that are CR with respect to L, then ϕ belongs to L. This is a
straightforward consequence of Lemma 4.1.7. Assume for the sake of contra-
diction that ϕ 6∈ L (and thus that ϕ is neither a tautology nor a contradiction).
By Lemma 4.1.7, there exists a procedure F which is collectively rational for L
but not for ϕ, against our assumption that all procedures in CR[L] are CR with
respect to ϕ. Therefore ϕ is in L.

(ii) It is straightforward from our definitions that CR[LF [G]] ⊇ G. Recall that
a dictatorship is a procedure that copies the ballot of a given individual in every
profile. It can be easily observed that such a procedure is collectively rational
for every integrity constraint, and in Section 4.2 this fact will be given a formal
proof (see Theorem 4.2.8). Let us therefore consider a class of procedures G not
containing any dictatorship. In view of our previous observation we know that all
dictatorships are contained in CR[LF [G]], as they are collectively rational for any
integrity constraint. As we assumed that G does not contain any dictatorship, we
infer that CR[LF [G]] ) G.

In the following section we will prove several characterisation results for the class
CR[L] in terms of classical axioms. These results define unambigously the class of
integrity constraints lifted by the class of procedures under consideration. To see
this, suppose we can prove that CR[L] = FL[AX] for given L and AX; then, by
part (i) of Proposition 4.1.11, we have that LF [FL[AX]] = L.7 On the other hand,
a characterisation of the class LF [G] cannot be turned into a characterisation of
CR[L]. By part (ii) of Proposition 4.1.11 we can infer that if LF [G] = L then
G ⊆ CR[L], but there is no guarantee that G will be equal to CR[L].

Let us spend one last paragraph concerning this asymmetry between the two
definitions. As we will see in the next section, the two operators commute for
every class of procedures defined in terms of classical axiomatic properties like
those described in Section 2.2 (provided that they contain the set of generalised
dictatorships, see Definition 4.2.7). This is because classical axioms define suffi-
ciently big classes of procedures. The conditions we have imposed on languages
for integrity constraints guarantee that languages are closed under the “right” set
of operations when talking about collective rationality. This is not so for classes
of aggregation procedures, but the results that we prove in the following sec-
tion suggest that defining classes of procedures by means of axiomatic properties
might be a good candidate to obtain the commutativity of the two operators.

7The behaviour is slightly different in case L does not contain > or ⊥, in which case
LF [FL[AX]] = L ∪ {>,⊥}.
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4.2 Characterisation Results for Propositional

Languages

The aim of this section is to explore the relationship between the two definitions of
classes of aggregation procedures introduced in Section 4.1: collectively rational
procedures on one side, and procedures defined by axiomatic requirements on the
other. In particular, we look for results of the following form:

CR[L] = FL[AX],

for languages L and axioms AX. We call such findings characterisation results :
they provide necessary and sufficient axiomatic conditions for an aggregation
procedure to be collectively rational with respect to a language for integrity con-
straints. The focus of this section is on languages: We provide complete character-
isation for some basic classes of languages defined in a syntactic fashion, proving
the correspondence with some of the main classical axioms from the literature on
Social Choice Theory. We shift the focus to axioms in Section 4.3.

Definitions of all the axiomatic properties we refer to in this section can be
found in Section 2.2. Axioms will be denoted with the capital letter associated
with it, e.g., we will write U for unanimity and I for independence. Recall that a
language for integrity constraints is a set of propositional formulas closed under
conjunction and logical equivalence.

4.2.1 Full Characterisations

Recall that a procedure is unanimous if it shares the view of the individuals in
case they all agree, either all accepting or rejecting a certain issue. The first
characterisation result shows that the set of aggregation procedures that lift all
rationality constraints that can be expressed as conjunctions of literals is precisely
the class of unanimous procedures:

Theorem 4.2.1. CR[literals] = Fliterals[U].

Proof. One direction is easy: If X := Mod(`) is a domain defined by a literal
`, then every individual ballot must agree with it, either positively or negatively
depending on its sign. This entails, by unanimity, that the collective outcome
agrees with the individual ballots. Thus, F is collectively rational with respect
to `, and by Lemma 4.1.3 F is CR with respect to the full language of literals.

For the other direction, suppose that F ∈ CR[literals]. Fix an issue j ∈ I.
Pick a profile B ∈ Dn such that bi,j = 1 (or 0) for all i ∈ N . That is, B ∈
Mod(pj)

N (or ¬pj, respectively). Since F is collectively rational for every literal,
including pj and ¬pj, it must be the case that F (B)j = 1 (or 0, respectively),
proving unanimity of the aggregator.
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As remarked in Section 4.1.1, the language generated from literals is the same as
the language of cubes, i.e., finite conjunctions of literals. We can therefore state
the following corollary.

Corollary 4.2.2. CR[cubes] = Fcubes[U].

An equivalence is a bi-implication of literals where the literals are both positive (or
both negative, which amounts to the same thing). Call the language for integrity
constraints generated by equivalences L↔, i.e., the set {pj ↔ pk | pj, pk ∈ PS}
closed under conjunction and logical equivalence. This language allows us to
characterise issue-neutral aggregators, i.e., procedures that treat distinct issues
in the same way:

Theorem 4.2.3. CR[L↔] = FL↔ [NI ].

Proof. To prove the first inclusion (⊇), pick an equivalence pj ↔ pk. This defines
a domain in which issues j and k share the same pattern of acceptance/rejection,
and since the procedure is neutral over issues, we get F (B)j = F (B)k. Therefore,
the constraint given by the initial equivalence is lifted. Thus, we can conclude by
Lemma 4.1.3 that the full langauge L↔ is lifted.

For the other direction (⊆), suppose that a profile B is such that bi,j = bi,k for
every i ∈ N . This implies that B ∈ Mod(pj ↔ pk)

N , and since F is in CR[L↔],
F (B)j must be equal to F (B)k. This holds for every such B, proving that F is
neutral over issues.

With an analogous proof we can obtain a characterisation result involving the
axiom of domain-neutrality. Recall that a procedure is domain-neutral if it sym-
metric with respect to any two issues. An XOR formula is a bi-implication of
one negative and one positive literal. Let LXOR be the language for integrity
constraints generated from {pj ↔ ¬pk | pj, pk ∈ PS}.

Theorem 4.2.4. CR[LXOR] = FLXOR
[ND].

Proof. The first inclusion is straightforward: When every individual ballot in a
profile satisfies the same XOR formula, then this means that there are two issues
the behaviour of which is symmetrical. By domain-neutrality, the outcome of the
aggregation is also symmetrical, and therefore the constraint is lifted.

To prove the remaining inclusion (⊆), suppose that a profile B is such that
bi,j = 1 − bi,k for every i ∈ N . This implies that B ∈ Mod(pj ↔ ¬pk)N . As
before, since F is in CR[LXOR], it must be the case that F (B)j = 1−F (B)k and
F is domain-neutral.

Consider now the language L+
→ of positive implications, generated from formulas

of the form pj → pk, or equivalently ¬pj → ¬pk, for pj, pk ∈ PS. Since L+
→ ⊇ L↔,

we know that CR[L+
→] ⊆ CR[L↔] = FL↔ [NI ]. Therefore, a characterisation

of the language of positive implications must involve the axiom of neutrality in
combination with others. The right combination is the following.
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Theorem 4.2.5. CR[L+
→] = FL+

→
[NI ,MN].

Proof. (⊇) Let us first consider the case of individual ballots all satisfying a
certain positive implication IC = pj → pk. We want to prove that if F satisfies I
and MI then F lifts the integrity constrait IC. Note that if an individual accepts
issue j then she also accepts issue k. Therefore, the first part of the antecedent
forming the axiom of N-monotonicity is satisfied. We now have to consider two
cases: if for all i ∈ N we have that bi,j = bi,k = 1, then by issue-neutrality we
have that F (B)j = F (B)k. The constraint IC is therefore satisfied, as the only
way to falsify it is by accepting j and rejecting k. If on the other hand there is an
individual i such that bi,j = 0 while bi,k = 1, then B fully satisfies the antecedent
of MN and therefore F (B)k = 1 whenever F (B)j = 1, again making it impossible
to falsify the integrity constraint IC.

For the remaining inclusion (⊆), suppose that a profile B is such that when-
ever bi,j = 1 then bi,k = 1 for every i ∈ N . This implies that B ∈ Mod(pj → pk)

N .
Since we assumed F to be in CR[L+

→], F (B)j = 1 entails F (B)k = 1, for the
constraint pj → pk has to be lifted. Therefore F is N-monotonic. We have al-
ready remarked that, due to Theorem 4.2.3, all procedures in CR[L+

→] are also
issue-neutral.

The last result would suggest that a characterisation of the language of negative
implications (i.e., when exactly one of the two literals is negative) might be proven
by considering the axiom of domain-neutrality combined with N-monotonicity.
Unfortunately, in the absence of additional restrictions on the set of profiles, this
characterisation does not hold. We prove a partial characterisation for this class
in Section 4.2.3.

We conclude this section by characterising the classes of collectively rational
procedures for languages at the extremes of the spectrum: the full language LPS,
the language of tautologies, and that of contradictions. For the last two classes
the characterisation is straightforward. Recall that F = {F : DN → D} is
the class of all aggregation procedures (for fixed I). We have already stated in
Lemma 4.1.6 that tautologies and contradictions are vacuous requirements for
what concerns collective rationality, and here we use these arguments to give a
characterisation result for this trivial class of formulas. Let {>} be the language
of all tautologies, and {⊥} be the language of all contradictions:

Proposition 4.2.6. CR[{>}] = CR[{⊥}] = F .

If on the other hand we turn to study the class of procedures that lift any integrity
constraint in LPS we discover an interesting class of procedures. Let us give the
following definition,that generalises the notion of dictatorship.8

8This class was introduced by Cariani et al. (2008) in the context of judgment aggregation
under the name of rolling dictatorships. A related (but different) notion is that of positional
dictatorships, introduced by Roberts (1980a) and rather standard in Social Choice Theory



56 Chapter 4. Lifting Individual Rationality

Definition 4.2.7. An aggregation procedure F : DN → D is a generalised dic-
tatorship, if there exists a map g : DN → N such that F (B) = Bg(B) for every
B ∈ DN .

That is, a generalised dictatorship copies the ballot of a (possibly different) in-
dividual in every profile. Call this class GDIC. This class fully characterises the
class of collectively rational aggregators for the full propositional language LPS:

Theorem 4.2.8. CR[LPS] = GDIC.

Proof. Clearly, every generalised dictatorship lifts any arbitrary integrity con-
straint IC ∈ LPS. To prove the other direction, suppose that F 6∈ GDIC. Hence,
there exists a profile B ∈ DN such that F (B) 6= Bi for all i ∈ N . This means
that for every i there exists an issue ji such that F (B)ji 6= bi,ji . We now want to
build a propositional formula that is satisfied by all individuals and not by the col-
lective outcome, proving that F is not CR with respect to the full propositional
language. Define a literal `ji to be equal to pji if bi,ji = 1, and to ¬pji other-
wise. Consider as integrity constraint IC the following formula:

∨
i `ji . Clearly,

Bi |= IC for every i ∈ N , i.e., B is a rational profile for the integrity constraint
IC. But by construction, F (B) 6|= IC, as F (B) differs from the individual ballots
on all literals in IC. Therefore, F is not collectively rational for IC and does not
belong to the class CR[LPS].

As a concluding remark, recall that the language generated by clauses coincides
with the full propositional language, as every propositional formula is equivalent
to a conjunction of clauses by taking its conjunctive normal form. We therefore
obtain the following:

Corollary 4.2.9. CR[clauses] = GDIC.

We analyse restricted languages of clauses in Section 4.4.

4.2.2 How to Combine Characterisation Results

Most of the characterisation results presented thus far characterise a class of
procedures determined by a single axiom and by a uniform description of the
language. In this section we briefly explain to what extent such results can be
combined to allow us to make predictions regarding the collective rationality
of procedures satisfying several such axioms, or in the case where the integrity
constraints can be chosen from a more complex language.

(Roemer, 1996). It denotes social choice functions that follow the choice of the individual
having a certain position in society (e.g., egalitarian maximin). The same term is also used to
indicate a generalisation of the median rule in single-peaked domains (Moulin, 1988).
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Consider the case of two characterisation results CR[L1] = FL1 [AX1] and
CR[L2] = FL2 [AX2]. By part (ii) of Lemma 4.1.8 and by FL1∪L2 [AX1,AX2] ⊆
FL1 [AX1] ∩ FL2 [AX2] we can infer that

FL1∪L2 [AX1,AX2] ⊆ CR[L1 ∪ L2].

(But note that the other inclusion is not always true.) This entails that if we
express constraints in the language L1 ∪ L2 or in any of its sublanguages, then
picking procedures from FL1∪L2 [AX1,AX2] is a sufficient condition for collective
rationality. If, instead, we start from a class of procedures satisfying axioms AX1

and AX2 on the language L1 ∪ L2 then we can infer that these procedures lift
any language L ⊆ L1 ∪ L2, since as we previously observed FL1∪L2 [AX1,AX2] is
included in CR[L1 ∪ L2], which in turn is included in CR[L].

Suppose, for instance, that we are considering an aggregation procedure F
that satisfies both the axiom of unanimity and the axiom of domain-neutrality,
i.e., a function in F[U,ND]. Then we are certain that any integrity constraint that
can be expressed as a conjunction of literals and XOR-formulas is lifted by F , i.e.,
any formula in the language for integrity constraint generated by cubes ∪ LXOR.
On the other hand, if we can describe an integrity constraint as a conjunction
of an XOR-formula with an equivalence, then by Theorems 4.2.3 and 4.2.4 it is
sufficient to pick an aggregator that is both neutral over issues and domain-neutral
to guarantee collective rationality.

4.2.3 Partial Characterisation Results

In this section we prove two partial characterisations for languages of implications,
i.e., we give only sufficient axiomatic conditions for an aggregator to be CR with
respect to the language under consideration. Recall from Theorem 4.2.5 that
the language of positive implications L+

→ is the language for integrity constraints
generated by formulas of the form pj → pk for pj, pk ∈ PS.

Proposition 4.2.10. CR[L+
→] ) FL+

→
[NI ,MI, I].

Proof. It is sufficient to notice that FL+
→

[NI ,MI, I] ⊆ FL+
→

[NI ,MN] to obtain the
inclusion from Theorem 4.2.5. To see this, observe that under the assumption
of neutrality and independence the two versions of monotonicity coincide, as we
already remarked in Section 2.2.

We give a direct counterexample to prove that the inclusion is strict. Let I
consist of 2 issues j and k, and N of 2 individuals i1 and i2. Define F to accept
both issues in all profiles except for the one where both individuals accept all
issues, in which we fix F as rejecting both issues. F is clearly collectively rational
for the language of positive implications over two propositional symbols, as the
only ballots falsifying such constraints are never in the output of F . Consider
now the following two profiles.
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B:

j k

i1 0 1
i2 1 1

F 1 1

B′:

j k

i1 1 1
i2 1 1

F 0 0

The second profile B′ is obtained from the first by increasing support on is-
sue j, which is accepted by F in B while it is rejected in B′, contradicting
I-monotonicity. Note that F is also not independent, as the outcome on issue k
changes even if the individual ballots concerning this issue coincide in the two
profiles. Therefore, F is collectively rational with respect to positive implica-
tions but is neither I-monotonic nor independent. However, F has to satisfy the
axiom of issue-neutrality. The reason is that this axiom corresponds to collec-
tive rationality with respect to equivalences, as we have seen in Theorem 4.2.3,
and equivalences can be expressed as conjunctions of positive implications. For-
mally, as L+

→ ⊇ L↔, we have by Lemma 4.1.8 that CR[L+
→] ⊆ CR[L↔], and by

Theorem 4.2.3 this last class is equal to F[NI ].

With a similar proof we can obtain a partial characterisation result for the lan-
guage of negative implications L−→, i.e., formulas of the form pj → ¬pk and
¬pj → pk for pj, pk ∈ PS:

Proposition 4.2.11. CR[L−→] ) FL−→ [ND,MI, I].

Proof. Let F be a domain-neutral, independent and I-monotonic procedure. As-
sume first that pj → ¬pk is the integrity constraint, and let B be a rational
profile such that F (B)j = 1. We want to show that F (B)k = 0 to prove the
collective rationality of F with respect to the integrity constraint pj → ¬pk. By
individual rationality we have that {i | bi,j = 1} ⊆ {i | bi,k = 0}. We now build
a profile B′ from B by modifying the individual ballots on issue j only, such
that b′i,j = 1 − bi,k for all i. Observe that B′ is still a rational profile for the
initial integrity constraint. By MI we can infer that F (B′)j = 1, as we increased
the number of individuals accepting j in B′ without changing the individual bal-
lots on any other issue. Now by ND we have that F (B′)j = 1 − F (B′)k, since
b′i,j = 1− b′i,k for all i, and by I this entails F (B)k = 0, as bi,k = b′i,k for all i.

Assume now that the integrity constraint is ¬pj → pk, and let B be a rational
profile in which F (B)j = 0. As in the first part of the proof, we want to show that
F (B)k = 1 to prove collective rationality with respect to the integrity constraint.
In this case, we know that {i | bi,j = 0} ⊆ {i | bi,k = 1}, and let B′ be a
second profile constructed from B such that b′i,j = 1− bi,k for all i. Assume now
that F (B′)j = 1. Since in the move from B to B′ we increased the amount of
rejections for j, we can apply MI , this time from B′ to B, to conclude that also
F (B)j = 1, against our initial assumption. Thus, F (B′)j = 0, and the proof can
be concluded using the same arguments as in the previous case.
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A counterexample similar to the one used in Proposition 4.2.10 can be devised
to prove that the inclusion is strict.

We can combine the two partial characterisations proved in this section using
Lemmas 4.1.8 and 4.1.9 to obtain sufficient (but not necessary) axiomatic condi-
tions for lifting the full language of implications L→, i.e., the language for integrity
constraints generated from the set {p→ q | p, q ∈ PS}:

CR[L→] ) FL→ [MI, I,NI ,ND].

Observe that L→ = 2-clauses, i.e., the class of formulas that are equivalent to a
conjunction of clauses of maximal size two. This constitutes a very interesting
language for integrity constraints and, as we will see in Section 4.4.2, the majority
rule is one of the collectively rational procedures with respect to this language.

4.3 Characterisations Results for Classical

Axiomatic Properties

In the previous section we proved several characterisation results for various sim-
ple fragments of the propositional language associated with an aggregation prob-
lem. In this section we shift our focus from syntactic descriptions of languages to
axiomatic properties of aggregation procedures, having the axioms as variables
when exploring the possibility for a characterisation result.

We first generalise some of the results proven in the previous section to more
general characterisations of axioms, dropping the domain restriction given by the
language. Then, we prove some negative results involving axioms like anonymity
or independence, which are properties that constrain the aggregation on more
than one profile. For these axioms a characterisation cannot be found.

At the end of the section we turn to the problem of determining which axioms
can be characterised using collective rationality and which cannot. While we do
prove a formal result for all the axioms listed in Section 2.2, we only provide a
preliminary answer to this more general question.

4.3.1 Axioms Characterisation

Consider the class F[AX], dropping the subscript L, as representing the class of
procedures that defines an axiom. As observed at the end of Section 4.1.1, for
all the axiomatic properties considered we know that F[AX] ⊆ FL[AX] for all
L ⊆ LPS. Some of the characterisation results proved in the previous section can
be easily generalised to the class F[AX], becoming therefore characterisations of
classical axioms.
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Corollary 4.3.1. The following equivalences hold:

(i) F[U] = CR[literals].
(ii) F[NI ] = CR[L↔].

(iii) F[ND] = CR[LXOR].

Proof. Refer to Theorems 4.2.1, 4.2.3 and 4.2.4. For all three classes we prove that
FL[AX] = F[AX], for the relevant axiom and language. We do so by proving that
the condition required by the axiom is a vacuous requirement outside domains
defined by formulas in L. In the first case, suppose that B is a profile in which
all individuals unanimously accept (reject) a given issue j. This means that
B ∈ Mod(pj) (B ∈ Mod(¬pj), respectively). Thus, all profiles in the scope of
the axiom of unanimity are models of a literal. The other cases are similar. In
the second one, if two formulas share the same pattern of acceptance/rejection
(issue-neutrality), then we are in a profile that is a model of a bi-implication.
Similar remarks hold for the third case of domain-neutrality. Therefore, in the
three cases under consideration, for a procedure to satisfy an axiom on domains
defined by L is equivalent to satisfying the same axiom on the full domain.

4.3.2 Negative Results

Results of this form cannot be proven for other important axioms, for which it is
not even possible to obtain a characterisation result. We study four such classes
in the following result. Recall that LF [G] is the set of integrity constraints lifted
by all the aggregation procedures in G. Let {>,⊥} be the language for integrity
constraints composed of all tautologies and contradictions.

Proposition 4.3.2. The following equivalences hold:

LF [F[I]] = LF [F[A]] = LF [F[MI]] = LF [F[MN]] = {>,⊥}

Proof. We prove this proposition by constructing for any contingent formula ϕ
(i.e., such that both ϕ and ¬ϕ are satisfiable) an independent, anonymous and
monotonic procedure that is not collectively rational with respect to ϕ. Let ϕ be
such a formula, and let B? ∈ D be a ballot such that B? 6|= ϕ. Consider now the
constant procedure F (B) = B? for all profiles B: this procedure is independent,
anonymous, I-monotonic and N-monotonic, but it is not collectively rational with
respect to ϕ.

An immediate corollary of this result is that it is not possible to obtain a charac-
terisation of these axioms in terms of collective rationality:

Corollary 4.3.3. There is no language L ⊆ LPS such that CR[L] = F[I]. The
same holds for F[A], F[MI] and F[MN].
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Proof. Recall from Section 4.1.2 that in the presence of a characterisation result,
the set of integrity constraints lifted by a class of procedures is uniquely deter-
mined. Suppose then that CR[L] = F[AX] for AX ∈ {I,A,MI,MN} and a given
L. Proposition 4.3.2 forces L to be equal to {>,⊥}, but we have already proven
that this class characterises the whole set of procedures F (cf. Proposition 4.2.6
combined with Lemma 4.1.8). Therefore, such a characterisation cannot exist.

Note that this argument can be generalised to prove that the class FL[I] (and the
same holds for A, MI and MN) cannot be characterised for any restriction given
by a language L. It is sufficient to note that the constant procedure employed in
the proof of Proposition 4.3.2 can be defined regardless of the domain restriction.

Our interest toward these axioms does not cease here. On the contrary, Propo-
sition 4.3.2 showed that the classes of monotone, independent and anonymous
procedures behave in the same way as the full class F for what concerns collec-
tive rationality. This suggests that interesting characterisations can be studied
inside those classes, replacing the set F of all procedures with, e.g., the class F[I].
We are going to pursue this approach in the following sections.

Let us conclude the session with some remarks about the structure of the
axiomatic properties seen so far. The results proven in this section are consis-
tent with the intuition that assumptions regarding the collective rationality of
an aggregator can only condition the outcome in view of a single profile at a
time. Axioms like independence or monotonicity coordinate the behaviour of the
aggregator on more than one profile, and for this reason cannot be characterised
as collective rationality with respect to a particular language. This ideal line
that can be drawn to separate “intra-profile axioms” from “inter-profile axioms”
has been given the name of “single-profile” versus “multi-profile” approach in the
literature on Social Choice Theory (Samuelson, 1967; Roberts, 1980a).

The multi-profile approach to Social Choice Theory is the rather standard
study of aggregation procedures as functions defined on the domain of all profiles,
while under the single-profile approach the object of study is a single profile at
a time, together with its outcome. Classical axioms have first been formulated
under the former approach, which led to the celebrated Arrow’s Impossibility
Theorem (Arrow, 1963). In the following decades several authors proposed the
single-profile approach to Social Choice Theory as a possible escape from Arrow’s
impossibility (Samuelson, 1967). Unfortunately, as several theorems have shown
(see, e.g., Roberts, 1980b; Pollak, 1979), the impossibility persists even after the
classical axioms are transformed into their so-called “single-profile analogues”.

It is not our purpose to give a formal treatment of such notions,9 but we may
put forward the following informal definition.

Definition 4.3.4. (informal) An axiom AX is an intra-profile property of aggre-
gation procedures if it can be written in the form ∀B Ψ(B, F (B)) where Ψ is a

9For a formalisation of similar concepts in first-order logic of predicates we refer to the work
of Rubinstein (1984) and our previous work (Grandi and Endriss, 2012).
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property of the profile B and of the outcome F (B). An axiom is an inter-profile
property otherwise.

It is easy to see that collective rationality with respect to a certain language is
an intra-profile requirement, since it comes of the following form:

∀B if Bi |= IC for all i ∈ N then also F (B) |= IC

To prove that anonymity, independence and monotonicity are genuine inter-profile
properties would require a more precise definition than the one we have provided,
but for now it is sufficient to observe that their formulation involves a quantifi-
cation on two distinct profiles, and that this cannot be easily translated into a
single-profile statement. By summing up these remarks, we can conclude that if
an axiom can be characterised as collective rationality with respect to a certain
language, then it is necessarily intra-profile, and the universally quantified formula
expressing this axiom is exactly that of collective rationality. Axioms that are
instead genuinely inter-profile, like independence, monotonicity and anonymity,
but also non-imposition, non-dictatorship and permutation-neutrality (see Riker,
1982), cannot be characterised in terms of collective rationality, and it is easy to
prove a result like Proposition 4.3.2 for such classes.

On the other hand, not all intra-profile requirements can be expressed as col-
lective rationality with respect to a certain language. A counterexample can be
found in a property inspired from the condition of “unrestricted domain over
triples” presented by Pollak (1979). This condition is the single-profile analogue
of the axiom that classically goes under the name of universal domain. It is a
condition of richness imposed on a single profile B, and in binary aggregation it
requires that for every combination that can be constructed with three individu-
als and three issues, i.e., for every profile over {0, 1}3, there exist three issues i1,
i2 and i3 and three individuals such that their ballots in B restricted to issues i1,
i2 and i3 coincide with the given subprofile. If this is the case, we set the outcome
of the function to accept all the issues, i.e., F (B) = (1, . . . , 1). The condition is
genuinely intra-profile but in view of its syntactic structure (it contains an exis-
tential quantifier over three different individuals and issues) cannot be expressed
as collective rationality with respect to a given language.

4.4 Quota Rules and Languages of Clauses

This section is devoted to a thorough exploration of the classes of collectively
rational procedures for several languages of clauses inside the class of quota rules.

We introduced quota rules in Section 2.3.1 as procedures assigning a quota
0 6 qj 6 n + 1 to every issue j such that F (B)j = 1 ⇔ |{i | bi,j = 1}| > qj. In
the same section we also proved that quota rules are axiomatised as the class of
independent, anonymous and monotone procedures. If we denote with QR the
set of quota rules, then we can write QR = F[A, I,MI].
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There are several reasons why the choice of quota rules and languages of
clauses constitutes an interesting combination. First, since we have proven in
Section 4.3 that no characterisation result is possible neither for independent,
nor for anonymous, nor for monotonic procedures, it is important to explore
classes of collectively rational procedures inside those classes. As remarked ear-
lier, by combining all three axioms together we obtain the set of quota rules.
Second, languages of clauses are the most expressive ones, ranging from literals,
to implications, to the full expressivity of LPS.

By Corollary 4.2.9 we know that to obtain interesting results it is necessary
to limit either the size or the shape of the clauses that build up a language for
integrity constraints. In this section we concentrate on languages defined by
bounding the size of clauses, and quota rules seem a perfect candidate to deal
with such restrictions, as they allow us to put restrictions on quotas and constrain
them with equations.

We will assume for the rest of this section that the number of issues is always
strictly bigger than the limitation on the size of a clause. This is because in case
the number of issues is smaller or equal than the bound on clauses this limitation
is fictitious, and the language becomes fully expressive, thereby ruling out any
non-trivial characterisation.

4.4.1 Positive and Negative Clauses

We start by studying the special case of positive and negative clauses of arbitrary
size, obtaining necessary and sufficient conditions for quota rules to lift such
constraints, and exploring characterisation results inside these classes.

For k > 1, we define an exact k-clause as a clause of length k, i.e., a clause in
which exactly k propositional symbols occur either positively or negatively but
not both.10 A k-clause is a clause of size at most k. A k-pclause is a positive
k-clause, i.e., a disjunction where all literals are positive, and a k-nclause is a
negative k-clause, where all literals are negative. Given a clause ϕ = `1∨ · · · ∨ `k,
we say that an issue j occurs in ϕ if one and only one of pj and ¬pj is one of the
literals of ϕ. For instance, the following formula p∨ q∨¬p∨¬r∨¬r is a 2-clause
in which two propositional symbols q and r occur, while p occurs in a spurious
way and does not add to the length of the clause.

Proposition 4.4.1. A quota rule is CR for an exact k-pclause IC if and only if∑
j qj < n + k, with j ranging over all issues that occur in IC and n being the

number of individuals, or qj = 0 for at least one issue j that occurs in IC.

Proof. Suppose IC = p1 ∨ · · · ∨ pk and let i1, . . . , ik be the corresponding issues.
Given that IC is a positive clause, the only way to generate a paradox is by

10This is to exclude from the count redundant subformulas of a clause like pj ∨pj or pj ∨¬pj .
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rejecting all issues i1, . . . , ik. It is easy to see that this cannot occur if the quota
for one of these issues is 0. We can therefore assume that all quotas are positive.

Suppose now that we can create a paradoxical profile B. Every individual
ballotBi must accept at least one issue to satisfy the integrity constraint; therefore
the profile B contains at least n acceptances concerning issues i1, . . . , ik. On the
other hand, since F (B)j = 0 for all j = 1, . . . k, we have that the number of
individuals accepting an issue j is strictly lower than qj. As previously remarked,
there are at least n acceptances on the profile B and the maximal number of
acceptances that allows rejection on all issues is

∑
j(qj − 1). Hence we have that

n 6
∑

j(qj − 1). This is equivalent to n+ k 6
∑

jqj, since all j are distinct, thus
we can construct a paradox with our IC if and only if this inequality holds. By
taking the contrapositive we obtain the statement of Proposition 4.4.1.

With a similar proof we get the analogous result for negative clauses:

Proposition 4.4.2. A quota rule is CR for an exact k-nclause IC if and only if∑
j qj > (k− 1)n, with j ranging over all issues that occur in IC and n being the

number of individuals, or qj = n+ 1 for at least one issue j that occurs in IC.

Proof. As for the previous proof, we can start by assuming that all quotas are
6 n, for otherwise the constraint is trivially lifted. Suppose now that we can
create a paradoxical profile B. For the constraint to be lifted there must be at
least n rejections on the profile B, and the maximal amount of rejections that
allows acceptance of all issues, in order to create such a paradox, is

∑
j(n− qj);

hence n 6
∑

j(n − qj). Therefore, since each quota refers to distinct issues, we
can construct a paradox with this IC if and only if

∑
j qj 6 (k − 1)n, and by

taking the contrapositive we obtain the statement of Proposition 4.4.2.

In case k = 1, i.e., the case of a literal pj or ¬pj, we obtain qj < n+1 from the first
proposition and qj > 0 from the second, thus forcing the rule to be unanimous
on issue j (quota rules satisfying 1 6 qj 6 n for all j are unanimous). This is
consistent with Proposition 4.2.1.

We now want to turn these results into characterisation results along the lines
of those proved in Section 4.2. We first have to define languages of clauses from
our definition of clauses of a limited size. Let k-pclauses and k-nclauses denote,
respectively, the set of positive (negative) clauses of size 6 k. Denote with QReq

the set of quota rules such that all quotas qj for j ∈ I satisfy the equation eq in
the subscript. The function dxe is defined as the smallest integer bigger or equal
than x. We prove the following corollary of Propositions 4.4.1 and 4.4.2:

Corollary 4.4.3. The following inclusions are true:

(i) QRqj6dnk e ⊆ CR[k-pclauses]
(ii) QRqj>n−dnk e+1⊆ CR[k-nclauses]
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Proof. The first result is a consequence of Proposition 4.4.1 and the fact that
dn
k
e < n

k
+ 1. If all quotas qj 6 dnk e then for any subset of k issues that might

occur in a k-pclause we have that
∑

j qj 6
∑

jd
n
k
e <

∑
j(
n
k

+ 1) = n+ k.
Analogously, referring this time to Proposition 4.4.2, we have that for any k

set of issues
∑

j qj >
∑

j(n− d
n
k
e+ 1) >

∑
j(n−

n
k
− 1 + 1) = (k − 1)n.

The significance of the previous result resides in the fact that the bounds given by
those equations are the lowest uniform bounds we can give to quotas to guarantee
collective rationality. This is what is proven in the following corollary, which
focuses on uniform quota rules.

Corollary 4.4.4. A uniform quota rule is CR with respect to:
(i) a k-pclause if and only if q 6 dn

k
e;

(ii) a k-nclause if and only if q > n− dn
k
e+ 1.

Proof. i) In the case of uniform quota rules the equation in Proposition 4.4.1
takes the following form

∑
j q = kq < n+ k. This holds if and only if q < n

k
+ 1,

that is equivalent, as remarked in the proof of the previous corollary, to q 6 dn
k
e.

ii) In the same way, using a single quota in the equation of Proposition 4.4.2
we obtain kq > (k−1)n, i.e., q > n− n

k
which is equivalent to q > n−dn

k
e+1.

Note that the two equations in the previous proposition are incompatible except
for the case of k = 2 and n being odd, in which case q = n+1

2
. This proves that no

uniform quota rule is collectively rational on both positive and negative clauses
of a given size, except for the case of n being odd and q = n+1

2
. This quota rule

is the majority rule, and it is now time to study this procedure in more detail.

4.4.2 The Majority Rule

The majority rule is the uniform quota rule that accepts an issue whenever there
are more individuals accepting the issue than rejecting it. The majority rule is
perhaps one of the most natural aggregation rules. It is arguably the one that
is used the most in practical applications, but as we noted in Chapter 3, it also
generates a plethora of paradoxical situations that have been widely studied in
the literature. As we have seen in Section 2.3.2, the majority rule is axiomatised
by A, I, NI , MI and ND (cf. Proposition 2.3.7).

In case the number of individuals is odd the majority rule has a unique defini-
tion by setting the quota to q = n+1

2
. The case of an even number of individuals is

more problematic, to account for profiles in which exactly half of the individuals
accept an issue and exactly half reject it. We give two different definitions. The
weak majority rule with quota q = n

2
accepts an issue if and only if at least half

of the individuals accepts it. The strict majority rule accepts an issue if and only
if a strict majority of the individuals accepts it, i.e., it is the uniform quota rule
with quota q = n+2

2
. The first rule favours acceptance, while the second favours
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rejection of an issue. In the following sections we will characterise the set of
integrity constraints that are lifted by the majority rule, by the weak majority
rule, and by the strict majority rule.

Odd Number of Individuals: The Majority Rule

In this section we make the assumption that the number of individuals is odd,
and we indicate with Maj the uniform quota rule with quota q = n+1

2
. We make

the additional assumption that there are at least 3 individuals. The majority rule
in the case of 1 individual is the identity function that outputs the ballot received
by the only individual.

Let us begin with a base-line result that proves collective rationality of the
majority rule in case the integrity constraint is equivalent to a conjunction of
2-clauses:

Proposition 4.4.5. The majority rule is in CR[2-clauses].

Proof. Since the majority rule is a uniform quota rule, its quota has to satisfy
both types of constraints from Corollary 4.4.3 to lift both positive and negative
clauses. Thus q 6 dn

k
e and q > n − dn

k
e + 1, and as remarked in the previous

section these are incompatible unless k = 2 and n is odd, in which case q = n+1
2

. It
remains to check the case of mixed clauses IC = pi∨¬pj. A paradoxical profile for
the majority rule with respect to this integrity constraint features a first majority
of individuals rejecting issue i and a second majority of individuals supporting
issue j. By the pigeonhole principle these two majorities must have a non-empty
intersection, i.e., there exists one individual that rejects issue i and accepts issue
j. This is incompatible with the requirement that all individual ballots satisfy IC,
therefore the majority rule is collectively rational with respect to every 2-clause,
and by Lemma 4.1.3 with respect to the full language of 2-clauses.

An easy corollary of this proposition covers the case of just 2 issues:

Corollary 4.4.6. If |I| 6 2, then the majority rule is in CR[LPS].

Proof. This follows immediately from Proposition 4.4.5 and from the observation
that every given IC for two issues can be put in conjunctive normal form, and since
there are only two propositional symbols this formula must consist of conjunctions
of clauses of size at most 2 (recall that repetitions of the same atom in a clause
do not count).

As we have remarked in Section 3.4, all classical paradoxes involving the majority
rule can be formalised in our framework by means of an integrity constraint that
consists of (or is equivalent to) one or more clauses of size bigger than two. We
now generalise this observation to a theorem that completes the characterisation
of the integrity constraints lifted by the majority rule, proving that these are all
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and only those formulas that are expressible as conjunctions of 2-clauses. We
need some preliminary definitions and a lemma.

Let minimally falsifying partial assignment (mifap-assignment) for an integrity
constraint IC be an assignment to some of the propositional variables that can-
not be extended to a satisfying assignment, although each of its proper subsets
can. We first prove a a crucial lemma about mifap-assignments. Given a propo-
sitional formula ϕ, associate with each mifap-assignment ρ for ϕ a conjunction
Cρ = `1 ∧ · · · ∧ `k, where `i = pi if ρ(pi) = 1 and `i = ¬pi if ρ(pi) = 0 for all
propositional symbols pi on which ρ is defined. The conjunction Cρ represents
the mifap-assignment ρ and it is clearly inconsistent with ϕ.11

Lemma 4.4.7. Every non-tautological formula ϕ is equivalent to (
∧
ρ ¬Cρ) with

ρ ranging over all mifap-assignments of ϕ.

Proof. Let A be a total assignment for ϕ. Suppose A 6|= ϕ, i.e., A is a falsifying
assignment for ϕ. Since ϕ is not a tautology there exists at least one such A. By
sequentially deleting propositional symbols from the domain of A we eventually
find a mifap-assignment ρA for ϕ included in A. Hence, A falsifies the conjunct
associated with ρA, and thus the whole formula (

∧
ρ ¬Cρ).

Assume now A |= ϕ but A 6|= (
∧
ρ ¬Cρ). Then there exists a ρ such that

A |= Cρ. This implies that ρ ⊆ A, as Cρ is a conjunction. Since ρ is a mifap-
assignment for ϕ, i.e., it is a falsifying assignment for ϕ, this contradicts the
assumption that A |= ϕ.

We are now able to provide a full characterisation of the set of integrity constraints
that are lifted by the majority rule in case the set of individuals is odd. Recall
from Definition 4.1.10 that LF [F ] is the set of integrity constraints lifted by F .

Theorem 4.4.8. LF [Maj] = 2-clauses.

Proof. One direction is entailed by Proposition 4.4.5: the majority rule is CR
with respect to conjunctions of 2-clauses.

For the opposite direction assume that IC 6∈ 2-clauses, i.e., that IC is not
equivalent to a conjunction of 2-clauses. We now build a paradoxical profile
for the majority rule. By Lemma 4.4.7 we know that IC is equivalent to the
conjunction

∧
ρ ¬Cρ of all mifap-assignments ρ for IC. We can therefore infer

that at least one mifap-assignment ρ∗ has size > 2, for otherwise IC would be
equivalent to a conjunction of 2-clauses.

11The notion of mifap-assingment corresponds to what are called minimally inconsistent sets
in the judgment aggregation literature (List and Puppe, 2009). For a detailed discussion of the
relationship between binary aggregation and judgment aggregation refer to Chapter 6. Formulas
¬Cρ associated with mifap-assignments ρ for IC are also known as the prime implicates of IC
(Marquis, 2000). Lemma 4.4.7 is a reformulation of the known result that a formula is equivalent
to the conjunction of its prime implicates.
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Consider now the following profile. Let y1, y2, y3 be three propositional vari-
ables that are fixed by ρ∗. Assume that there are at least 3 individuals. Let the
first individual i1 accept the issue associated with y1 if ρ(y1) = 0, and reject it
otherwise, i.e., let b1,1 = 1 − ρ∗(y1). Furthermore, let i1 agree with ρ∗ on the
remaining propositional variables. By minimality of ρ∗, this partial assignment
can be extended to a satisfying assignment for IC, and let Bi1 be such an as-
signment. Repeat the same construction for individual i2, this time changing the
value of ρ∗ on y2 and extending it to a satisfying assignment to obtain Bi2 . The
same construction for i3, changing the value of ρ∗ on issue y3 and extending it to
a satisfying assignment Bi3 . If there are other individuals in N , let individuals
i3s+1 have the same ballot Bi1 , individuals i3s+2 ballot Bi2 and individuals i3s+3

ballot Bi3 . The basic profile for 3 issues and 3 individuals is shown in Table 4.1.

y1 y2 y3

i1 1-ρ∗(y1) ρ∗(y2) ρ∗(y3)
i2 ρ∗(y1) 1-ρ∗(y2) ρ∗(y3)
i3 ρ∗(y1) ρ∗(y2) 1-ρ∗(y3)

Maj ρ∗(y1) ρ∗(y2) ρ∗(y3)

Table 4.1: A paradoxical profile for the majority rule.

As can be seen from the table, and easily generalised to the case of more than
3 individuals, there is a majority supporting ρ∗ on every variable on which ρ∗

is defined. Since ρ∗ is a mifap-assignment and therefore cannot be extended to
an assignment satisfying IC, the majority rule in this profile is not collectively
rational with respect to IC.

This result may be considered a “syntactic counterpart” of a result by Nehring
and Puppe (2007), in which it is proven that in the framework of judgment
aggregation the majority rule will output a consistent outcome if and only if the
set of formulas under consideration satisfies what is called the median property,
i.e., that no minimally inconsistent subsets of size > 3 can be constructed from
such formulas. A more detailed discussion about this correspondence can be
found in Section 6.3.4.

Recall that the result of Theorem 4.4.8 does not give rise to a characterisation
result, i.e., it does not imply that CR[2-clauses] = Maj (cf. Proposition 4.1.11).
On the contrary, this class includes all generalised dictatorships. We will provide
a characterisation of this class inside the class of quota rules in Section 4.4.3.

Even Number of Individuals: Weak Majority and Strict Majority

If the aggregation problem features an even number of individuals the majority
rule can take two forms. Recall that the weak majority rule (W-Maj ) is the
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uniform quota rule with quota q = n
2

while the strict majority rule (S-Maj ) has
quota q = n+2

2
.

The main difference to the case of an odd number of individuals is that
both the weak and the strict majority rule do not satisfy the axioms of domain-
neutrality ND.12 To see this, consider the profile in Table 4.2. The profile features

j1 j2

i1 0 1
i2 0 1
i3 1 0
i4 1 0

W-Maj 1 1
S-Maj 0 0

Table 4.2: Weak and strict majority.

two issues that are both accepted by two individuals and rejected by exactly the
same number. The weak majority rule accepts both issues, since at least half
of the individuals agree with them. On the other hand, the strict majority rule
rejects both issues, as it requires at least 3 individuals accepting an issue to form
a majority. Both cases are in violation of domain neutrality, as the individual
ballots on the two issues are symmetric: the first rule favours acceptance, while
the second favours rejection.

For what concerns the behaviour of the two procedures with respect to col-
lective rationality, we can prove the following proposition.

Proposition 4.4.9. W-Maj and S-Maj are CR with respect to L+
→ (i.e., 2-clauses

in which one literal is negative and one is positive). W-Maj is CR with respect to
2-pclauses. S-Maj is CR with respect to 2-nclauses.

Proof. A closer inspection of the proof of Proposition 4.4.5 reveals that the case
for mixed clauses is also applicable for an even number of individuals. The same
result can also be obtained from Theorem 4.2.5, since both W-Maj and S-Maj
satisfy issue-neutrality and N-monotonicity. The second part of the proof is a
direct consequence of Corollary 4.4.4.

Note that the profile in Table 4.2 is a counterexample to W-Maj being CR with
respect to a negative 2-clause, i.e., ¬p1 ∨ ¬p2, and a counterexample to S-Maj
being CR with respect to the positive 2-clause p1 ∨ p2.

Unfortunately, a result analogous to Theorem 4.4.8 for the case of an even
number of individuals cannot be proven. We therefore refer to the more general

12Since they are both uniform quota rules, they still satisfy I, A, NI and MI.
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result about uniform quota rules that is proven in Section 4.4.3 (Corollary 4.4.11).
To have an idea of the behaviour of the weak and strict majority rule on clauses
of size bigger than 2, let us consider a positive clause of size 3. While the majority
rule generates a paradox for any set of individuals of odd size, when this set is of
even cardinality the weak majority generates a paradox if an only if there are no
more than 4 individuals. This is a consequence of Corollary 4.4.11 but it can be
seen directly with some easy calculation.

4.4.3 General Clauses

In this section we present a general result for the collective rationality of an arbi-
trary quota rule with respect to an arbitrary k-clause. This result generalises our
previous results concerning positive and negative clauses, and clauses of size 2. At
the end of the section we prove some conclusive characterisations for collectively
rational procedures inside the class of quota rules.

We prove the following general result for arbitrary k-clauses:13

Theorem 4.4.10. A quota rule is CR with respect to an exact k-clause IC iff∑
j negative

qj +
∑

j positive

(n− qj + 1) > n(k − 1) (4.1)

for issues j that occur positively or negatively in IC, or qj = 0 for some issue j
that occurs positively in IC, or qj=n+ 1 for issue j that occurs negatively in IC.

Proof. The case of quota rules being constant on one of the issues (i.e., the case
qj = 0, n + 1) is straightforward. We can therefore assume that all quotas are
0 < qj < n + 1. Suppose now that we can generate a paradoxical profile B for
the k-clause IC. The only way to falsify the integrity constraint is to output an
assignment F (B) that rejects all issues that occur positively in IC and accepts all
those that are negative. We therefore concentrate our attention to the subprofile
Bk defined by restricting the individual ballots to the k issues occurring in IC.

Since individual ballots are rational, there are at least n “correct” symbols
in this subprofile, i.e., a 1 for a positive issue or a 0 for a negative one. We
refer to such entries with a C in Table 4.3. We now want to count how many
“wrong” symbols are present on this subprofile. As B is a paradoxical profile, all
issues that occur negative in IC have to be accepted. Therefore, for each of those
issues at least qj individuals have the wrong symbol, in this case a 1. For the
same reason, every issue that occurs positively in IC is rejected, so the profile Bk

contains at least n − qj + 1 individuals rejecting such issue. Summing up, since
the number of cells in this subprofile is nk, we can generate a paradoxical profile
if and only if there are enough cells in Bk to account for the minimal number of

13This proposition corresponds to a result proved by Dietrich and List (2007a, Theorem 2c)
for quota rules in the framework of judgment aggregation.
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j1 j2 . . . jk

i1 C W . . . W
i2 W W . . . C
...

...
...

...
i3 W C . . . W

F W W . . . W

Table 4.3: A paradoxical profile for general clauses.

correct and wrong symbols to generate a paradox. This turns into the equation
n +

∑
jpos(n − qj + 1) +

∑
jneg qj 6 nk. By taking the contrapositive of the last

statement we get Equation 4.1.

It is easy to see that the special cases of positive and negative clauses, i.e., our
Propositions 4.4.1 and 4.4.2, can be obtained as corollaries of the previous result.
The special case of uniform quota rules is particularly interesting:

Corollary 4.4.11. A uniform quota rule with q 6= 0, n+ 1 is CR with respect to
a k-clause IC if and only if

(k2 − k1)q > n(k2 − 1)− k1 (4.2)

where k1 (k2, respectively) is the number of positive (negative, respectively) issues
in IC.

Our Corollary 4.4.4 can be proven as the special case of k1 = k and k1 = 0. The
other special case of k1 = k2 lead to a satisfiable equation only in case of k = 2,
proving two important facts: First, every quota rule lifts a 2-clause in which one
issue is positive and the other is negative, for the equation in this case is always
true (it reduces to 0 > −1). More importantly, it implies that CR[k-clauses]
does not contain any uniform quota rule for k > 3 when the number of issues is
even, since this language includes also k-clauses where exactly half of the issues
are negative and half are positive, in which case the equation does not have any
solutions.

We are now ready to prove a characterisation analogous to that of Theo-
rem 4.4.8 for uniform (non-constant) quota rules:

Proposition 4.4.12. Let q be different from 0, n+1, and let Fq be the correspond-
ing uniform quota rule. Then, LF [Fq] is the language for integrity constraints
generated from all k-clauses that satisfy Equation 4.2.

Proof. One direction is Corollary 4.4.11. For the other direction we resort to
Lemma 4.4.7 again. An integrity constrain IC is equivalent to the conjunction of
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the negation of its mifap-assignments
∧
ρ ¬Cρ. Therefore, if Fq generates a para-

dox with IC then there is at least one of the mifap-assignments that is satisfied
by the outcome of Fq, whilst being falsified by every individual. Since every ¬Cρ
is a clause, by Corollary 4.4.11 it must not satisfy equation 4.2. Thus, if Fq is not
collectively rational with respect to IC then IC is not in the language generated
by k-clauses satisfying Equation 4.2.

In exactly the same way we can prove a characterisation for the set of integrity
constraints lifted by general quota rules:

Proposition 4.4.13. Let qj be different from 0, n+ 1, and let F be a quota rule.
Then, LF [F ] is the language for integrity constraints generated from k-clauses
satisfying Equation 4.1.

Using the equations introduced in this section we are able to prove some interest-
ing results about the characterisation of collectively rational procedures inside the
class of quota rules. We have already seen some partial inclusion in Section 4.4.1
for the language of positive and negative clauses in case the set of individuals is
odd, and we can now prove the following:

Proposition 4.4.14. CR[2-clauses] ∩QR = {Maj}

Proof. Let q1 and q2 be two quotas relative to two distinct issues. Since we assume
that every 2-clause is lifted, these two quotas satisfy the following system of
equations, obtained by instantiating Equation 4.1 to the case of positive, negative,
and mixed 2-clauses:

q1 + q2 < n+ 2

q1 + q2 > n

q1 + n− q2 + 1 > n

q2 + n− q1 + 1 > n

From the first two equations we obtain q1 + q2 = n+ 1, since quotas are integers.
From the other equations we obtain |q1− q2| < 1, which for integer values entails
q1 = q2. We can then conclude that q1 = q2 = dn+1

2
e, thus obtaining the majority

rule.

We end this section by proving an expected negative result for the characterisation
of general languages of clauses inside the class of quota rules:

Proposition 4.4.15. CR[k-clauses] ∩QR = ∅ for all k > 2.

Proof. A quota rule in CR[k-clauses] must be CR with respect to both positive
and negative clauses, therefore both equations in Propositions 4.4.1 and 4.4.2
have to be satisfied. But these are unsolvable for k > 2. To see this fact consider
the first equation, which forces

∑
qj < n + k for any subset of issues of size k,
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and the second equation requiring
∑
qj > (k − 1)n on the same subsets. These

two equations are compatible only if (k − 1)n < n + k, from which we obtain
n < k

k−2
. This in turn is true only if n < 3, against our general assumption that

there are at least 3 individuals.

Observe that the equations involved in this proof do not assume that clauses have
size strictly smaller than k, hence this result can be strengthened to the language
of clauses of size exactly k.

4.5 Conclusions and Related Work

In this chapter we developed a general theory of collective rationality in binary
aggregation. We classified integrity constraints into syntactically defined lan-
guages, and we investigated the problem of how to guarantee collective ratio-
nality with respect to all integrity constraints in a given language by means of
classical axiomatic properties (see, e.g., Theorems 4.2.1, 4.2.3 and 4.2.4). We also
investigated the related problem of characterising, given a classical axiomatic re-
quirement for aggregation procedures, the set of integrity constraints that are
lifted by all procedures satisfying that property (see, e.g., Proposition 4.3.2). In
the last part of the chapter we concentrated on quota rules, i.e., procedures de-
fined by means of acceptance quotas for every issue. In particular, we obtained a
complete characterisation of the set of integrity constraints lifted by the majority
rule and by general quota rules (Theorems 4.4.8 and 4.4.10).

While the framework of binary aggregation is well-known in the literature on
Social Choice Theory (cf. Section 2.4), the results presented in this chapter consti-
tute the first systematic study of collective rationality with respect to languages
for integrity constraints in this setting. Classical approaches usually concentrate
on Arrovian aggregation procedures, i.e., procedures that are both unanimous
and independent, while most of our characterisation results do not make such re-
strictive assumptions. While the restriction to Arrovian aggregators is in line with
standard assumptions in economics, those assumptions are not always justified
in AI applications. In this section we review some of the classical approaches to
the problem of collective rationality from the literature on Social Choice Theory
and we make some conclusive remarks.

Wilson (1975) has been the first to define and study the framework of binary
aggregation, obtaining general characterisation results for independent aggrega-
tion procedures that generalise the more famous impossibility theorem by Arrow
(1963). As pointed out in Section 2.4, Wilson’s notion of responsive aggregator for
a family of subsets corresponds to our notion of collective rationality with respect
to a language for integrity constraints. Being focused on independent procedures,
Wilson characterised classes of collectively rational procedures in terms of the
structure of winning coalitions defining those procedures (cf. Proposition 2.3.1).
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In Chapter 5 we follow a similar approach by providing a proof of Arrow’s Theo-
rem which focuses on linking requirements of collective rationality for preference
relations with the structure of winning coalitions that defines an independent
procedure.

Dokow and Holzman (2009, 2010a) focused on the similar problem of char-
acterising “impossibility domains”, i.e., subsets of the full set of binary ballots
{0, 1}I on which every independent, unanimous and collectively rational proce-
dure is dictatorial. They represented rationality assumptions directly as sets of
feasible binary ballots, and they provided graph-theoretic conditions for such a
subset to be an impossibility domain. As we have remarked at the beginning
of this section, our work differs in that we do not concentrate on independent
aggregation procedures. However, an interesting line for future research is to
investigate whether a syntactic counterpart of the properties characterising im-
possibility domains can be devised.

A similar approach has been taken by Nehring and Puppe (2010), who focused
on the study of monotonic and independent procedures. As remarked earlier, our
Theorem 4.4.8 can be considered as a syntactic analogue of a result proved by
the same authors in earlier work (Nehring and Puppe, 2007), which deals with
the characterisation of impossibility domains for a class of procedures including
the majority rule.

As we have already remarked in several places throughout the chapter, many
of the results proven in Section 4.4 are analogous to those proven by Dietrich
and List (2007a) in the framework of judgment aggregation. The use of integrity
constraints, however, enables us to obtain results that are more applicable both
in a theoretical and a practical way. First, as we argue in Chapter 5 and 6, we can
easily reduce possibility and impossibility results in other settings of aggregation
to some of the characterisation results presented in this chapter. Second, from a
computational perspective the use of formulas to model rationality assumptions,
rather than referring to the consistency of judgment sets, leads to problems that
are substantially easier to compute (cf. Section 7.5).

All results in this chapter can be generalised to cover the case of an infinite
number of issues and an infinite number of individuals (except for those concern-
ing quota rules and the majority rule, whose definitions hinge on the finiteness
of the set of individuals). Related work on this topic has been carried out by
Herzberg and Eckert (2012), focusing on the study of independent aggregation
procedures for infinite electorates.

Together with Chapter 2, this chapter constitutes a first step towards a general
application-oriented theory of aggregation, a topic that is crucial to the develop-
ment of several AI applications and, above all, to the design of multiagent systems.
The achievements of the chapter are twofold: First, this work constitutes the first
systematic study of collective rationality for non-independent aggregation proce-
dures in binary aggregation. Second, to achieve these results we introduced the
novel concept of languages for integrity constraints. By developing a complex
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theoretical machinery around this notion we were able to build a link between
classical axiomatic properties and collective rationality, proving interesting char-
acterisations and laying the basis for further investigations of aggregation theory.

The results proven in the present chapter should not be interpreted as lim-
iting the possibility of consistent aggregation, but rather as specifying for each
application at hand the right conditions that make it possible. Perhaps the most
intriguing direction for future research is to employ the machinery developed in
this chapter to design collectively rational aggregation procedures to tackle com-
plex problems of aggregation that occur in many AI applications. We make some
preliminary steps in this direction in Chapter 7.





Chapter 5

Preference Aggregation

Preference aggregation (PA) is one of the central topics of Social Choice Theory.
It started from the seminal work of Black (1958) and Arrow (1963), and it rapidly
evolved to a full-fledged theory (Arrow et al., 2002). PA studies the problem of
how to aggregate the preferences of a number of individuals into a collective
preference over a set of alternatives. In Chapter 3 we showed how PA can be
embedded into binary aggregation with integrity constraints (BA with IC), and
how the Condorcet paradox can be seen as an instance of our general definition of
paradox. The focus of this chapter is on theoretical results in PA. We recall the
basic definitions of PA and we show how classical and new results can be obtained
with a new proof method that makes use of the characterisation results presented
in Chapter 4. By translating aggregation problems from PA into BA with IC, we
are able to identify the source of impossibilities in a clash between the integrity
constraints defining a preference domain, and a list of axiomatic properties.

In Section 5.1 we review the framework of PA, and we recall its translation
into BA with IC. We illustrate our proof method in Section 5.2, by proving an
impossibility result for quota rules and a possibility result for non-independent
procedures. In Section 5.3 we provide an alternative proof of Arrow’s Theorem.
Although inspired by our new proof method, this proof does not hinge on any
characterisation result from Chapter 4, but rather develops its own argument.
As corollaries we obtain a characterisation of oligarchies and a version of Arrow’s
Theorem for complete and transitive preferences. We conclude in Section 5.4 by
discussing different approaches that have been put forward in the literature to
relate preference aggregation with binary and judgment aggregation.

5.1 The Framework of Preference Aggregation

In this section we review the basic definitions of the framework of PA (Gaert-
ner, 2006; Taylor, 2005) and we recall its translation into BA with IC that was
introduced in Section 3.1.2, extending the correspondence to the level of axioms.

77
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5.1.1 Basic Definitions

Let N be a set of individuals expressing preferences over a set X of alternatives .
We represent such preferences with a binary relation on X . In this section we
concentrate on two ways of representing preferences, linear orders and weak or-
ders. Other options are possible, and we make use of different assumptions in
Sections 5.2.2 and 5.3. Recall that a binary relation is a linear order if it is ir-
reflexive, transitive and complete. The term aPib stands for “individual i strictly
prefers alternative a to alternative b”. The choice of a linear order Pi for each
individual constitutes a preference profile P = (P1, . . . , Pn). A weak order is a
binary relation that is reflexive, transitive and complete. We denote weak orders
with the letter R, thus aRib stands for “individual i weakly prefers a to b” and
call R = (R1, . . . , Rn) a profile of weak orders. Note that every weak order R
induces an irreflexive and transitive binary relation, usually referred to as the
strict part of R, and denoted with R<, namely the relation that holds between a
and b whenever aRb holds but bRa does not.

If we denote with L(X ) the set of all linear orders on X , then the set of all
profiles of (linear) preference orders is the set L(X )N .

Definition 5.1.1. A social welfare function (SWF) for X andN defined on linear
orders is a function w : L(X )N → L(X ).

A SWF associates with every preference profile P = (P1, . . . , Pn) ∈ L(X )N a
linear order w(P ), which in most interpretations is taken to represent the ag-
gregation of the preferences of the individuals into a “social preference order”
over X . The same definition can be given using the set R(X ) of all weak orders
over X as the domain of aggregation, defining a SWF for N and X defined on
weak orders as a function w : R(X )N → R(X ).

It is important to note that in our definition of SWFs there are two hidden
conditions that could be stated as axioms, but that we have instead included as
an integral part of the formal framework of preference aggregation. The first is
usually called unrestricted or universal domain: it requires a SWF to be defined
over all preference profiles in L(X )N . Domain restrictions, such as single-peaked
preferences (Black, 1958), are the most common escape from Arrow’s impossi-
bility theorem (see, e.g., Gaertner, 2001). The second hidden condition is called
collective rationality by Arrow (1963, Chapter VIII, Section V). It requires the
outcome of the aggregation to be a linear (weak, respectively) order, i.e., it re-
quires the outcome to conform to the same rationality constraints as the input
received from the individuals.

5.1.2 Axioms

Since the seminal work of Arrow (1963), the literature on preference aggregation
has made extensive use of the axiomatic method to classify and study SWFs.
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There are several properties that an aggregation mechanism may satisfy, and
some of them have been argued to be natural requirements for a SWF. In this
section we list some of the most important axioms presented in the literature.
For some of the axioms, we use the same terminology as in Section 2.2, since we
will prove in Section 5.1.3 that there is a direct correspondence between the two
formulations. We start with the three properties that led to the proof of Arrow’s
Theorem:

Pareto Condition (P): For all profiles P ∈ L(X )N , if aPib for every individual
i ∈ N , then aw(P ) b.

Independence of Irrelevant Alternatives (IIA): For all profiles P and P ′

in L(X )N , if aPib⇔ aP ′i b for all i ∈ N , then aw(P ) b⇔ aw(P ′) b.

Non-dictatorship (NDIC): There is no individual i ∈ N such that w(P ) = Pi
for every profile P ∈ L(X )N .

The (weak) Pareto condition (also known as unanimity) states that, whenever
every individual strictly prefers alternative a to alternative b, so does society.
IIA forces the social ranking of two alternatives a and b to depend only on their
relative ranking by the individuals. A formulation of these axioms for the case of
weak orders can be easily obtained by considering profiles in R(X )N rather than
in L(X )N . The only exception is the weak Pareto condition, which is usually
stated for the strict order R< induced by a weak order R.

Weak Pareto Condition (WP): For all profiles R ∈ R(X )N , if aR<
i b for

every individual i ∈ N , then aw(R)< b.

The axioms WP, IIA and NDIC are the most classical set of impossible require-
ments for SWFs: Arrow’s Theorem (1963) states that there is no SWF defined
on weak (linear, respectively) orders that satisfies WP (P, respectively), I and
NDIC in case there are at least 3 alternatives.

Other axiomatic properties have been proposed in the literature. We state
here their formulation for the case of linear orders. We refer to the literature
(Gaertner, 2006) for a formulation of these properties in the case of weak orders,
in case it cannot be obtained directly from our version. The first one we consider
is the axiom of anonymity (also known as equality, cf. Arrow, 1963):

Anonymity (A): For any profile P ∈ L(X )N and any permutation σ : N → N ,
we have that F (P1, . . . , Pn) = F (Pσ(1), . . . , Pσ(n)).

Another property is the principle of neutrality, i.e., that all alternatives should
be treated the same way. This axiom takes different forms in the literature. It is
often stated for independent procedures, or it employs permutations, in line with
the axiom of anonymity (Arrow, 1963; Taylor, 2005). Here, we state a formulation
of this axiom for linear orders which we adapted from Gaertner (2006).
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Neutrality: For any four alternatives a, b, c, d ∈ X and profile P ∈ L(X )N , if
for all i ∈ N we have that aPib⇔ cPid, then aw(P ) b⇔ cw(P ) d.

We conclude by listing the two following axioms, adapted from the work of May
(1952). The first axiom can be clearly recognised as a condition of monotonicity,
while the second is a generalisation of the original axiom of neutrality proposed
by May (1952). This formulation differs from the previous axiom N, as it requires
a SWF to treat preferences on different alternatives symmetrically :

Positive Responsiveness: For all a, b ∈ X and any two profiles P and P ′ in
L(X )N , if aPib entails aP ′i b for all i ∈ N , and for some s ∈ N we have that
bPsa and aP ′sb, then aw(P ) b entails aw(P ′) b.

May’s Neutrality: For all alternatives a, b, c, d ∈ X and profile P ∈ L(X )N ,
if for all i ∈ N we have that aPib⇔ ¬(cPid) then aw(P ) b⇔ ¬(dw(P ) c).

5.1.3 Translation Revisited

We now recall the embedding of PA into BA with IC which was presented in
Section 3.1.2. Given a set of alternatives X , we can construct a set of issues IX
given by all pairs of alternatives and integrity constraints IC< (IC6, respectively)
for the case of linear orders (weak orders), to encode the rationality constraints
of preference aggregation. This enabled us to obtain a correspondence between
SWFs defined on linear orders and aggregation procedures that are CR with re-
spect to IC<, and, in the same way, between SWFs defined on weak orders and
aggregation procedures that are CR with respect to IC6. This correspondence
is not a bijection, since every SWF is associated with a set of aggregation proce-
dures, depending on how the function is extended outside the domain defined by
the integrity constraint of preferences.

The correspondence extends to axiomatic properties. By substituting the ex-
pressions aPib or aRib with bi,ab = 1, aw(P ) b with F (B)ab = 1, and preference
profile P with binary profile B, we obtain for most of the axioms presented in
Section 5.1.2 their equivalent formulation for binary aggregation. The axiom of
independence of irrelevant alternatives (IIA) corresponds to the axiom of inde-
pendence (I) defined in Section 2.2. The Pareto condition corresponds to a weaker
version of the axiom of unanimity (U), restricted to the case of individuals agree-
ing on the acceptance of an issue. For the case of weak orders the resulting axiom
is even weaker (but sufficient to obtain deep impossibilities, see Section 5.3). The
axiom of non-dictatorship corresponds to the negation of our Definition 2.2.1. The
two axioms of anonymity are in direct correspondence, as well as that of neutral-
ity and the axiom NI . Finally, the axiom of positive responsiveness corresponds
to the independence version of MI, and May’s neutrality axiom corresponds to
the axiom ND.
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This direct correspondence between axiomatic properties enables us to study
classes of procedures and to translate results from one framework to the other.
For instance, to every anonymous, positively responsive SWF defined on weak
orders that satisfies IIA corresponds an aggregation procedure that is CR with
respect to IC6 and that satisfies I, A and MI on Mod(IC6). The restriction on
Mod(IC6) is of crucial importance, as we have no information on the behaviour
of F outside the domain defined by IC6 or IC<.

5.2 (Im)possibility Results From Lifting Results

In this section we prove two results concerning the aggregation of preferences
by making use of our characterisation results of Chapter 4, illustrating the proof
method we outlined in the introduction: translate a problem from PA to BA with
IC, and look for clashes between integrity constraints and axiomatic properties.
The first result is a reformulation of a known result by Wilson (1975), while the
second result is novel.

5.2.1 An Impossibility Result

It has been argued in several places that independence represents the crucial
source of impossibilities in preference aggregation, identifying the problem in
a clash between this axiom and the transitivity of collective preference (Saari,
2008). In this section we prove an impossibility result in this spirit, showing how
a combination of axioms, including independence, clashes with the requirements
of collective rationality for preferences.

Recall that the integrity constraint of transitivity in IC< can be simplified
for 3 alternatives to the conjunction of two positive clauses pba ∨ pcb ∨ pac and
pab ∨ pbc ∨ pca (cf. the observation on page 32). Call a SWF imposed if for some
pair of distinct alternatives a and b we have that a is always collectively preferred
to b in every profile.1 We now prove the following result, which is a weaker version
of a result by Wilson (1975):

Proposition 5.2.1. If |X | > 3 and |N | > 2, then any anonymous, independent
and positively responsive SWF for X and N is imposed.

Proof. The first step is to move to BA with IC, using the correspondence outlined
in Section 5.1.3: To every anonymous, independent and positively responsive
SWF corresponds a binary aggregation procedure that is collectively rational for
IC< and that satisfies A, I and MI . Recall that by Proposition 2.3.5, every A, I,
MI aggregation procedure is a quota rule.

The second step consists in checking whether the axiomatic requirements clash
with the integrity constraint under consideration. In this case the answer is

1The negation of this property is known as citizen sovereignity (cf. Arrow, 1963).
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positive: by exploiting some of the characterisation results proven in Chapter 4
we are able to prove that, if a quota rule is collectively rational for IC<, then it
is imposed, i.e., at least one of the quotas qab is equal to 0.

Suppose, for the sake of contradiction, that every quota qab > 0. In view of our
previous discussion, for any three alternatives a, b, c ∈ X the integrity constraints
corresponding to transitivity are pba∨pcb∨pac and pab∨pbc∨pca. These are positive
clauses of size 3; thus, by Proposition 4.4.1 we obtain the following inequalities
on quotas:

qba + qcb + qac < n+ 3

qab + qbc + qca < n+ 3

Furthermore, it is easy to see that the requirements of completeness and antisym-
metry of a linear order force the quotas to satisfy the following:

qab+qba = n+1

qbc+qcb = n+1

qac+qca = n+1

Now, adding the two inequalities we obtain that
∑

a,b∈X qab < 2n+ 6 and adding
the three equalities we obtain

∑
a,b∈X qab = 3n+ 3. The two constraints together

admit a solution only if n < 3. Thus, it remains to analyse the case of 2 individ-
uals; but it is easy to see that our constraints do not admit a solution in positive
integers for n = 2. This shows that there must be a quota qab = 0 for certain
distinct a and b as soon as n > 2; hence, the SWF is imposed.

5.2.2 A Possibility Result

Let a pair judgment be a binary relation over X that is antisymmetric and com-
plete, i.e., it requires each individual to express a (strict) preference on each pair
of alternatives, without assuming any further property. This representation of
preferences may be useful in situations in which transitivity constitutes a too
strong requirement. Moreover, it may be employed to express preferential depen-
dencies in multi-issue domains (Rossi et al., 2011; Airiau et al., 2011) or, more
generally, edges in a directed graph (Endriss and Grandi, 2012).

In line with our definitions of Section 5.1, we can define a SWF on pair
judgments as a function that assigns a collective pair judgment to every profile
of pair judgments. Let ICpair be the following integrity constraint.

Completeness and antisymmetry: pab ↔ ¬pba for all a 6= b ∈ X

To every SWF defined on pair judgments corresponds an aggregation procedure
that is CR with respect to ICpair. As for the standard case of linear and weak
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orders, the correspondence extends to the level of axioms. To the best of our
knowledge SWFs defined on pair judgments have not yet been studied in the lit-
erature, and we now prove a possibility result concerning this class of procedures.

Proposition 5.2.2. There exists a SWF defined on pair judgments that satisfies
the Pareto condition, May’s neutrality, independence and positive responsiveness.

Proof. Once more, we make use of the proof method outlined in the introduction
to the chapter. The first step is to move to the more general framework of BA
with IC. By our previous discussion, it is sufficient to show that there exists an
aggregation procedure that is CR with respect to ICpair and that satisfies U, ND,
I and MI to obtain the required result.

The second step consists in checking whether the axiomatic properties required
for the aggregation procedure clash with the integrity constraint that defines the
domain, making use of our characterisation results from Chapter 4. In our case we
can observe that ICpair is expressed in what we called the XOR-language LXOR (cf.
Section 4.2). By our Theorem 4.2.4, we know that every aggregation procedure
that satisfies ND is CR with respect to any integrity constraint expressed in LXOR.
We can therefore conclude that any aggregation procedure which satisfies U, ND,
I and MI (e.g., the majority rule) is CR with respect to ICpairs .

The third step consists in translating everything back to our initial framework.
Notice that we have actually proven a stronger result: As long as a SWF satis-
fies May’s neutrality (which corresponds to ND), we can focus on the remaining
axioms to obtain a SWF defined on pair judgments. We can use in this case the
pair-wise majority rule to prove the existence of a SWF defined on pair judgments
which satisfies U, ND, I and MI .

Not only have we obtained a proof of a relatively interesting statement in Propo-
sition 5.2.2, but a closer inspection of the proof revealed that, as long as we
include May’s neutrality, it is possible to find a SWF defined on pair judgments
for many other combinations of axioms. This allows, for instance, for SWFs that
give different weights to individuals or alternatives.

5.3 Arrow’s Theorem

Arrow’s Theorem (1963) is considered one of the cornerstones of Social Choice
Theory, with which every new result needs to be compared. In this section, we
pick up the challenge providing an alternative proof of Arrow’s result in line with
the proof method presented in the previous section. While our proof does not
stand out in terms of succintness when compared with proofs based on combina-
torics (see, e.g., Geanakoplos, 2005), and while it employs known techniques based
on the study of winning coalitions (see, e.g., Kirman and Sondermann, 1972), its
contribution to the literature can be assessed in two important aspects: First,
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by referring to a more general framework (BA with IC), it sheds new light on
the “source” of Arrow’s impossibility, identifying it in a clash between axiomatic
requirements and collective rationality with respect to the integrity constraints of
preference. Second, the flexibility of our proof method enables us to obtain differ-
ent versions of Arrow’s result, including a characterisation of oligarchies usually
attributed to Gibbard (1969), with minor adjustments from the original proof.

We begin by proving the following lemma:

Lemma 5.3.1. If |X| > 3, every unanimous and independent aggregation proce-
dure F for IX that is CR with respect to transitivity is issue-neutral with respect
to non-reflexive issues.2

Proof. Let F be an aggregation procedure for IX that satisfies both U and I.
By the representation result in Proposition 2.3.1, F is characterised by a set of
winning coalitions Wab for every issue ab ∈ IX , such that F (B) = 1 if and only
if NB

j ∈ Wab. We now prove that the collection of winning coalitions is the same
for all (non-reflexive) issues, hence F satisfies NI .

Note that the Wab are not empty (due to unanimity). Consider any three
alternatives a, b and c, ad let C ∈ Wab. We will employ collective rationality
to show that C must also be a winning coalition for each of the other five issues
associated with the three alternatives, namely ba, ac, ca, bc and cb. A simple
inductive argument then suffices to show that C will in fact have to be a winning
coalition for all (non-reflexive) issues.

Now suppose F is CR with respect to transitivity. Let us first see how to
prove that C ∈ Wac: Consider a scenario in which ab and ac are accepted by the
agents in C and only those, and in which bc is accepted by all agents, as described
in Figure 5.1.

a b

c

C

NC

Figure 5.1: Collective transitivity entails issue-neutrality.

By definition of C, ab is collectively accepted, and by unanimity bc is also collec-
tively accepted. Then, by collective transitivity, ac must be collectively accepted.
Hence, C is a winning coalition for ac, i.e., C ∈ Wac. We can use a similar
argument for the other edges: e.g., to show C ∈ Wcb consider the case with C

2This lemma ceases to hold if we lift the restriction to non-reflexive issues, i.e., issues different
from bb with b ∈ X . However, this restriction suits well to our problem, since we do not want
to differentiate the proof between irreflexive and reflexive preferences.
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accepting all of ca, ab and cb; then to show C ∈ Wba consider the case with C
accepting all of bc, ca and ba; and so forth.

Since transitivity is included in both integrity constraints of preferences IC< and
IC6, it is a straightforward consequence of the previous proof that Lemma 5.3.1
can be extended to these more restrictive constraints, obtaining a proof of what
is known in PA as the “contagion lemma”:

Lemma 5.3.2. If |X| > 3, every unanimous and independent aggregation proce-
dure F for IX that is CR with respect to IC< or IC6 is issue-neutral with respect
to non-reflexive issues.

We are now ready to state and prove Arrow’s Theorem:

Theorem 5.3.3 (Arrow, 1963, weak orders). Given a finite set of individuals N
and a finite set of alternatives X such that |X | > 3, every independent and weakly
Paretian SWF for N and X defined on weak orders is dictatorial.

Proof. Let w be an independent and unanimous SWF for N and X . By the trans-
lation of PA into BA with IC of Section 5.1.3, w corresponds to an aggregation
procedure Fw on issues IX that is CR with respect to IC6 and satisfies axioms I
and a weaker version of U. Closer inspection of the proof of Lemma 5.3.2 shows
that it can be proved by weakening the assumption of unanimity to the property
corresponding to weak Pareto. Thus, we can assume that Fw is also issue-neutral
with respect to non-reflexive issues. Combining this observation with our repre-
sentation result in Proposition 2.3.1, we can characterise Fw in terms of the set of
winning coalitions W . We now prove that W is an ultrafilter (Davey and Priest-
ley, 2002), i.e., a collection of subsets such that: (i) ∅ 6∈ W ; (ii) if C1 ∈ W and
C2 ∈ W then C1∩C2 ∈ W (closed under intersection); (iii) for all C ⊆ N , either
C or N \C is inW (maximality). The proof is then concluded by observing that
an ultrafilter over a finite set is principal, i.e., that is defined as those subsets of
N containing a given individual i∗, which is therefore the dictator. Thus, mov-
ing back to preference aggregation, we obtain the desired conclusion that every
weakly Paretian and independent SWF defined on at least three alternatives is
dictatorial.

(i) It is straightforward to observe that the empty set being a winning coalition
is in direct contradiction with the weak Pareto condition, therefore ∅ 6∈ W .

(ii) In order to prove that W is closed under intersection, let C1 and C2

be two winning coalitions in W and consider the following profile over three
distinct alternatives a, b, c ∈ X (recall that we assumed |X | > 3). Let exactly the
individuals in C1 accept issues ab, exactly the individuals in C2 accept issue bc,
and exactly the individuals in C1∩C2 accept issue ac, as described in the left part
of Figure 5.2. By independence, we can ignore the judgments of the individuals
on the remaining issues. Since both C1 and C2 are winning coalitions, both issues
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a b

c

C1

C2
C1 ∩ C2

a

b

N \ C C

Figure 5.2: The set of winning coalitions is an ultrafilter.

ab and bc are accepted. By collective rationality with respect to transitivity, issue
ac also has to be accepted. Therefore, C1 ∩ C2 is a winning coalition in W .

(iii) We conclude by proving maximality for W . Let C ⊆ N , and consider
a profile in which exactly the individuals in C accept issue ab and exactly the
individuals in N \C accept issue ba, as described in the right part of Figure 5.2.
By collective rationality with respect to completeness, either issue ab or issue ba
has to be accepted. Thus, at least one of C or its complement N \C is a winning
coalition.

Notice that in the proof of Theorem 5.3.3 we have not used the assumption
of reflexivity of weak orders, and that Lemma 5.3.2 holds for both weak and
linear orders. This implies that the same proof holds for the usual statement of
Arrow’s Theorem for linear orders. Moreover, by using Lemma 5.3.1 in place of
Lemma 5.3.2, the same proof shows the following result:

Theorem 5.3.4. Given a finite set of individuals N and a finite set of alternatives
X such that |X | > 3, every independent and unanimous SWF for N and X defined
on complete and transitive binary relations is dictatorial.

To illustrate further the flexibility that is brought about by our new proof method,
let us prove a result that drops the assumption of completeness from the statement
of Theorem 5.3.3. Define a preorder as a reflexive and transitive relation. Define
Nab = {i ∈ N | aPib}. A SWF w is called an oligarchy if there exists a subset of
individuals A ⊆ N such that for all profiles P we have that aw(P ) b if and only
if A ⊆ NP

ab . We now provide an alternative proof of the following result, usually
attributed to Gibbard (1969):

Theorem 5.3.5. Given a finite set of individuals N and a finite set of alternatives
X such that |X | > 3, every independent and unanimous SWF for N and X defined
on preorders is an oligarchy.

Proof. In the proof of Theorem 5.3.3 we have used the assumption of completeness
of a weak order to obtain the proof of maximality of the set of winning coalitions
W . Therefore, the first two conditions on the set of winning coalitions (i.e.,
∅ 6∈ W and closure under finite intersections) are still satisfied. We need to prove
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two simple properties to obtain our conclusion. First, we observe that W is non-
empty, since by weak Pareto it contains the full set N . Second, we prove that W
is closed under supersets, i.e., if C ∈ W then C ⊆ D implies D ∈ W . In this case
W is called a filter (Davey and Priestley, 2002). Let therefore C ∈ W and C ⊆ D.
Construct a profile B in which issue ab is accepted by exactly the individuals in
C, issue bc by all individuals, and issue ac by exactly the individuals in D, as
described in Figure 5.3. Since C ∈ W and F is unanimous, both issues ab and bc
are accepted, and by CR with respect to transitivity we obtain that also issue ac
is accepted, and thus D ∈ W .

a b

c

C

ND

Figure 5.3: The set of winning coalitions is a filter.

We can now conclude the proof by observing that every filter over a finite set is
defined as the set of C ⊆ N such that A ⊆ C for a certain A ⊆ N . To see this, it
is sufficient to take the intersection of all winning coalitions (which is non-empty
by closure under intersection): w is an oligarchy of the individuals in this set.

A more detailed study of the aggregation of partially ordered preferences has been
carried out in recent work by Pini et al. (2009) and by Xia and Conitzer (2011).
For a more detailed study of the use of ultrafilters in PA we refer to Daniëls
and Pacuit (2009) and Herzberg and Eckert (2012). A reformulation of Arrow’s
Theorem along the lines of the one presented in this section can be found in our
previous work on graph aggregation (Endriss and Grandi, 2012).

5.4 Conclusions and Related Work

There exists a considerable amount of work in the literature exploring the relation
between PA and other frameworks of aggregation (List and Pettit, 2004; Dietrich
and List, 2007b; Grossi, 2009, 2010; Porello, 2010). Our approach is similar to that
of Dietrich and List (2007b). In their work, the authors embed the framework of
PA into the framework of judgment aggregation in general logics Dietrich (2007),
by using a simple first-order logic of orders. They then obtain Arrow’s Theorem
as a corollary of a more general result that is proven in judgment aggregation. In
a similar way, we have shown in this chapter how to obtain new theorems or new
proofs of known results in PA by embedding PA into BA with IC, using a simple
propositional language to express the integrity constraints of preference.
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This does not entail that the characterisation results proven in our general
framework are stronger than the results we obtain as corollaries in PA. This is
the argument of the work of Porello (2010), who showed, for the case of judgment
aggregation, how Arrow’s Theorem and its correspondent in judgment aggrega-
tion are in fact equivalent when compared at the level of PA. It is likely that a
similar result can be proven for our characterisation results in BA with IC. A
similar conceptual perspective is the one taken by Grossi (2009, 2010). In these
papers the author obtains an embedding of PA into judgment aggregation based
on multi-valued logic and, vice versa, an embedding of judgment aggregation into
PA by considering a particular structure of preferences. The aim of Grossi is
more conceptual: what is sought is, on the one hand, a notion of logical con-
sequence that can alone encode the logic behind preferences, and, on the other
hand, a representation of the preferences induced by consistent judgment sets of
propositional formulas.

Our purpose is different. In this chapter we showed how preference aggrega-
tion can be interpreted in BA with IC for several representations of preferences,
and we have put forward a new proof method for PA problems that refers to our
characterisation results proved for BA with IC. The results we have obtained may
share many similarities or even be weaker than known results from the literature
on PA, especially for the case of independent aggregation rules. However, the
focus is not on the novelty or strength of single results, but on the generality and
flexibility of the proof method we put forward. By unifying proofs in aggregation
theory we gain a deeper understanding of the common problem behind impossi-
bility results: impossibilities arise from clashes between axiomatic properties and
requirements of collective rationality.



Chapter 6

Judgment Aggregation

In this chapter we study the framework of judgment aggregation (JA), a topic
that in recent years has received considerable attention both in Social Choice
Theory and in Artificial Intelligence. JA studies situations in which a set of
agents express their judgments over a set of correlated propositions, and this
needs to be aggregated into a collective judgment. Such a process may lead to
paradoxical situations, as seen in Section 3.2, and in this chapter we investigate
the source of such paradoxes proving a series of results in JA, inspired by our
findings in binary aggregation with integrity constraints (BA with IC).

We define a new problem in the study of JA procedures called the safety of
the agenda: Given a class of procedures defined axiomatically, we seek necessary
and sufficient conditions on the set of propositions under consideration (i.e., the
agenda) to avoid paradoxical situations. Once we have studied this problem for
some classes of procedures defined axiomatically, we turn to identify the computa-
tional complexity of recognising safe agendas for such classes. We show that this
problem is highly intractable, proving completeness for the complexity class Πp

2.

In Section 6.1 we give the basic definitions of the framework of JA we shall
be working with, and we list axiomatic properties for the study of judgment
aggregation procedures. The relation between the framework of JA and BA with
IC is investigated in detail in Section 6.2, showing that the two frameworks are
equivalent in terms of expressive power. Section 6.3 presents the problem of
safety of the agenda, and contains several safety results for classes of procedures
defined axiomatically. We also compare our findings with characterisation results
from Chapter 4, providing another example of the generality of the proof method
for (im)possibility results described in the introduction and used in Chapter 5
to obtain several results in preference aggregation. In Section 6.4 we study the
computational complexity of recognising safe agendas for such classes for which
a safety result was proven. Section 6.5 concludes.

89
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6.1 The Framework of Judgment Aggregation

In this section, we give precise definitions for the framework of JA we shall be
working with for the rest of the chapter, giving particular attention to computa-
tional problems arising from the use of logical formulas as objects of aggregation.
We introduce some new terminology to shed light on the difference between the
“syntactic” and “logical” properties of a judgment set, a difference that we be-
lieve is worth stressing. We also introduce a list of axioms specifying desirable
properties for a judgment aggregation procedure. All our definitions are closely
related to existing ones, resulting in a framework that is essentially equivalent to
the version given by List and Puppe (2009). We shall refer to the setting defined
in this section as the formula-based framework for JA.

6.1.1 Basic Definitions

Let PS be a set of propositional variables, and LPS the set of propositional formu-
las built from PS using the usual connectives ¬, ∧, ∨, →, ↔ (see Appendix A).
If α is a propositional formula, define ∼α as the complement of α, i.e., ¬α if α is
not negated, and as β if α = ¬β.

Definition 6.1.1. An agenda is a finite nonempty set Φ ⊆ LPS that does not
contain any doubly-negated formulas and that is closed under complementation
(i.e., if α ∈ Φ then ∼α ∈ Φ).

In a slight departure from the common definition in the literature (List and
Puppe, 2009), note that we do allow for tautologies and contradictions in the
agenda. Our reason for relaxing the framework in this manner is that one of
our interests is to study the computational complexity of JA, and recognising a
tautology or a contradiction is itself a computationally intractable problem. The
complexity results we will prove in Section 6.4 would however remain unchanged if
we added the additional requirement that agendas should not contain tautologies
and contradictions.

Definition 6.1.2. A judgment set J on agenda Φ is a subset of the agenda J ⊆ Φ.

We call a judgment set J : complete if α ∈ J or ∼α ∈ J for all α ∈ Φ; complement-
free1 if for all α ∈ Φ it is not the case that both α and its complement are in J ;
and consistent if there exists an assignment that makes all formulas in J true.

Denote with J (Φ) the set of all complete and consistent subsets of Φ. Given
a set N = {1, . . . , n} of n individuals, denote with J = (J1, . . . , Jn) a profile of
judgment sets, one for each individual.

1This property is called weak consistency by Dietrich (2007), and consistency by List and
Pettit (2002). Our choice of terminology is intended to stress the fact that it is a purely syntactic
notion, not involving any model-theoretic concept.
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Definition 6.1.3. A judgment aggregation procedure (JA procedure) for agenda
Φ and a set of individuals N is a function F : J (Φ)N → 2Φ.

That is, a JA procedure maps any profile of individual judgment sets to a single
collective judgment set (an element of the powerset of Φ). Since F is defined on
the set of all profiles of consistent and complete judgment sets, we are already
assuming a universal domain, which is sometimes stated as a separate property
(List and Pettit, 2002). The definition also includes a condition of individual
rationality: all individual judgment sets are complete and consistent.

6.1.2 Axiomatic Properties

In analogy with Section 2.2, we now list the most important axioms and properties
that have been introduced in the literature for JA procedures. We will use the
same terminology and letters of Section 2.2 to denote axiomatic properties for JA
procedures. This should create no confusion since, as we will prove in Section 6.2,
there is direct correspondence between the two formulations.

In Definition 6.1.3 we did not put any constraints on the collective judgment
set, the outcome of aggregation. This is the role of the following definition:

Definition 6.1.4. A JA procedure F , defined on an agenda Φ, is said to be:
(i) complete if F (J) is complete for every J ∈ J (Φ)N ;

(ii) complement-free if F (J) is complement-free for every J ∈ J (Φ)N ;
(iii) consistent if F (J) is consistent for every J ∈ J (Φ)N .

We now present several axioms to provide a normative framework in which to
state what the desirable properties of an acceptable JA procedure should be. The
first axiom is a very basic requirement, restricting possible aggregators F in terms
of fundamental properties of the outcomes they produce.

Weak Rationality (WR): F is complete and complement-free.

This condition differs from what is called “collective rationality” in the litera-
ture on JA (List and Puppe, 2009), as we do not require the collective judgment
set to be consistent. However, we will see that WR corresponds to an instance
of our notion of collective rationality for binary aggregation with a suitable in-
tegrity constraint (cf. Section 6.3.4). The first reason to separate the notion of
consistency from the other conditions is that the requirements of WR are purely
syntactic notions that can be checked automatically in an easy way. The second
is that the notion of consistency is not intrinsic to the aggregation function, but
depends more on the properties of the agenda. This will be made more pre-
cise in Section 6.3, where we will study the consistency of a class of aggregators
depending on the agenda.

The following are the most important axioms discussed in the literature on
JA (List and Pettit, 2002; List and Puppe, 2009; Nehring and Puppe, 2010).
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Unanimity (U): If ϕ ∈ Ji for all i ∈ N then ϕ ∈ F (J).

Anonymity (A): For any profile J ∈ J (Φ)N and any permutation σ : N → N
we have F (J1, . . . , Jn) = F (Jσ(1), . . . , Jσ(n)).

Neutrality (N): For any ϕ, ψ in the agenda Φ and profile J ∈ J (Φ), if for all
i ∈ N we have that ϕ ∈ Ji ⇔ ψ ∈ Ji, then ϕ ∈ F (J)⇔ ψ ∈ F (J).

Independence (I): For any ϕ in the agenda Φ and profiles J and J ′ in J (Φ),
if ϕ ∈ Ji ⇔ ϕ ∈ J ′i for all i ∈ N , then ϕ ∈ F (J)⇔ ϕ ∈ F (J ′).

Systematicity (S): For any ϕ, ψ in the agenda Φ and profiles J and J ′ in
J (Φ), if ϕ ∈ Ji ⇔ ψ ∈ J ′i for all i ∈ N , then ϕ ∈ F (J)⇔ ψ ∈ F (J ′).

Unanimity expresses the idea that if all individuals accept a given judgment, then
so should the collective.2 Anonymity states that aggregation should be symmetric
with respect to individuals, i.e., all individuals should be treated the same. Neu-
trality is a symmetry requirement for propositions: if the same subgroup accepts
two propositions, then either both or neither should be collectively accepted. In-
dependence says that if a proposition is accepted by the same subgroup under two
otherwise distinct profiles, then that proposition should be accepted either under
both or under neither profile. Systematicity is satisfied if and only if both neu-
trality and independence are. While all of these axioms are intuitively appealing,
they are stronger than they may seem at first, and several impossibility theorems,
establishing inconsistencies between certain combinations of axioms with other
desiderata, have been proved in the literature. The original impossibility theorem
of List and Pettit (2002), for instance, shows that there can be no collectively
rational aggregation procedure satisfying A and S.

A further important property is monotonicity. We introduce two different
axioms for monotonicity. The first is the one commonly used in the literature
(Dietrich and List, 2007a; List and Puppe, 2009). It implicitly relies on the
independence axiom. The second, introduced in our previous work (Endriss et al.,
2010a), is designed to be applied to neutral procedures. For systematic procedures
the two formulations are equivalent.

I-Monotonicity (MI): For any ϕ in the agenda Φ and any two profiles J and
J ′ in J (Φ), if ϕ ∈ Ji entails ϕ ∈ J ′i for all i ∈ N , and for some s ∈ N we
have that ϕ 6∈ Js and ϕ ∈ J ′s, then ϕ ∈ F (J) entails ϕ ∈ F (J ′).

N-Monotonicity (MN): For any ϕ, ψ in the agenda Φ and profile J in J (Φ),
if ϕ ∈ Ji ⇒ ψ ∈ Ji for all i ∈ N and ϕ 6∈ Js and ψ ∈ Js for some s ∈ N ,
then ϕ ∈ F (J)⇒ ψ ∈ F (J).

2As already remarked in Section 2.2, this notion of unanimity is stronger than the stan-
dard formulation which can be found in the literature (List and Puppe, 2009), but the two
formulations are equivalent under the assumption of independence.
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That is, MI expresses that if ϕ is collectively accepted and receives additional
support (from s), then it should continue to be collectively accepted. Axiom MN

says that if ϕ is collectively accepted and ψ is accepted by a strict superset of the
individuals accepting ϕ, then ψ should also be collectively accepted.

The axioms we have introduced can be used to define different classes of
aggregation procedures: Given an agenda Φ and a list of desirable properties AX
provided in the form of axioms, we define FΦ[AX] to be the set of all procedures
F : J (Φ)n → 2Φ that satisfy the axioms in AX.

Representation results, like those we proved in Section 2.3, can also be stated
for classes of JA procedures. In Section 6.2 we shall extend the correspondence
between JA and binary aggregation to the level of axiomatic properties, making
it possible to translate representation results from one framework to the other.

6.2 From Judgments to Binary Ballots, and Back

In Section 6.1 we have presented the formula-based framework for JA, and we shall
now recall its embedding into BA with IC introduced in Section 3.2.1, extending
it to a correspondence between axiomatic properties. We then provide an inverse
translation of BA with IC into JA, by allowing the use of constraints in the
latter setting. We conclude by discussing the relations between various equivalent
frameworks for JA that have been introduced in the literature.

6.2.1 Translation Revisited

Given an agenda Φ, we have shown in Section 3.2 that we can construct an
integrity constraint ICΦ over a set of issues I = Φ that encodes the logical cor-
relations between formulas of Φ. The first part of the formula ICΦ encodes the
completeness of a judgment set, while the second part encodes its consistency
by ruling out explicitly the acceptance of all formulas in each minimally incon-
sistent subset of Φ. We were then able to show that there is a correspondence
between every complete and consistent JA procedure for Φ and every aggregation
procedure that is collectively rational with respect to ICΦ.3

This correspondence can be easily extended to axiomatic properties. It is
sufficient to substitute J for B and the expression “ϕ ∈ J i” for “bi,ϕ = 1”
in the axioms presented in Section 2.2 to obtain their formulation for JA given
in Section 6.1. There is a direct correspondence between the two axioms of
independence, between the axiom of neutrality and that of issue-neutrality (NI)
for binary aggregation, between the axioms of anonymity, and between the two
axioms of monotonicity MI and MN and their counterparts in binary aggregation.
The axiom of unanimity in JA is slightly weaker than its BA version, involving

3The correspondence is not a bijection, as every JA procedure corresponds to several aggre-
gation procedures, depending on how it is extended to cover the full boolean domain D.
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only the acceptance of a formula, but the two formulations are equivalent under
the assumption of weak rationality. The axiom of domain-neutrality (ND) does
not have any correspondent in the literature on JA.

This correspondence entails, for instance, that every JA procedure for Φ that
satisfies systematicity and I-monotonicity corresponds to an aggregation proce-
dure that is collectively rational with respect to ICΦ and that satisfies I, NI and
MI on Mod(ICΦ)N . Using the notation introduced in previous sections, every
procedure in FΦ[AX] corresponds to an aggregation procedure in FICΦ

[AX]. The
restriction to the domain defined by the integrity constraint ICΦ is necessary
since the binary aggregation procedure obtained by the translation can be ex-
tended arbitrarily outside the domain of consistent and complete judgment sets.

6.2.2 From Binary Ballots to Judgments

The formula-based framework for JA that we introduced in Section 6.1 can be
expanded to cover the case of more general logical languages (Dietrich, 2007), and
to the case of external propositional constraints (Dietrich and List, 2008b). This
last case is particularly simple: given an agenda Φ ⊆ LPS and a set of propositional
constraints Ψ ⊆ LPS, a judgment set J ⊆ Φ is said to be Ψ-consistent if it is
consistent with respect to all formulas in Ψ (see Appendix A). The remaining
definitions of Section 6.1 can be adapted by substituting every occurrence of
consistency with Ψ-consistency. The initial JA setting is obtained by considering
an empty set of constraints, or Ψ = {>}.

Utilising these notions we are able to show that this slightly more general
formula-based framework for JA is equivalent to BA with IC. Given a set of issues
I = {1, . . . ,m} and an integrity constraint IC, define an agenda Φ = {p1, . . . , pm}
and a propositional constraint Ψ = {IC}. There is a direct correspondence
between rational binary ballots over I and judgment sets over Φ that are Ψ-
consistent. Therefore, every BA procedure that is CR with respect to IC corre-
sponds to a complete and Ψ-consistent JA procedure for Φ. The correspondence
extends to the level of axioms. We used these observations in our previous work
to provide an alternative proof of Theorem 4.4.8 (Grandi and Endriss, 2011).

6.2.3 Related Work in Judgment Aggregation

Other frameworks have been proposed for the study of judgment aggregation from
a more abstract perspective, and we already discussed some of them in Section 2.4.
In this section, we give a more detailed overview of two such settings, comparing
them with the formula-based framework defined so far.

Dokow and Holzman (2010a) study the aggregation of binary ballots on do-
mains X ⊆ {0, 1}m. Aggregation procedures are defined as functions f : XN →
X , directly including collective rationality in their definition. This framework is
equivalent to formula-based JA, as explained in detail by the authors for both



6.3. Safety of the Agenda 95

truth-functional agendas (i.e., agendas divided into a set of independent premises
and a set of conclusions whose truth values can be inferred from the judgments
on premises) and the general case (Dokow and Holzman, 2009, 2010a).

Nehring and Puppe (2010) propose another approach, based on their previous
work on strategy-proof social choice (Nehring and Puppe, 2007). The authors
consider as domain of aggregation a set X equipped with a set of properties
H ⊆ 2X . Formally, they define a property space (X,H) as a set X and a collection
of subsets H ⊆ 2X such that (i) if H ∈ H then H 6= ∅, (ii) if H ∈ H then also its
complement X \ H ∈ H, (iii) for all x, y ∈ X there exists an H ∈ H such that
x ∈ H but y 6∈ H. There is a natural embedding of X into {0, 1}|H|, listing for
each element the properties that are satisfied by it (marked with a 1) and those
that are not (marked with a 0). This observation is used to show the equivalence
of this setting with that of binary aggregation and with that of formula-based JA
(Nehring and Puppe, 2010, Section 2.1).

All these frameworks for judgment aggregation are equivalent: aggregation
procedures, our main object of study, can be transferred from one setting to the
other, keeping their axiomatic properties unchanged. We can identify the main
difference between these frameworks in the way in which rationality assumptions
are represented: by explicitly providing a set of rational ballots (Dokow and
Holzman, 2010a); by introducing the concept of property space (Nehring and
Puppe, 2007); by referring to the consistency of propositional logic (formula-
based JA); by explicitly using a propositional formula (BA with IC).

From a computational perspective, the last two frameworks of BA with IC and
formula-based JA are the closest to a possible implementation. The main rea-
son supporting this claim is the compactness of the representation of rationality
constraints.4 The framework of BA with IC has moreover the advantage of be-
ing computationally more tractable than the formula-based framework for JA, at
least for what concerns some basic problems. The easiest example is the problem
of checking the rationality of a given binary ballot, which corresponds in JA to
checking the consistency of a given judgment set. While for BA this problem can
be solved with model checking in polynomial time, making it a tractable problem,
in JA it corresponds to checking the satisfiability of a set of formulas, which is
considered intractable (unless P is equal to NP). For a more detailed discussion
of the computational complexity of similar problems in these two frameworks we
refer to Section 7.5.

6.3 Safety of the Agenda

In this section, we introduce the concept of safety of the agenda (SoA): an agenda
is safe for a class of JA procedures, if consistency is guaranteed for every procedure

4See also the observation on page 27, regarding the full expressivity of propositional logic
with respect to characterising sets of ballots.
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in that class. This concept captures a central problem in an application-driven
study of the subject. In this section we characterise safe agendas for a number
of classes of procedures defined axiomatically, and we relate such findings to the
results we obtained in Chapter 4.

6.3.1 Problem Definition

Procedures for judgment aggregation are traditionally studied using the axiomatic
method, and results are often negative. The usual finding is that dictatorships
are the only JA procedures satisfying a number of appealing conditions (see e.g.
List and Pettit, 2002; Pauly and van Hees, 2006; Gärdenfors, 2006; Nehring and
Puppe, 2010; Dokow and Holzman, 2010a). An important set of results in the
literature on JA are possibility theorems, sometimes called “characterisation re-
sults” (Nehring and Puppe, 2007; List and Puppe, 2009): Given some axioms as
desiderata for the aggregation procedure (always including consistency), the aim
of a possibility theorem is to characterise agendas on which such conditions are
satisfiable. Despite their theoretical interest, results of this form are somewhat
less relevant for applications. The reason is that actual users are more likely
to want an assurance that aggregation will be safe (provided certain axioms are
satisfied and the agenda has certain properties) rather than to learn that there
exists a safe form of aggregation (satisfying certain axioms). Moreover, in view of
the stress we have put on the distinction between “logical” and “syntactic” prop-
erties of an aggregation procedure and the collective judgment set it produces,
a thorough study of the consistency of a class of procedures depending on the
agenda is of immediate relevance. We therefore introduce the following concept:

Definition 6.3.1. An agenda Φ is safe with respect to a class of JA procedures
F , if every procedure in F is consistent when applied to judgment sets over Φ.

The example for a discursive dilemma presented in Section 3.2 demonstrates the
unsafety of the agenda {α,¬α, β,¬β, α∧β,¬(α∧β)} with respect to the majority
rule.

6.3.2 Agenda Properties

While possibility theorems address a different issue than the one we are interested
in here, some of the properties of agendas defined in that context are still poten-
tially useful for our purposes (List and Puppe, 2009). One of these is the so-called
median property. Later, we will use this property, and some of its variants, to
characterise agendas that are safe for certain classes of aggregation procedures.
We call an inconsistent set ∆ nontrivially inconsistent if it does not contain any
contradiction (⊥ 6∈ ∆).
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Definition 6.3.2. We say that an agenda Φ satisfies the median property (MP),
if every nontrivially inconsistent subset of Φ has itself an inconsistent subset of
size 2.

The name of this property, introduced by Nehring and Puppe (2007), derives from
a property of the set of all judgment sets J (Φ) viewed as a subset of a particular
vector space. The typical phrasing of this property in the literature is that an
agenda satisfies the median property if all minimally inconsistent subsets of Φ
have size 2. For agendas without tautologies the two formulations are equivalent.
In our case, we have to include an additional check of nontriviality in case there
is a contradictory formula in the agenda. We can generalise the median property
as follows:

Definition 6.3.3. An agenda Φ satisfies the k-median property (kMP) for k > 2,
if every inconsistent subset of Φ has itself an inconsistent subset of size at most k.

Observe that we have dropped the restriction to nontrivially inconsistent sets in
Definition 6.3.3, because for trivially inconsistent sets it is always the case that
there is an inconsistent subset of size at most k (namely one of size 1). The MP
of Definition 6.3.2 and the 2MP are the same property.

Agendas satisfying the MP are already quite simple, but the restriction can
be made tighter by requiring all inconsistent subsets to have a particular form:

Definition 6.3.4. An agenda Φ satisfies the simplified median property (SMP),
if every nontrivially inconsistent subset of Φ has itself an inconsistent subset of
the form {ϕ, ψ} with |= ϕ↔ ¬ψ.

A further simplification yields:

Definition 6.3.5. An agenda Φ satisfies the syntactic simplified median property
(SSMP), if every nontrivially inconsistent subset of Φ has itself an inconsistent
subset of the form {ϕ,¬ϕ}.

Agendas satisfying the SSMP are composed of uncorrelated formulas, i.e., they
are essentially equivalent to agendas composed of atoms alone. The SMP is less
restrictive, allowing for logically equivalent but syntactically different formulas.

Observe that every agenda that satisfies the SMP also satisfies the MP. The
converse is not true: Φ = {p,¬p, p ∧ q,¬(p ∧ q)} satisfies the MP, but not the
SMP. Similarly, every agenda that satisfies the SSMP also satisfies the SMP.
Again, the converse is not true: Φ = {p,¬p, p ∧ p,¬(p ∧ p)} satisfies the SMP,
but not the SSMP.

6.3.3 Linking Agenda Properties and Axioms

We now prove several characterisation results for the safe aggregation of judg-
ments. For several classes of aggregation procedures we will give necessary and



98 Chapter 6. Judgment Aggregation

sufficient conditions for an agenda to be safe on that class, i.e., all aggregation
procedures in that class are consistent when applied to judgment sets over the
agenda. We choose to concentrate on classes of procedures defined by weakening
the axiomatisation of the majority rule (cf. Section 2.3). The first result is famil-
iar from the literature (Nehring and Puppe, 2007), although it is presented there
in a different formulation.

Proposition 6.3.6. If the number of individuals is odd, then an agenda Φ is safe
for the majority rule if and only if Φ satisfies the MP.

This proposition is a direct consequence of a result proved by Nehring and Puppe
(2007) (see Theorem 3 in the survey by List and Puppe (2009) for a formulation in
the framework of JA), which in turn is equivalent to our Theorem 4.4.8. In their
work, Nehring and Puppe show that if the number of individuals is odd, under
the assumption of collective rationality (WR plus consistency), I-monotonicity,
unanimity, systematicity, and anonymity, there exists an aggregation procedure
on agenda Φ if and only if Φ satisfies the median property. The witness they
give as a consistent aggregator is nothing other than the majority rule. Since
Proposition 6.3.6 speaks of a “class” consisting only of a single procedure, namely
the majority rule, the concept of safety of the agenda and the kind of concept
inherent in a possibility theorem coincide and our result is a direct consequence of
theirs. Unfortunately, the same kind of approach cannot be used to adapt other
possibility theorems available in the literature, because the classes of procedures
we consider in the sequel each contain more than just a single procedure.

The following result shows that the SMP is a necessary and sufficient condition
for an agenda to be safe with respect to systematic and anonymous JA procedures.
Recall that an agenda satisfies the SMP if all its inconsistent subsets contain two
formulas of which the first is equivalent to the negation of the second. We show
that this is a necessary and sufficient condition for a systematic and anonymous
JA procedure to output a consistent outcome:

Proposition 6.3.7. An agenda Φ is safe for FΦ[WR,A, S] if and only if Φ sat-
isfies the SMP and does not contain a contradictory formula.5

Proof. (⇐) Suppose that Φ satisfies the SMP and suppose, for the sake of con-
tradiction, that there exists a procedure F ∈ FΦ[WR,A, S] and a profile J such
that F (J) is inconsistent. Note first that F (J) cannot be trivially inconsis-
tent, as we assumed that Φ does not contain a contradictory formula. Therefore,
F (J) contains a minimally inconsistent subset of size 2 of the form {ϕ, ψ} with

5The additional requirement of Φ not containing a contradictory formula may be dropped by
adding the axiom of unanimity U to the statement. To see this, observe that a unanimous JA
procedure cannot accept a contradictory formula, since by individual rationality a contradiction
is rejected by all the individuals. Thus, contradictory formulas do not play any role in the safety
of an agenda when unanimity is assumed.
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|= ϕ↔ ¬ψ. Now, since every individual judgment set is consistent, we have that
ϕ ∈ Ji ⇔ ∼ψ ∈ Ji for all i ∈ N , which implies, by neutrality (which follows
from systematicity), that ϕ ∈ F (J)⇔ ∼ψ ∈ F (J). As we have {ϕ, ψ} ⊆ F (J),
this entails that ∼ψ ∈ F (J), which is a contradiction, since the outcome must
be complement-free.

(⇒) For the other direction, suppose that Φ violates the SMP, i.e., there exists
a nontrivially inconsistent subset that does not contain two formulas one of which
is equivalent to the negation of the other. This set must contain a minimally
inconsistent subset, which we shall call X. In case X has size > 3, we know by
Proposition 6.3.6 that the majority rule will generate a discursive dilemma (since
the MP is violated). Therefore the agenda is not safe on the class FΦ[WR,A,S],
which includes the majority rule. In case X has size 2, then it must be of the form
{ϕ, ψ} with ϕ |= ¬ψ but ¬ψ 6|= ϕ. Consider then the following systematic and
anonymous aggregation procedure for 3 individuals, defined with the notation
used in Proposition 2.3.3, adapted to the JA framework: h(0) = h(1) = 1 and
h(2) = h(3) = 0. That is, Fh accepts a proposition only if it is accepted by 0
or 1 individual. Consider the following profile, restricted to ϕ and ψ and their
complements: J1 = {∼ϕ,∼ψ}, J2 = {ϕ,∼ψ}, J3 = {∼ϕ, ψ}. Note that each
of these sets is consistent. This profile (opportunely extended to a profile on
the whole agenda) will generate an inconsistent outcome, since both ϕ and ψ
are accepted by only one of the individuals. This proves that when the SMP is
violated there always exists a function satisfying WR, S and A that generates an
inconsistent outcome.

With similar arguments we can prove that the SMP also characterises those agen-
das that are safe for the class of anonymous and neutral JA procedures:

Proposition 6.3.8. An agenda Φ is safe for FΦ[WR,A,N] if and only if Φ
satisfies the SMP and does not contain a contradictory formula.6

Proof. To prove this result it is sufficient to observe that the assumption of sys-
tematicity in the first part of the proof of Proposition 6.3.7 can be relaxed to
neutrality, and, since the class of systematic rules is contained in that of neu-
tral rules, the left-to-right direction of Proposition 6.3.7 entails the analogous
direction for Proposition 6.3.8.

We now prove a more restrictive characterisation result for the class of anony-
mous and independent JA procedures, showing that the SSMP is a necessary and
sufficient condition for an agenda to be safe for this class, i.e., an anonymous and
independent JA procedure is guaranteed to output a consistent judgment set if
and only if the agenda is composed of uncorrelated formulas:

6See footnote 5.
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Proposition 6.3.9. An agenda Φ is safe for FΦ[WR,A, I] if and only if Φ sat-
isfies the SSMP and does not contain a contradictory formula.7

Proof. (⇐) Suppose Φ satisfies the SSMP. Let J be a profile such that F (J) is
inconsistent. Since Φ does not include any contradictory formula we can assume
that F (J) is nontrivially inconsistent. The SSMP now tells us that there must
exist a formula ϕ ∈ Φ such that {ϕ,¬ϕ} ⊆ F (J), in contradiction with the
property of being complement-free. (Note that if an agenda does not contain
contradictions and satisfies the SSMP, then any weakly-rational procedure is
consistent.)

(⇒) The fact that Φ does not satisfy the SSMP is equivalent to the existence
of two distinct formulas ϕ and ψ in Φ such that ϕ |= ψ. Consider then the
constant function that accepts ϕ and rejects ψ in every profile: this is clearly a
weakly-rational, independent, and anonymous function, and it generates for every
profile an inconsistent outcome.

Another class of procedures that has not yet been considered is FΦ[A,S,MI], cor-
responding to the uniform quota rules (cf. Corollary 2.3.6, adapted to the JA
framework). Here, a characterisation result of the kind we seek is available in the
literature for certain subclasses of FΦ[A,S,MI], namely uniform quota rules with a
specific bound on the quota (Dietrich and List, 2007a). We state this interesting
result as follows (recall that n is the number of individuals):

Proposition 6.3.10. Let k > 2. An agenda Φ is safe for the class of uniform
quota rules Fq for n individuals satisfying q > n − n

k
(where n is the number of

individuals) if and only if Φ satisfies the kMP.

Proposition 6.3.10 is a reformulation of Corollary 2(a) in the work of Dietrich and
List (2007a), which is in turn equivalent to our Corollary 4.4.11.

6.3.4 Safety of the Agenda in BA with IC

In this section we translate the problem of safety of the agenda into BA with
IC and we show how to obtain new proofs and strengthen some of the results
proved in previous sections by making use of our characterisation results of Chap-
ter 4. This section constitutes a further illustration of our proof method for
(im)possibility results presented in Chapter 5: given an aggregation problem, in
this case the safety of an agenda, translate it into BA with IC and look for clashes
between the axiomatic requirements and collective rationality.

Let us first take a closer look at the integrity constraint associated with a
given agenda Φ. Recall from Section 3.2.1 that ICΦ consists of a first part given
by the completeness requirements pα ∨ p¬α for α ∈ Φ, and a second part made
of formulas of the form ¬

∧
α∈S(pα) for all S ⊆ Φ that are minimally inconsistent

7See footnote 5.
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(mi-sets). Define IC0
Φ to be the conjunction of the literals p> and ¬p⊥ associated

with tautologies and contradictions (i.e., mi-sets of size 1) occurring as conjuncts
of ICΦ. Define IC1

Φ to be the conjunction of pϕ ↔ ¬p¬ϕ for ϕ ∈ Φ, combining the
formulas of completeness with the simplest mi-subsets of size 2. Finally, define
IC2

Φ to be the remaining part of ICΦ (concerning mi-sets of size > 3).
As shown by the following lemma, all agenda properties defined in Section 6.3.2

can be characterised in terms of the syntactic properties of the formula ICΦ as-
sociated with it. Recall from Section 4.2 that L↔ is the language of equivalences.

Lemma 6.3.11. Given an agenda Φ ⊆ LPS:
(i) Φ satisfies the MP if and only if ICΦ ∈ 2-clauses.

(ii) Φ satisfies the kMP if and only if ICΦ ∈ k-clauses.
(iii) Φ satisfies the SMP if and only if IC2

Φ ∈ L↔.
(iv) Φ satisfies the SSMP if and only if IC2

Φ is empty.

Proof. By definition of ICΦ, the biggest clause occurring in it has the same size
of the maximal mi-set included in Φ (if its size is > 2). Therefore, points (i) and
(ii) are direct consequences of our definitions.

We first prove (iv). Recall that an agenda Φ satisfies the SSMP if every mi-
subset of Φ is of the form {α,¬α}. This corresponds to ICΦ being equivalent to
the conjunction of pα↔¬p¬α for all positive α ∈ Φ, and to the conjunction of p>
and ¬p⊥ in case Φ contains tautologies. All these formulas are included in IC1

Φ

and IC0
Φ; therefore the SSMP is characterised by IC2

Φ being empty.
For what concerns the characterisation of the SMP expressed in point (iii),

it is sufficient to recall that this property holds if every mi-subset of Φ is of the
form {α,∼β} for α logically equivalent to β. Equivalences between formulas are
expressed in IC2

Φ using bi-implications. Thus, the SMP corresponds to adding to
IC0

Φ and IC1
Φ a set of positive bi-implications pα↔pβ for any equivalent α and β

in Φ.

Using this lemma we are able to obtain a new proof of some of the safety results
presented in Section 6.3.3, inspired by our new proof method presented in the
introduction. Let us start by giving a new proof of Proposition 6.3.6. We want to
prove that, if the number of individuals is odd, an agenda Φ is safe for the majority
rule if and only if Φ satisfies the MP. By Definition 6.3.1 and the translation of
JA presented in Section 6.2, an agenda Φ is safe with respect to the majority rule
if and only if the majority rule is collectively rational with respect to ICΦ. Our
Theorem 4.4.8 fully characterises the set of integrity constraints that are lifted by
the majority rule as such formulas that are expressible as conjunctions of clauses
of maximal size 2 (i.e., the language of 2-clauses). It is therefore sufficient to use
Lemma 6.3.11 (i) to conclude that this holds if and only if the agenda Φ satisfies
the MP. With similar arguments we can obtain a proof of the safety result for
quota rules proved in Proposition 6.3.10 by referring to our Corollary 4.4.11 for
uniform quota rules and using Lemma 6.3.11 (ii).
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Let us now make one step further, and strengthen our Proposition 6.3.8, mak-
ing use of the same proof method:

Proposition 6.3.12. An agenda Φ is safe for FΦ[WR,N] if and only if Φ satisfies
the SMP and does not contain any contradictory formula.8

Proof. By making use of the translation of JA into binary aggregation we know
that Φ is safe with respect to complete, complement-free and neutral JA pro-
cedures if and only if ICΦ does not generate a paradox with any issue-neutral
procedure for binary aggregation. Let us focus on the structure of ICΦ. The first
part IC0

Φ is empty, since Φ does not contain contradictions. For what concerns
IC1

Φ, it is easy to see that complete and complement-free procedures are char-
acterised by collectively rational procedures with respect to IC1

Φ. Therefore, we
can concentrate on the remaining condition. We know by Theorem 4.2.3 that an
issue-neutral procedure is collectively rational for IC if and only if IC belongs to
L↔. Thus, we can conclude that Φ is safe for the class of neutral an weakly ratio-
nal procedures if and only if IC2

Φ is equivalent to a conjunction of equivalences,
and by (iii) of Lemma 6.3.11, this is equivalent to Φ satisfying the SMP.

Proposition 6.3.9 can also be strengthened, dropping both the anonymity and the
independence assumption, obtaining an interesting characterisation for the axiom
of weak rationality.

Proposition 6.3.13. An agenda Φ is safe for FΦ[WR] if and only if Φ satisfies
the SSMP and does not contain any contradictory formula.9

Proof. As remarked in the previous proof, complete and complement-free JA
procedures are associated with collectively rational procedures with respect to
IC1

Φ. Thus, using this time point (iv) in Lemma 6.3.11, an agenda Φ free from
contradictions is safe with respect to complete and complement-free procedures
if and only if Φ satisfies the SSMP.

6.4 Complexity of Safety of the Agenda

In this section, we establish the complexity of deciding whether an agenda sat-
isfies the median property (or one of its variants), and we use these results to
show that checking the safety of an agenda is Πp

2-complete for several classes of
aggregators, each characterised by a combination of the most important axioms
for JA discussed in the literature.

8See footnote 5.
9See footnote 5.
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6.4.1 Background: Complexity Theory

We shall assume familiarity with the basics of complexity theory up to the notion
of NP-completeness. Helpful introductions include the textbooks by Papadim-
itriou (1994) and Arora and Barak (2009).

We will work with Πp
2(also known as coNPNP or “coNP with an NP oracle”),

a complexity class located at the second level of the polynomial hierarchy. This
is the class of decision problems for which a negative answer can be computed
in polynomial time by a nondeterministic machine that has access to an oracle
for answering queries to SAT (or any other NP-complete problem). To prove a
problem Πp

2-complete, we have to prove both membership in Πp
2 and Πp

2-hardness.
To prove membership, we need to provide an algorithm that, when provided with
a certificate intended to establish a negative answer, can verify the correctness of
that certificate in polynomial time, if we assume that the algorithm has access to
a SAT-oracle.

The main challenge is typically to prove hardness. This can be done by giving
a polynomial-time reduction from a problem that is already known to be Πp

2-
hard to the problem under investigation. For this purpose, we will make use of
quantified boolean formulas (QBFs). While QSAT, the satisfiability problem for
general QBFs, is PSPACE-complete, by imposing suitable syntactic restrictions
we can generate complete problems for any level of the polynomial hierarchy.
Consider a QBF of the following form:

∀x1 · · ·xr∃y1 · · · ys.ϕ(x1, . . . , xr, y1, . . . , ys)

Here ϕ is an arbitrary propositional formula and {x1, . . . , xr}∪{y1, . . . , ys} is the
set of all propositional variables occurring in ϕ (that is, above could be any QBF
for which any existential quantifier occur inside the scope of all universal quanti-
fiers). The problem of checking whether a formula of this form is satisfiable (i.e.,
true), which we shall denote ∀∃SAT, is known to be Πp

2-complete (Stockmeyer,
1976; Arora and Barak, 2009). In the sequel, we shall abbreviate formulas of the
above type by writing ∀x∃y.ϕ(x, y).

6.4.2 Membership

We shall write MP for the problem of deciding whether a given agenda Φ satisfies
the MP, and similarly for the other properties defined in Section 6.3.2.

Lemma 6.4.1. MP, SMP, SSMP, and kMP are all in Πp
2.

Proof. We shall present the proof for kMP, which is intuitively the most difficult
of the four problems. The proofs for the other three problems are very similar.

We need to give an algorithm that decides the correctness of a certificate for
the violation of the kMP in polynomial time, assuming it has access to a SAT-
oracle. For a given agenda Φ (with n = |Φ|), such a certificate is a set ∆ ⊆ Φ
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that (a) needs to be inconsistent and that (b) must not have any inconsistent
subsets of size 6 k. Inconsistency of ∆ can be checked with a single query to the
SAT-oracle. If n′ = |∆|, then there are

∑k
i=1

(
n′

i

)
nonempty subsets of ∆, which

is polynomial in n′ (and thus also in n).10 Hence, the second condition can be
checked by a further polynomial number of queries to the oracle.

6.4.3 Hardness

To help intuition, observe that, similarly to ∀∃SAT, the median property and
its variants ask questions beginning with a universal and ending in an existen-
tial quantification (roughly: “for all subsets . . . there exists a subset . . . ”). To
formally prove Πp

2-hardness, we need to show that, although ∀∃SAT may seem a
more general problem, it can be reduced to our seemingly more specific problems.

We first prove a technical lemma. Let ∀∃SAT2 be the problem of checking
whether a QBF of the following form is true, given that we already know that
(i) ϕ is not a tautology, (ii) ϕ is not a contradiction, and (iii) ϕ is not logically
equivalent to a literal:

∀x∃y.ϕ(x, y) ∧ ∀x∃y.¬ϕ(x, y)

Lemma 6.4.2. ∀∃SAT2 is Πp
2-hard.

Proof. By reduction from ∀∃SAT: Given any QBF of the form ∀x∃y.ϕ(x, y), we
show that checking its satisfiability is equivalent to running ∀∃SAT2 on (ϕ∨a)∧b
with a being universally and b existentially quantified, for two new propositional
variables a and b not occurring in ϕ, i.e., to checking the satisfiability of the
formula

∀x∀a∃y∃b.[(ϕ(x, y) ∨ a) ∧ b] ∧ ∀x∀a∃y∃b.¬[(ϕ(x, y) ∨ a) ∧ b].

First, note that (ϕ ∨ a) ∧ b cannot be a tautology, a contradiction, or equivalent
to a literal, therefore the side constraints specified in the definition of ∀∃SAT2

are satisfied. Notice then that the first conjunct above is true exactly when the
original formula ∀x∃y.ϕ(x, y) is true. This is because b can always be set to true,
and the original formula has to be true whenever a is set to false (a falls under
the scope of a universal quantifier). Therefore, a positive answer to the ∀∃SAT2

instance entails a positive answer to the original ∀∃SAT instance. The other
direction is trivial, for the second of the above conjuncts is always satisfiable (by
making b false).

We are now able to prove Πp
2-hardness for the SSMP:

Lemma 6.4.3. SSMP is Πp
2-hard.

10This figure is not polynomial in k, but note that this does not affect the argument, because
k is a constant.
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Proof. We shall give a reduction from ∀∃SAT2 to SSMP; the claim then follows
from Lemma 6.4.2. Take any instance of ∀∃SAT2, i.e., the question whether
∀x∃y.ϕ(x, y) ∧ ∀x∃y.¬ϕ(x, y) is true for some ϕ with 6|= ϕ, ϕ 6|= ⊥, and 6|= ϕ↔ `
for literals `. Suppose x = 〈x1, . . . , xr〉, and define an agenda as follows:11

Φ = {x1,¬x1, x2,¬x2, . . . , xr,¬xr, (ϕ ∧ >),¬(ϕ ∧ >)}

We now prove that Φ satisfies the SSMP if and only if the answer to our ∀∃SAT2-
question is YES. To see this, consider the following facts. First, as ϕ is neither
a tautology nor a contradiction, any inconsistent subset of Φ must be nontriv-
ially inconsistent. Second, by construction of Φ (consisting largely of literals),
any inconsistent subset of Φ not including a pair of syntactic complements must
include either (ϕ ∧ >) or ¬(ϕ ∧ >), as well as a (complement-free) subset of
{x1,¬x1, . . . , xr,¬xr}. That is, the only way of violating the SSMP is to find
a subset of literals from {x1,¬x1, . . . , xr,¬xr} to make true that forces either
(ϕ ∧ >) or ¬(ϕ ∧ >) to be false. But this is precisely the situation in which our
instance of ∀∃SAT2 requires a negative answer. For the same reason, suppose the
answer to our initial ∀∃SAT2-question is NO. This means that we are able to find
an assignment ρ for the variables in x that makes either ϕ or ¬ϕ unsatisfiable.
Suppose we are in this last case, then we can construct a subset of Φ containing
¬(ϕ∧>), and including a literal xi if this is set true by the assignment ρ, and ¬xi
otherwise. This is an inconsistent subset of Φ, and since ϕ is neither a tautology
nor a contradiction, this falsifies the SSMP.

Proving hardness for the SMP works similarly:

Lemma 6.4.4. SMP is Πp
2-hard.

Proof. The construction used is the same as for the proof of Lemma 6.4.3. The
only additional insight required is the observation that for the special kind of
agenda constructed in that proof, the SMP and the SSMP coincide: By excluding
formulas ϕ that are equivalent to literals, we ensure that the agenda Φ constructed
in the previous proof does not contain equivalent formulas.

Finally, for the MP and the kMP we give proofs using reductions from the SSMP:

Lemma 6.4.5. MP is Πp
2-hard.

Proof. We shall give a polynomial-time reduction from SSMP, a Πp
2-complete

problem by Lemma 6.4.3, to MP.
Let Φ be an agenda on which we want to test the SSMP, and divide the

formulas in Φ into a positive and a negative part: Φ = Φ+ ∪ {¬ϕ | ϕ ∈ Φ+}. Let

11Using (ϕ∧>) rather than ϕ in Φ ensures that the agenda defined does not include doubly-
negated formulas.
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Φ+ = {ϕ1, . . . , ϕm}. Now build the set Φ′+ in the following way: copy all formulas
in Φ+ m times, every time renaming the variables occurring in ϕi, obtaining the
set of formulas ϕji for 1 6 i, j 6 m. For every i, substitute ϕii with ϕii ∨ pi, where
pi is a variable not occurring in any of the ϕji . Finally, add p1, . . . , pm to the
agenda. We obtain the following set:

Φ′+ = {p1, ϕ1
1 ∨ p1, . . . , ϕ1

m,

p2, ϕ2
1, ϕ

2
2 ∨ p2, . . . , ϕ2

m,
...

pm, ϕm1 , . . . , ϕ
m
m ∨ pm}

Define Φ′ = Φ′+ ∪ {¬ϕ | ϕ ∈ Φ′+}. We claim that Φ satisfies the SSMP if and
only if Φ′ satisfies the MP. One direction is easy: if Φ does not satisfy the SSMP,
then there exists a minimally inconsistent subset of size k > 2 not containing
both a formula and its complement. If this subset is X = {ϕi1 , . . . , ϕik}, then the
there exists a subset of Φ′, namely X ′ = {¬pi1 , ϕi1i1 ∨ p

i1 , ϕi1i2 , . . . , ϕ
i1
ik
}, that is a

minimally inconsistent subset of size k + 1 > 3, thereby falsifying the MP.
For the opposite direction, suppose that Φ′ does not satisfy the MP. That is,

there exists a minimally inconsistent subset of size > 3. By construction of Φ′, we
know that such a subset must only contain formulas with the same superscript or
their complements (all other formulas having different variables). If this subset
does not contain any pi or ¬pi, then we can find a copy of it in Φ, which then
violates the SSMP. If instead either pi or ¬pi is contained in this set for some
i, then by minimality also ϕii ∨ pi or its negation must be included. We can
now reason by cases: if both pi and ϕii ∨ pi are in the set, then by dropping
the disjunction we will still get an inconsistent subset, against the assumption of
minimality; ¬pi and ¬(ϕii ∨ pi) cannot be in the set for the same reason; finally,
pi together with the negation of ϕii ∨ pi are already inconsistent. Therefore, we
can conclude that all minimally inconsistent subsets that can be built from Φ′

are of the form {¬pi, ϕii ∨ pi, (¬)ϕi
j
}, where ϕi

j
is a vector of formulas with the

same superscript and the prefix (¬) is intended to indicate that any number of
formulas in that vector can be negated. It is now easy to see that {ϕi, (¬)ϕ

j
} is

a minimally inconsistent subset of Φ that falsifies the SSMP.

A similar construction can be done to prove the following:

Lemma 6.4.6. kMP is Πp
2-hard for every k > 2.

Proof. As for the previous lemma, we build a reduction from SSMP to kMP
by devising a suitable agenda. Let therefore Φ be an agenda on which we
want to test the SSMP, and let Φ+ = {ϕ1, . . . , ϕm} be the positive formulas
in Φ. As in the previous proof, construct Φ′+ by copying all formulas in Φ+

m times, and substituting for every i the formula ϕii with ϕii ∨ pi. Instead of
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adding p1, . . . , pm to the new agenda, we add a chain of length k − 1 of the form
{pik−1, p

i
k−1 → pik−2, . . . , p

i
2 → ¬pi1} for every i. Define Φ′ = Φ′+ ∪ {¬ϕ | ϕ ∈ Φ′+}.

We claim that Φ satisfies the SSMP if and only if Φ′ satisfies the kMP. Again, one
direction is easy: if Φ does not satisfy the SSMP, then there exists a minimally
inconsistent subset of size k > 2 not containing both a formula and its comple-
ment. If this subset is X = {ϕi1 , . . . , ϕil}, then construct the following subset
X ′ = {pi1k−1, p

i1
k−1 → pi1k−2, . . . , p

i1
2 → ¬pi11 , ϕi1i1 ∨ p

i1 , ϕi1i2 , . . . , ϕ
i1
il
}. This subset has

size k−1+ l > k+1 and it is minimally inconsistent. To prove minimality, notice
that if we leave out any of the formulas belonging to the chain then by minimality
of X there exists an assignment that makes pi1 true as well as all formulas in X
other than ϕi1i1 . Therefore Φ′ fails the kMP.

Now for the opposite direction. Suppose that Φ′ does not satisfy the kMP.
That is, there exists a minimally inconsistent subset of size > k + 1. By con-
struction of Φ′, we know that such a subset must only contain formulas with the
same superscript or their complements. As in the previous proof, we can reason
by cases to conclude that either this subset does not contain any pi or ¬pi, in
which case we can find a copy of it in Φ, or it is of the form X ′ = {pik−1, p

i
k−1 →

pik−2, . . . , p
i
2 → ¬pi1, ϕii ∨ pi, (¬)ϕi

j
}, since including any partial chain of implica-

tions would contradict minimality. As in the previous proof, we can now use the
set {ϕi, (¬)ϕ

j
} to prove that Φ falsifies the SSMP.

6.4.4 Summary of Complexity Results

We have shown that deciding whether a given agenda Φ satisfies the MP, the SMP,
the SSMP, or the kMP is both in Πp

2 and Πp
2-hard. Furthermore, in Section 6.3.3

we have linked these properties to the safety of Φ for various combinations of
axioms. As an immediate corollary to all of these results, we obtain our theorem
concerning the complexity of SoA:

Theorem 6.4.7. Checking the safety of an agenda is Πp
2-complete for any of

these classes of aggregation procedures:
(i) the majority rule, corresponding to FΦ[WR,A, S,MI];

(ii) systematic rules: FΦ[WR,A, S];
(iii) neutral rules: FΦ[WR,A,N] and FΦ[WR,N];
(iv) independent rules: FΦ[WR,A, I];
(v) weakly rational rules: FΦ[WR]

(vi) for any k > 2, the class of uniform quota rules Fm with m > n− n
k

, where
n is the number of individuals.

Proof. We first prove Πp
2-hardness. (i) is a direct consequence of Proposition 6.3.6

and Lemma 6.4.5. In the same way (ii) is derived from Proposition 6.3.7 and
Lemma 6.4.4, (iii) from Proposition 6.3.8, Corollary 6.3.12 and Lemma 6.4.4, and
(iv) and (v) from Proposition 6.3.9, Corollary 6.3.13 and Lemma 6.4.3. Finally,
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(vi) follows from Proposition 6.3.10 together with Lemma 6.4.6. Membership in
Πp

2 follows from Lemma 6.4.1 in all six cases.

6.5 Conclusions

In this chapter, we have given precise definitions for the formula-based framework
for JA and we have given a thorough account of the new problem of safety of the
agenda. We have shown how JA and its axiomatic properties can be embedded
into BA with IC and, vice versa, how BA with IC can be interpreted in a slightly
more general framework of JA which allows for integrity constraints (Dietrich
and List, 2008a). We then focused on the problem of safety of the agenda. Un-
like classical (im)possibility theorems, the problem at hand is how to guarantee
that the collective judgment will be consistent, given some axiomatic properties
enforced on aggregation procedures. These results share many similarities with
our lifting results of Chapter 4, and we investigated this correspondence in detail.
The new proof method that we outlined in Chapter 5 has proven useful also in this
case, proving it a truly general approach for the understanding of impossibilities
in aggregation theory. Finally, we showed how the formula-based framework can
be used to study the computational complexity of JA. In this particular case, we
have proven that the problem of checking the safety of an agenda is Πp

2-complete
for all the classes of JA procedures we considered.

JA has recently received considerable attention in Artificial Intelligence, es-
pecially from the research community of Multiagent Systems and Computational
Social Choice (Klamler and Eckert, 2008; Grossi, 2009; Endriss et al., 2010a,b;
Nehama, 2010; Lang et al., 2011; Slavkovik and Jamroga, 2012; Slavkovik, 2012).
The reason for this trend is clear: in a multiagent system, autonomous agents
may have different opinions on the same issues (maybe due to a difference in
access to the relevant information, or due to different reasoning capabilities), and
some joint course of action needs to be extracted from these diverse views. JA has
the potential to provide a formal basis for this kind of collective decision making
in multiagent systems. Moreover, JA shares strong links with the framework of
abstract argumentation theory (Dung, 1995; Caminada and Pigozzi, 2011), an
important research topic in Artificial Intelligence. One of the most important
contributions of this chapter is that of providing precise and operational defini-
tions of the formula-based framework for JA that can prepare the ground for a
possible implementation. Our complexity results are also pointing in this direc-
tion, being one of the first studies of computational complexity in JA (the only
other publications to date being the papers by Baumeister et al., 2011; Slavkovik
and Jamroga, 2011).

JA has played an important role in several areas of philosophy, such as deliber-
ative democracy (Dryzek and List, 2003), epistemic democracy (List and Goodin,
2001; Dietrich, 2010), and group agency (List and Pettit, 2011; Dietrich and List,
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2010). BA with IC constitutes an equivalent framework in which the conditions
behind the impossibilities are more explicit. Understanding the consequences of
some of our findings (e.g., the interpretation in the debate on group agency of
our Theorem 4.2.8, stating the necessity of a generalised dictatorship in order to
ensure collective rationality with respect to all integrity constraints) constitutes
an exciting direction for future research.





Chapter 7

Collectively Rational Procedures

In this chapter we concentrate on procedures that are especially designed to be
collectively rational. In Section 7.1 we extend the basic definition of aggrega-
tion procedures to allow for ties in the outcome, and we adapt classical axioms
to this case. We introduce the two problems that we shall use to analyse the
computational complexity of aggregation procedures. The first problem (winner
determination) formalises how difficult it is to compute the collective ballot on a
given profile. The second problem is that of strategic manipulation, i.e., deciding
whether individuals have incentives to report their truthful judgment or whether
they can gain by voting strategically. Since the seminal work of Bartholdi et al.
(1989a,b) and Bartholdi and Orlin (1991), both problems are widely employed in
the analysis of voting rules (Faliszewski et al., 2009). While a “good” procedure
should be easy to use (i.e., winner determination should be performed in polyno-
mial time), it has been argued in the literature that hardness results concerning
the problem of strategic manipulation may constitute a sufficient shield against
its practical occurrence.1

In Sections 7.2, 7.3 and 7.4 we introduce three aggregation procedures: the
average voter rule, the premise-based procedure and the distance-based procedure.
For each of these rules we investigate both axiomatic properties and the compu-
tational complexity of the problems of winner determination and strategic ma-
nipulation. We prove that the first rule is both easy (polynomial) to use and to
manipulate, that the second is hard (NP-complete) to manipulate, while for the
last one the problem of winner determination is already very hard (Θp

2-complete).
We conclude in Section 7.5 by comparing the computational complexity of us-
ing the framework of judgment aggregation (JA) and the framework of binary
aggregation with integrity constraints (BA with IC).

1This opinion has been criticized in several papers, since it is based on a worst-case analysis
of the problem (see, e.g., Faliszewski and Procaccia, 2010; Walsh, 2011a).
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7.1 Basic Definitions

Throughout this dissertation we did not allow aggregation procedures to output
ties in the collective outcome, be it for binary ballots, judgment sets or prefer-
ences (cf. Sections 2.1, 6.1, 5.1). However, in many practical cases this problem
is hardly avoidable, and it is usually solved by introducing suitable tie-breaking
rules. In this section, we provide a definition for irresolute aggregation proce-
dures, i.e., rules that output a subset of collective outcomes, and we adapt the
axiomatic properties introduced in Section 2.2 to this more general setting. We
then define two classical problems that are central to the computational analysis
of aggregation procedures. The first problem of winner determination asks how
difficult it is to compute the winner of a given profile (a winner, in case of irres-
olute procedures). The second problem is that of strategic manipulation. In the
context of voting, a player is said to be able to manipulate a voting rule when
there exists a situation in which voting in a manner that does not truthfully re-
flect her preferences will result in an outcome that she prefers to the outcome that
would be realised if she were to vote truthfully (Gaertner, 2006). What would
constitute an appropriate definition of manipulation in the context of JA or BA
with IC is not immediately clear, because in these frameworks there is no notion
of preference. However, by designing a suitable notion of “closeness” on binary
ballots or judgment sets, it is possible to build a preference ordering starting
from the initial ballot or judgment set that an individual submitted. This is the
approach followed by Dietrich and List (2007c) for judgment aggregation, and by
Everaere et al. (2007) in the related setting of belief merging.

Here, we follow Dietrich and List (2007c) and assume that a player’s individual
judgment or ballot is also her most preferred outcome and amongst any two
outcomes she will prefer the one that is “closer” to that most preferred outcome.
We will measure “closeness” using the Hamming distance and we will call an
aggregation procedure F manipulable if it permits a situation where an agent can
change the outcome to get closer to her truthful judgment or ballot by reporting
untruthfully.

7.1.1 Axioms for Irresolute Aggregation Procedures

Given a set of issues I and a set of individuals N , an irresolute aggregation
procedure is a function F : DN → 2D, associating a subset of D with every profile
of binary ballots in D = {0, 1}I . The case of resolute aggregation procedures (i.e.,
Definition 2.1.1) can be viewed as the special case of irresolute procedures that
output a set of size one for every profile.

Classical axiomatic properties (cf. Section 2.2) can be adapted to the case of
irresolute aggregation procedures. Some axioms, like that of anonymity, do not
need major changes in an irresolute framework, unlike those of unanimity and
independence for which we provide novel versions.
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Since most of the axiomatic properties we considered come in the form of
implications, norming the behaviour of an aggregation procedure in case certain
conditions occur, there are two natural ways to generalise classical axiomatic
properties to deal with sets of possible outcomes. Starting from the same premises
as the resolute version of an axiom, the first natural generalisation is to require all
ballots in the winning set to comply with the conclusion of the resolute version of
the axiom. Instead, the second possibility consists in requiring the existence of a
winning ballot satisfying the conclusion of the resolute version of the axiom. We
refer to the two versions as the “strong” and “weak” version of an axiom, even
though for some properties (e.g., independence and monotonicity) the strong
version does not actually imply the weak one.

In the list that follows, we will mainly choose the existential, i.e., weak, gen-
eralisation of resolute axioms, except for the axiom of unanimity for which we
find the universal version more appealing. Lang et al. (2011) discuss both gener-
alisations of some of the axioms that follow, for irresolute JA procedures. Recall
that X indicates a subset of DN .

Anonymity? (A?): For any profile B ∈ X and any permutation σ : N → N ,
we have that F (B1, . . . , Bn) = F (Bσ(1), . . . , Bσ(n)).

Strong Unanimity? (U?): For any profile B ∈ X and any x ∈ {0, 1}, if bi,j = x
for all i ∈ N , then bj = x for all B ∈ F (B).

Weak Independence? (I?): For any issue j ∈ I, x ∈ {0, 1} and profiles
B,B′ ∈ X , if bi,j = b′i,j for all i ∈ N , then there exists a B ∈ F (B) such
that bj = x iff there exists B′ ∈ F (B′) such that b′j = x.

Since all procedures we consider in this chapter will not satisfy the property of
independence, we want to provide a formulation of monotonicity which, despite
being considerably weaker than the natural adaptation of MI for irresolute pro-
cedures, can be satisfied by non-independent procedures. Consider therefore the
following notion: if there exists a ballot B in the collective outcome such that
bj = 1 and we increase acceptance for issue j while keeping individual judgments
about all other issues fixed, then there still exists a winning ballot B′ such that
b′j = 1. Note that in the presence of an integrity constraint, increasing acceptance
of an issue keeping everything else fixed is not always possible, therefore the ap-
plicability of this property is quite limited. This requirement can be formalised
in the following axiom:

Weak Monotonicity? (M?): For any j ∈ I and profile B ∈ X , if F (B)
contains a ballot B such that bj = 1 and B′ is obtained from B by increasing
acceptance of issue j keeping everything else fixed, then there also exists a
ballot B′ in F (B′) such that b′j = 1.2

2A similar property is presented in the context of judgment aggregation by Lang et al. (2011),
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Similar definitions can be devised for the framework of JA. An irresolute JA pro-
cedure is a function that associates with every profile of complete and consistent
judgment sets over an agenda Φ a set of judgment sets over Φ. Axiomatic proper-
ties can be obtained from those we have previously listed for binary aggregation,
using the translation between the two frameworks developed in Section 6.2. We
state the axiom of unanimity as an example, the others being easily derived in a
similar fashion:

Strong Unanimity? (U?): For any profile J ∈ J (Φ) and formula ϕ ∈ Φ, if
ϕ ∈ Ji for all i ∈ N , then ϕ ∈ J for all J ∈ F (J).

7.1.2 Winner Determination

The problem of winner determination in voting theory is that of deciding, given
a profile and a candidate, whether the given candidate is one of the election
winners. In our setting, binary issues take the role of candidates. The question
that winner determination poses for resolute aggregation procedures is therefore
whether a given issue is accepted by the collective outcome:

WinDet(F )
Instance: Integrity constraint IC, profile B ∈ Mod(IC)N , issue j ∈ I.
Question: Is it the case that F (B)j = 1?

By solving WinDet once for each issue in I, we can compute the collective
outcome from an input profile. Note that asking instead whether a given ballot
B? is equal to F (B) does not lead to an appropriate formulation of the winner
determination problem, because for actually computing the winner we would then
have to solve our decision problem an exponential number of times (one for each
possible B?).

For irresolute aggregation procedures, we need to resort to partial binary
ballots to obtain the following formulation:

WinDet?(F )
Instance: Integrity constraint IC, profile B ∈ Mod(IC)N ,

subset I ⊆ I, partial ballot ρ : I → {0, 1}.
Question: Is there a B? ∈ F (B) with B?

j = ρ(j) for all j ∈ I?

To see that this is an appropriate formulation for a decision problem correspond-
ing to the task of computing some winning set, note that we can compute a
winner using a polynomial number of queries to WinDet? as follows. First, ask
whether there exists a winning set that accepts a given issue j1 ∈ I. In case the

under the name of insensitivity to reinforcement of collective judgments. Our property is the
existential version of it, for we do not require issue j to be accepted by all outcome ballots but
rather by at least one of the collective outcomes.
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answer is positive, consider a second issue j2 and query the problem with a partial
ballot ρ accepting both issues in I = {j1, j2}. In case of negative answer, use a
different ρ which rejects the first issue and accepts the second one. Continue this
process until all issues in I have been covered.3

The same formulation applies to resolute JA procedures, this time considering
a formula in the agenda rather than a binary issue:

WinDet(F )
Instance: Agenda Φ, profile J ∈ J (Φ)N , formula ϕ ∈ Φ.
Question: Is ϕ an element of F (J)?

For the case of irresolute JA procedures we can adapt the winner determination
problem by using subsets of the agenda in place of partial ballots:

WinDet?(F )
Instance: Agenda Φ, profile J ∈ J(Φ)N , subset L ⊆ Φ.
Question: Is there a J? ∈ F (J) with L ⊆ J ??

7.1.3 Strategic Manipulation

In this section, we define a notion of manipulation for aggregation procedures that
is inspired by a more general definition proposed by Dietrich and List (2007c) in
the context of judgment aggregation. Their definition is based on the idea that we
can induce a preference relation over judgment sets by assuming that an agent’s
true judgment set J is her most preferred outcome, and between any two outcomes
the one that is “closer” to J is preferred. One of the most appealing choices for
such a notion of “closeness” is the Hamming distance, which we now define for
the case of binary ballots:

Definition 7.1.1 (Hamming distance). Given two binary ballots B and B′ in D,
the Hamming distance H(B,B′) between B and B′ is the number of issues on
which they differ: H(B,B′) =

∑
j∈I |bj − b′j|.

That is, H(B,B′) is an integer between 0 (complete agreement) and |I| (com-
plete disagreement). For example, if I = {j1, j2, j3}, then the Hamming distance
between B = (1, 1, 1) and B′ = (0, 1, 0) is H(B,B′) = 2. Intuitively, if Bi is the
true ballot of agent i, then i “prefers” B over B′ if H(Bi, B) < H(Bi, B

′).
An aggregation procedure F is said to be manipulable at a given profile B, if

there exists an alternative ballot B′i ∈ Mod(IC) for some agent i ∈ N such that
H(Bi, F (B′i,B−i)) < H(Bi, F (B)), where B−i is the partial profile obtained by
removing Bi from B. That is, by reporting B′i rather than her truthful ballot

3In accordance with recent work by Hemaspaandra et al. (2012), we can argue that our
formulation of WinDet is the correct decision problem associated with the search problem of
actually computing a winning binary ballot.
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Bi, agent i can achieve the outcome F (B′i,B−i) and that outcome is closer (in
terms of the Hamming distance) to her truthful (and most preferred) set Bi than
the outcome F (B) that would get realised if she were to truthfully report Bi. A
procedure that is not manipulable at any profile is called strategy-proof.

To study the computational complexity of strategic manipulation of a (reso-
lute) aggregation procedure F , we formulate manipulation as a decision problem:

Manip(F )
Instance: Integrity constraint IC, profile B ∈ Mod(IC)N , agent i ∈ N .
Question: Is there a ballot B′i ∈ Mod(IC) such that

H(Bi, F (B′i,B−i)) < H(Bi, F (Bi,B−i))?

Notice that, differently from the previous question of winner determination, we
are now asking whether an agent can manipulate successfully, rather than how.
Therefore, this problem does not correspond to the practical (and harder) problem
of computing an actual strategy for the manipulator. However, since we are only
interested in studying hardness results for manipulation (see also the discussion
at the beginning of the chapter), we can safely concentrate on this formulation,
which provides a lower bound for the corresponding search problem.

The case of irresolute procedures is more complicated to address, since it would
require a comparison between two different sets of winning ballots. The problem
of extending preferences from alternatives to sets of alternatives is the subject of
a wide literature in Social Choice Theory (Barberà et al., 2004). Given the high
degree of arbitrariness already introduced in defining preferences from ballots,
we will now reduce the case of irresolute procedures to the well-defined one for
resolute procedures. Therefore, we introduce a given (polynomially computable)
tie-breaking rule t and we study, for a given irresolute aggregation procedure F ,
the associated problem Manip(F t) where F t is the composition of F with the
given tie breaking rule t.

The same definitions can be adapted to the framework of judgment aggrega-
tion. First, let us give a definition of the Hamming distance for judgment sets.
Given a judgment set J , we write J(ϕ) = 1 if ϕ ∈ J and J(ϕ) = 0 if ϕ 6∈ J . Let
Φ+ be the set of all positive formulas in Φ.

Definition 7.1.2 (Hamming distance). Given an agenda Φ and two complete
and complement-free judgment sets J, J ′ ∈ 2Φ, the Hamming distanceH(J, J ′) be-
tween J and J ′ is the number of positive formulas on which they differ: H(J, J ′) =∑

ϕ∈Φ+ |J(ϕ)− J ′(ϕ)|.

That is, H(J, J ′) is an integer between 0 (complete agreement) and |Φ|
2

(complete
disagreement). For example, if the agenda is Φ = {p,¬p, q,¬q, p∧q,¬(p∧q)}, then
the Hamming distance between J = {¬p, q,¬(p ∧ q)} and J ′ = {p,¬q,¬(p ∧ q)}
is H(J, J ′) = 2. Distances other than H can be employed, and recent work in
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judgment aggregation has focused on developing notions of distance specifically
devised for judgment sets (Duddy and Piggins, 2012).

The problem of manipulability for resolute JA procedures can therefore be
stated as follows (the case of irresolute JA procedures is dealt with by considering
the composition of F with a given tie-breaking rule t):

Manip(F )
Instance: Agenda Φ, profile J ∈ J (Φ)N , agent i ∈ N .
Question: Is there a J ′i ∈ J (Φ) s.t. H(Ji, F (J ′i ,J−i)) < H(Ji, F (Ji,J−i))?

7.2 The Average Voter Rule

As we argued in Chapter 4, the best aggregation procedures from the point of
view of collective rationality are those belonging to the class of generalised dicta-
torships (Definition 4.2.7). Such procedures copy the ballot of a possibly different
individual in every profile, and are thus collectively rational with respect to ev-
ery integrity constraint. Despite including standard dictatorships, which copy
the ballot of the same individual in all profiles, this class also contains interest-
ing novel procedures, that can be obtained by selecting the most representative
ballots among those submitted by the individuals.4

This section provides the definition of an irresolute generalised dictatorship
that associates with every profile of binary ballots the set of those individual
ballots that minimise the sum of disagreements with the remaining individuals
in the profile. We call this aggregation procedure the average voter rule (AVR).
The AVR satisfies good axiomatic properties, and we analyse its computational
complexity, showing that both problems WinDet and Manip can be solved in
polynomial time.

7.2.1 Definition of the Procedure

The average voter rule is defined as follows:5

Definition 7.2.1. The average voter rule (AVR) chooses those individual ballots
that minimise the sum of the Hamming distance to all other individual ballots:

AVR(B) = argmin
{Bi|i∈N}

∑
s∈N

H(Bi, Bs),

4An example of one such rule is found in a science-fiction story by Isaac Asimov entitled
“Franchise”. In this story, an electronic democracy has been established in the United States,
and an enormous computer called “MULTIVAC” is in charge to select a single person as “voter
of the year”, who would determine the result of the election by answering to a set of questions.

5This rule was introduced in our previous work under the name of distance-based generalised
dictatorship (Grandi and Endriss, 2011).
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Recall that the Hamming distance H has been defined in Definition 7.1.1. The
AVR is an irresolute aggregation procedure based on minimisation and it draws in-
spiration from well-known distance-based rules (Miller and Osherson, 2009; Lang
et al., 2011). However, to the best of our knowledge this rule has never been
defined in the literature on aggregation theory. The crucial difference between
the AVR and standard distance-based procedures is that the outcome will always
be a set of ballots proposed by the individuals.

7.2.2 Axiomatic Properties

We now turn to the analysis of the axiomatic properties of the AVR. We begin
by investigating the validity of those axioms for irresolute procedures which were
presented in Section 7.1.1:

Proposition 7.2.2. The AVR satisfies U?, A? and M?, and it does not satisfy I?.

Proof. The AVR is clearly anonymous and, as the outcome is composed of individ-
ual ballots, it is also unanimous. To see that the AVR satisfies the monotonicity
condition M?, assume that Bi is the ballot of one of the average voters in profile
B and that bij = 1, i.e., issue j is accepted. If we now increase acceptance of j by
modifying other individual ballots, then the Hamming distance of Bi from other
individual ballots decreases, hence leaving Bi in the collective outcome.

To see that the independence condition I? does not hold, consider the profile
in Table 7.1.

j1 j2 j3 j4 j5

B1 1 1 0 1 1
B2 0 1 1 0 1
B3 1 0 1 1 0

Maj 1 1 1 1 1

AVR 1 1 0 1 1

Table 7.1: Majority differs from AVR

According to the AVR, the first individual ballot is selected as the group outcome:
The first ballot differs on three issues from each of the remaining two ballots,
having a sum of the Hamming distances of 6. The last two ballots differ on 4
issues from each other, having a total distance of 7. The first ballot is therefore
selected by minimisation. If we call B the profile described in Table 7.1, then
we have that AVR(B)j3 = 0. We now construct a different profile B′ such that
AVR(B′)j3 = 1, while keeping the individual judgments about the same issue j3

fixed, contradicting the axiom of independence I?.
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Let therefore B′ be obtained from B by changing the third individual ballot to
B′3 = (1, 1, 1, 1, 1). We have that H(B1, B2) = 3, H(B1, B

′
3) = 1 and H(B2, B

′
3) =

2. The third ballot B′3 has now the lowest total Hamming distance with a value
of 3, and is the only ballot that gets selected. This contradicts independence I?,
as there is no ballot in the outcome for B′ which rejects the third issue j3.

The AVR, if composed with a suitable tie-breaking rule, satisfies other axiomatic
properties for resolute aggregation procedures:

Proposition 7.2.3. The AVR satisfies U, NI and ND for any choice of tie-
breaking rule.

Proof. Since the AVR is a generalised dictatorship for any choice of tie-breaking
rule, it lifts all integrity constraints in LPS. In particular, it lifts the languages
of literals, of equivalences and the XOR language LXOR. Therefore, by our char-
acterisation results in Theorems 4.2.1, 4.2.3 and 4.2.4, the AVR belongs to the
class F[U,NI ,ND].

Let us move our analysis to the relation between the AVR and the majority rule.
Independence is only satisfied by the latter, and even if they share many axiomatic
properties, the AVR does not coincide with the majority rule. This can be seen
by considering the profile in Table 7.1, in which the outcome of the majority rule
is different from all individual ballots.

Despite such differences, it can be observed that if the outcome of the majority
rule in a given profile coincides with one of the individual ballots composing such a
profile, then the outcome of the AVR coincides with that of the majority rule. To
see this, call the outcome of the majority BMaj , and assume that BMaj coincides
with one of the individual ballots. Each other ballot that differs in at least one
issue with BMaj would differ with a number of individuals that is strictly larger
than the majority. Therefore, the individual ballots coinciding with BMaj has
the best score for the AVR. This observation suggests another possibility for the
definition of generalised dictatorships based on minimisation, and in Section 7.2.5
we define another rule which selects those ballots that minimise the distance from
the outcome of the majority rule.

7.2.3 Winner Determination

Winner determination is a tractable problem for the AVR:

Proposition 7.2.4. WinDet?(AVR) is in P.

Proof. Given a profile B and a partial ballot ρ : I → {0, 1}, the problem of winner
determination asks whether there exists a winning ballot B? which extends ρ.
Computing the Hamming distance between two binary ballots B and B′ can be
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done in polynomial time, thus the score of an individual ballot
∑

s∈N H(Bi, Bs)
can also be obtained in a polynomial number of steps. To obtain a polynomial
algorithm for the problem of winner determination, it is therefore sufficient to
compute the score of each individual ballot in B, and then check whether there
exists a Bi with minimal score (i.e., a winner) which extends ρ.

7.2.4 Manipulation

Unfortunately, manipulating the average voting rule is also a tractable problem:

Theorem 7.2.5. Manip(AVRt) is in P.

Proof. Recall the definition of Manip. Let B−i be a partial profile, Bi the
truthful ballot of individual i and IC the integrity constraint. We now present
a polynomial algorithm to decide whether individual i can gain by reporting
untruthfully. Let us first make some assumptions. Suppose that tie-breaking is
done alphabetically, i.e., in case of tie Bj wins against Bk if and only if j < k.
Assume moreover that the winner is the first ballot, i.e., AVRt(B) = B1, and that
the individual contemplating manipulation is the n-th individual, where n = |N |.

There are two possible strategies for the manipulator. She can either try to
change the outcome of the aggregation in favour of another individual, or attempt
to win the election herself. In the first case, the best strategy for the manipulator
is to copy the ballot of one of the other individuals, and then check whether
this results in a better outcome. This can be done in polynomial time: it is
sufficient to compute H(Bn,AVRt(B−n, Bj)) for j 6= n, 1 and then confront it
with H(Bn, B1). If for some j the former figure yields smaller number than the
latter, then manipulation is possible and the outcome should be YES.

In case the first strategy does not succeed, i.e., either none of the individual
ballots can be obtained as an outcome of a manipulated profile, or none of the
resulting outcomes is preferred to the truthful winner B1, then the manipulator’s
only strategy is to submit a ballot that (a) will be selected as the winner by the
AVRt and (b) is preferred by the manipulator to the truthful winner B1. We now
devise a greedy algorithm to find such a ballot.

Let wj =
∑

i<n |bij − bnj|, be the total disagreement on issue j from n’s
truthful ballot Bn, and assume that H(B1, Bn) = K. Starting from the issue
with the lowest wj > 0, swap one issue at a time in Bn to construct ballot B′n.
At every step, compute the outcome of the aggregation of the new profile. If
AVRt(B−n, B

′
n) = B′n then there is a manipulation strategy, and thus output

YES, otherwise repeat this step swapping the issue with lowest wj among the
remaining ones. Continue for K − 1 steps, and if none of the K − 1 ballots
succeeded in manipulation then output NO.

This greedy algorithm requires an iteration of K polynomial steps, where
K 6 |I|. Thus, the problem of manipulation of the AVR with tie-breaking can
be solved in polynomial time.
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Note that the first part of the algorithm, in which the manipulator’s effort is
to favour one of the other individual ballots, is not necessary since all possible
strategies of manipulation will anyway be considered in the second part of the
algorithm. The proof of correctness is straightforward.

Observe that the proof of Theorem 7.2.5 provides an algorithm that also solves the
search problem associated to Manip in polynomial time. Thus, despite being easy
to use and enjoying interesting axiomatic properties, the AVR has the drawback
of also being easy to manipulate.

7.2.5 The Majority Voter Rule

Minimising the disagreement between individual ballots is not the only possibility
of defining meaningful generalised dictatorships. Another rule can be obtained
by using the outcome of the majority rule as point of reference, and choose those
individual ballots that minimise the amount of disagreements with the outcome
of the majority rule:6

Definition 7.2.6. The majority voter rule (MVR) chooses those individual bal-
lots that minimise the Hamming distance to the outcome of the majority rule:

MVR(B) = argmin
{Bi|i∈N}

H(Bi,Maj (B))

Despite having a similar definition, the AVR and the MVR do not coincide, as
can be shown by considering the profile in Table 7.2.

j1 j2 j3 j4 j5

B1 1 1 0 0 0
B2 0 1 1 0 0
B3 1 0 0 1 0
B4 0 0 1 1 0
B5 0 0 0 0 1

Maj 0 0 0 0 0
MVR 0 0 0 0 1

Table 7.2: The AVR differs from the MVR.

In this example, the majority rule yields the outcome (0, 0, 0, 0, 0). The MVR
chooses the individual ballot which minimises the Hamming distance from the
outcome of the majority rule, therefore MVR(B) = B5. Instead, the AVR chooses

6This definition is inspired by the Endpoint rule introduced by Miller and Osherson (2009),
which however is not restricted to choosing the winners in the set of individual ballots.
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as winners any of the first 4 individual ballots. To see this, observe that the
Hamming distance of B5 from all other ballots is 3, thus the total score of B5 is
12, and each of the remaining ballots has a score of 11.

The MVR therefore constitutes another interesting rule that can be created
by combining the definition of a distance-based aggregation rule with the notion
of generalised dictatorship. Similar definitions can also be given in the framework
of judgment aggregation, adding new definitions to the wide variety of rules based
on distances that have been introduced in the literature (Pigozzi, 2006; Miller and
Osherson, 2009; Lang et al., 2011). In addition to solving the problem of con-
sistency by being collectively rational for every integrity constraints, generalised
dictatorships also satisfy a strong notion of compatibility (Grandi and Pigozzi,
2012), avoiding situations in which the outcome was not voted for by any of the
individuals (i.e., they avoid multiple election paradoxes, cf. Section 3.5).

7.3 The Premise-Based Procedure

In this section we move to the realm of JA, presenting one of the first rules that
was devised to guarantee consistent aggregation of judgments. There are two
basic types of JA procedures that (can be set up so as to) produce consistent
outcomes that have been discussed in the JA literature from its very beginnings,
namely the premise-based and the conclusion-based procedure (Kornhauser and
Sager, 1993; Dietrich and Mongin, 2010). The basic idea is to divide the agenda
into premises and conclusions. In the premise-based procedure, we apply the ma-
jority rule to the premises and then infer which conclusions to accept given the
collective judgments regarding the premises;7 under the conclusion-based proce-
dure we directly ask the agents for their judgments on the conclusions and leave
the premises unspecified in the collective judgment set. That is, the conclusion-
based procedure does not result in complete outcomes, which is why we shall not
consider it any further here. The premise-based procedure, on the other hand,
can be set up in a way that guarantees consistent and complete outcomes, which
provides a usable procedure of some practical interest.

In this section, we first formally introduce the precise variant of the premise-
based procedure we shall analyse. We then study the complexity of the winner
determination and manipulation problems for this procedure. We end this section
by discussing an analogous definition of the premise based procedure in binary
aggregation. For ease of exposition, throughout this section we shall assume that
the number of agents n is odd.

7This is what is commonly understood by “premise-based procedure”. Dietrich and Mongin
(2010), who call this rule premise-based majority voting, have also investigated a more general
class of premise-based procedures in which the procedure used to decide upon the premises need
not be the majority rule.
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7.3.1 Definition of the Procedure

For many JA problems, it may be natural to divide the agenda into premises and
conclusions. Let Φ = Φp ∪Φc be an agenda divided into a set of premises Φp and
a set of conclusions Φc, each of which is closed under complementation.

Definition 7.3.1. The premise-based procedure (PBP) for Φp and Φc is the func-
tion mapping each profile J=(J1, . . . , Jn) ∈ J (Φ)N to the following judgment set:

PBP(J) = ∆ ∪ {ϕ ∈ Φc | ∆ |= ϕ},
where ∆ = {ϕ ∈ Φp | #{i | ϕ ∈ Ji} >

n

2
}

If we want to ensure that the PBP always returns judgment sets that are consis-
tent and complete, then we have to impose certain restrictions:

• If we want to guarantee consistency, we have to impose restrictions on
the premises. In view of our discussion in Section 6.3, in particular our
Proposition 6.3.6, the majority rule is guaranteed to be consistent if and
only if the agenda Φ satisfies the median property, i.e., if every inconsistent
subset of Φ has itself an inconsistent subset of size 6 2 (cf. Definition 6.3.2).
This result immediately transfers to the PBP: it is consistent if and only if
the set of premises satisfies the median property.

• If we want to guarantee completeness, we have to impose restrictions on the
conclusions: for any assignment of truth values to the premises, the truth
value of each conclusion has to be fully determined.

Deciding whether a set of formulas satisfies the median property is Πp
2-hard (see

Lemma 6.4.5). That is, in its most general form, deciding whether the PBP can be
applied correctly is a highly intractable problem (and, as we shall see, a problem
that is most likely considerably harder than either using or manipulating the
PBP). For a meaningful analysis, we therefore restrict attention to the following
case. First, we assume that the agenda Φ is closed under propositional variables:
p ∈ Φ for any propositional variable p occurring within any of the formulas in Φ.
Second, we equate the set of premises with the set of literals. Clearly, the above-
mentioned conditions for consistency and completeness are satisfied.

So, to summarise, the procedure we consider in this section is defined as
follows: Under the assumption that the agenda is closed under propositional
variables, the PBP accepts a literal ` if and only if more individual agents accept
` than do accept ∼`, and the PBP accepts a compound formula if and only if
it is entailed by the accepted literals. For consistent and complete profiles, and
under the assumption that n is odd, this leads to a resolute JA procedure that is
consistent and complete.
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7.3.2 Axiomatic Properties

When restricted to the set of premises, the PBP shares all the properties of the
majority rule.8 However, when the whole agenda is considered, the PBP does
not satisfy most of the axiomatic properties we have so far encountered for JA
procedures (cf. Section 6.1), except for anonymity. It certainly does not satisfy
independence, as a change on the individual ballots over premises influences the
outcome over the set of conclusions. Moreover, as can be inferred from the ex-
ample presented in Table 7.3, the PBP is not even unanimous on conclusions.

p1 p2 p3 p1 ∨ p2 ∨ p3

J1 1 0 0 1
J2 0 1 0 1
J3 0 0 1 1

PBP(J) 0 0 0 0

Table 7.3: The PBP is not unanimous on conclusions.

Despite all these shortcomings, the PBP is a good example of a consistent and
complete judgment aggregation procedure, and constitutes one of the few exam-
ples of such a rule that is not defined using a notion of distance.

7.3.3 Winner Determination

Winner determination is a tractable problem for the premise-based procedure:

Proposition 7.3.2. WinDet(PBP) is in P.

Proof. Counting the number of agents accepting each of the premises and check-
ing for each premise whether the positive or the negative instance has the majority
is easy. This determines the collective judgment set as far as the premises are
concerned. Deciding whether a given conclusion should be accepted by the col-
lective now amounts to a model checking problem (is the conclusion ϕ true in
the model induced by the accepted premises/literals?), which can also be done in
polynomial time.

7.3.4 Strategic Manipulation

Manipulating the premise-based procedure, on the other hand, is intractable.

8A representation result analogous to Proposition 2.3.7 can be proven in the realm of judg-
ment aggregation.
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Theorem 7.3.3. Manip(PBP) is NP-complete.

Proof. We first establish NP-membership. An untruthful judgment set J ′i yield-
ing a preferred outcome can serve as a certificate. Checking the validity of such a
certificate means checking that (a) J ′i is actually a complete and consistent judg-
ment set and that (b) the outcome produced by J ′i is better than the outcome
produced by the truthful set Ji. As for (a), checking completeness is easy. Con-
sistency can also be decided in polynomial time: for every propositional variable
p in the agenda, J ′i must include either p or ¬p; this admits only a single possible
model; all that remains to be done is checking that all compound formulas in
J ′i are satisfied by that model. As for (b), we need to compute the outcomes
for Ji and J ′i (by Proposition 7.3.2, this is polynomial), compute their Hamming
distances from Ji, and compare those two distances.

Next, we prove NP-hardness by reducing Sat to Manip(PBP). Suppose we
are given a propositional formula ϕ and want to check whether it is satisfiable.
We will build a judgment profile for three agents such that the third agent can
manipulate the aggregation if and only if ϕ is satisfiable. Let p1, . . . , pm be the
propositional variables occurring in ϕ, and let q1, q2 be two additional proposi-
tional variables. Define an agenda Φ that contains all atoms p1, . . . , pm, q1, q2 and
their negation, as well as m + 2 syntactic variants of the formula q1 ∨ (ϕ ∧ q2)
and their negation. For instance, if ψ := q1 ∨ (ϕ∧ q2), we might use the syntactic
variants ψ, ψ ∧>, ψ ∧>∧>, and so forth. The judgment profile J is defined in
Table 7.4 (the rightmost column has a “weight” of m+ 2).

p1 p2 · · · pm q1 q2 q1 ∨ (ϕ ∧ q2)

J1 1 1 · · · 1 0 0 ?
J2 0 0 · · · 0 0 1 ?
J3 1 1 · · · 1 1 0 1

F (J) 1 1 · · · 1 0 0 0

Table 7.4: Manipulation for the PBP is hard.

The judgments of agents 1 and 2 regarding q1 ∨ (ϕ ∧ q2) are irrelevant for our
argument, so they are indicated as “?” in the table (but note that they can be
determined in polynomial time; in particular, J1(q1 ∨ (ϕ ∧ q2)) = 0 for any ϕ).

If agent 3 reports her judgment set truthfully (as shown in the table), then
the Hamming distance between J3 and the collective judgment set will be 1 +
(m + 2) = m + 3. Note that agent 3 is decisive about all propositional variables
(i.e., premises) except q1 (which will certainly get rejected). Now:

• If ϕ is satisfiable, then agent 3 can report judgments regarding p1, . . . , pm
that correspond to a satisfying assignment for ϕ. If she furthermore accepts
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q2, then all m + 2 copies of q1 ∨ (ϕ ∧ q2) will get accepted in the collective
judgment set. Thus, the Hamming distance from J3 to this new outcome
will be at most m+ 2, i.e., agent 3 will have manipulated successfully.

• If ϕ is not satisfiable, then there is no way to get any of the m+ 2 copies of
q1 ∨ (ϕ ∧ q2) accepted (and q1 will get rejected in any case). Thus, agent 3
has no means of improving over the Hamming distance of m + 3 she can
guarantee for herself by reporting truthfully.

Hence, ϕ is satisfiable if and only if agent 3 can manipulate successfully, and our
reduction from Sat to Manip(PBP) is complete.

Thus, manipulating the PBP is significantly harder than using it, at least in terms
of worst-case complexity (and under the assumption that P 6= NP).

7.3.5 PBP in Binary Aggregation

The definition of the premise-based procedure we presented in this section can be
adapted to the case of binary aggregation. Let I be a set of issues divided into
a set of premises Ip and a set of conclusions Ic. If B is a ballot over I, indicate
with Bp the restriction of B to Ip and with Bc the restriction to Ic. Consider
the following definition:

Definition 7.3.4. The premise-based procedure (PBP) for binary aggregation
associates with every profile B over issues I = Ip ∪ Ic and integrity constraint
IC ∈ LPS the following set of collective ballots B over I:

• PBP(B)p = AVR(Bp
1 , . . . , B

p
n);

• PBP(B)c = {B ∈ {0, 1}Ic | (PBP(B)p, B) |= IC}

The main difference from Definition 7.3.1 is the use of AVR in place of the majority
rule for the aggregation on premises. This choice allows us to always obtain a
rational outcome over premises, without having to limit the use of this rule to a
particular class of integrity constraints.

There are several applications in which this procedure may constitutes a nat-
ural candidate for the aggregation of binary ballots. Consider for example the
case of integrity constraints that come in the form of conclusion functions, se-
lecting an acceptance/rejection value over conclusions depending on the outcome
on the premises. This is the case, for instance, of the discursive dilemma as pre-
sented in Chapter 3 (cf. Table 3.4). Formally, let PS p = {pj | j ∈ Ip} be the
set of propositional variables associated with premises, and Lp the propositional
language obtained from PS p. A set of conclusion functions for I is represented
by a set of formulas {pj ↔ ϕj | ϕj ∈ Lp} for every conclusion j ∈ Ic. For in-
stance, the integrity constraint representing the discursive dilemma in Table 3.4
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is pα∧β ↔ (pα ∧ pβ). In similar cases the PBP represents an interesting example
of a collectively rational procedure, sharing the same axiomatic properties as its
JA version.

7.4 The Distance-Based Procedure

Recent work in JA has shown that ideas from belief merging (Konieczny and
Pino Pérez, 2011) can be imported into JA to yield practical aggregation proce-
dures that are complete and consistent (Pigozzi, 2006; Miller and Osherson, 2009;
Lang et al., 2011). Similar definitions can be provided in binary aggregation, and
in this section we introduce one of the easiest examples of a distance-based rule,
studying the complexity of its winner determination problem.

7.4.1 Definition of the Procedure

When defining the AVR in Section 7.2, we were interested in devising a method
to choose those ballots that best represent the individual views in a profile. Once
the integrity constraint is known, this restriction can be lifted, considering the
whole set of rational ballots as the search space for winning ballots. This ap-
proach is inspired by the literature on belief merging (Konieczny and Pino Pérez,
2011), in which, however, the set of individual views to be aggregated is a set of
propositional models rather than a single evaluation.

Definition 7.4.1. Given a set of issues I and an integrity constraint IC, the
distance-based procedure DBP is the function mapping each profile B ∈ Mod(IC)N

to the following set of collective ballots:

DBP(B) = argmin
B∈Mod(IC)

∑
i∈N

H(B,Bi)

The DBP is an irresolute procedure, returning a (nonempty) set of collective
ballots. A winning ballot under the DBP minimises the amount of disagreement
with the individual binary ballots (i.e., it minimises the sum of the Hamming
distances with all individual ballots). Note that in cases where the majority
rule leads to a rational outcome, the outcome of the DBP coincides with that
of the majority rule (making it a resolute procedure over these profiles). Also
note that the DBP shares many features with the Kemeny rule for preference
aggregation (Kemeny, 1959). We will elaborate more on this similarity in the
proof of Lemma 7.4.4.

7.4.2 Axiomatic Properties

The DBP does not satisfy many axiomatic properties. Certainly it is not in-
dependent, as it builds on the idea that correlations between issues should be
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exploited rather than neglected. Moreover, examples showing that the DBP does
not satisfy unanimity U? can be found in the literature on judgment aggregation
(Lang et al., 2011, Proposition 24). By the same argument as the one employed
in Section 7.2.2 for the AVR, it is straightforward to see that the DBP satisfies
anonymity A? and monotonicity M?.

7.4.3 Winner Determination

We now want to analyse the complexity of the winner determination problem for
the DBP. As the DBP is not resolute, we study the decision problem WinDet?.
Our findings reveal that WinDet?(DBP) is Θp

2-complete, thus showing that this
rule is very hard to compute. The class Θp

2 (also known as ∆p
2(O(log n)) or PNP

|| ) is
the class of problems that can be solved in polynomial time asking a logarithmic
number of queries to an NP-oracle (Wagner, 1987).

To obtain our result, we first have to devise an NP-oracle that will then be
used in the proof of Θp

2-membership. We shall use the following problem:

WinDet?K(F )
Instance: Integrity constraint IC, profile B ∈ Mod(IC)N ,

subset I ⊆ I, partial ballot ρ : I → {0, 1}, K ∈ N.
Question: Is there a B? with B?

j = ρ(j) for all j ∈ I
such that

∑
i∈N H(B?, Bi) 6 K?

That is, we ask whether there exists a binary ballot B? with Hamming distance at
most K extending a partial ballot ρ. We now show that this problem lies in NP.

Lemma 7.4.2. WinDet?K(DBP) is in NP.

Proof. We devise an algorithm that, given a certificate intended to provide a
positive answer to WinDet?K(DBP), can check the validity of the certificate in
polynomial time. Such a certificate is given by a ballot B?, that can be guessed
among the set of all ballots {0, 1}I . It is then sufficient to check that: (i) the
certificate is rational, i.e., B? |= IC (ii) the certificate extends ρ, i.e., B?

j = ρ(j)
for all j ∈ I and (iii)

∑
i∈N H(B?, Bi) 6 K. Each of the three steps can be done in

polynomial time, thus resulting in a non-deterministic polynomial algorithm.

Lemma 7.4.3. WinDet?(DBP) is in Θp
2.

Proof. The problem WinDet?(DBP) asks whether there exists a winning ballot
that extends a given partial ballot ρ. Since the Hamming distance of a ballot
from a profile is bounded from above by a polynomial figure, we can solve this
problem by performing a binary search over K and asking a logarithmic number
of queries to WinDet?K .

More precisely, since
∑

B∈BH(B?, B) 6 K? := |I| × |N |, K? is polynomial
in the size of the input. We can then ask a first query to WinDet?K(DBP) with
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K = K?

2
and empty partial ballot ρ. In case of a positive answer we can continue

the search with a new K = K?

4
, otherwise we move to the higher half of the

interval querying WinDet?K(DBP) with K = 3
4
× K?. This process eventually

ends after a logarithmic number of steps, providing the exact Hamming distance
Kw of a winning candidate from the profile J under consideration. It is now
sufficient to run the problem WinDet?K(DBP) with K = Kw and partial ballot
ρ as in the original instance of WinDet?(DBP) we wanted to solve. In case the
answer is positive, since there cannot be a winning ballot with Hamming score
strictly less than Kw, one of the winning ballots extends the partial ballot ρ. On
the other hand, in case of a negative answer all ballots extending ρ have Hamming
distance bigger than Kw, and therefore cannot belong to the winning set.

Next, we show that the upper bound established by Lemma 7.4.3 is tight. We
exploit the similarity of the DBP to the Kemeny rule in preference aggregation
to build on a known Θp

2-hardness result by Hemaspaandra et al. (2005).

Lemma 7.4.4. WinDet?(DBP) is Θp
2-hard.

Proof. We build a reduction from the problem Kemeny Winner, as defined by
Hemaspaandra et al. (2005). An instance of this problem consists of a set of
candidates C, a profile of weak orders R = (R1, . . . , Rn) over C and a designated
candidate c. Define the Kemeny score of a given candidate c as the following
expression:

KemenyScore(c,R) = min{
n∑
i=1

d(Ri, Q) | Q is a weak order and c ∈ top(Q)}

Where d(Ri, Q) is the Hamming distance between two preference orders and
top(Q) is the set of most preferred candidates in Q. The problem asks whether
the Kemeny score of c is less than or equal to the Kemeny score of all other
candidates d ∈ C.

We now build an instance of WinDet?(DBP) to decide this problem, exploit-
ing the (polynomial) embedding of preference aggregation into binary aggrega-
tion that we have presented in Sections 3.1.2 and 5.1.3. Let the set of issues be
IC = {ab | a, b ∈ C}, and let IC6 be the set of integrity constraints enforcing the
properties of weak orders. Given a preference profile R, let BR be the binary
profile obtained by encoding each weak order Ri over C in a ballot BR

i over IC .
Note that, if R and Q are two weak orders, then d(R,Q) = H(BR, BQ). Thus,

to obtain an answer to the initial Kemeny Winner instance with designated
candidate c, it is sufficient to ask a query to WinDet?(DBP) using IC as a set
of issues, BR as a profile, and a partial ballot ρ such that ρ(cd) = 1 for all d ∈ C
with d 6= c. If the winning ballot features c as one of the top candidates (i.e.,
issues cd are accepted for all other candidates d), then its Kemeny score will be
lower or equal than that of all other candidates, providing a positive answer to
the original problem.
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Putting Lemma 7.4.3 and 7.4.4 together yields a complete characterisation of the
complexity of winner determination under the distance-based procedure:

Theorem 7.4.5. WinDet?(DBP) is Θp
2-complete.

Theorem 7.4.5 shows that the problem of using the DBP is highly intractable.
However, by adapting efficient heuristics developed for the Kemeny rule (which,
as seen in the proof of Lemma 7.4.4, is the preference aggregation version of
the DBP) it may be possible to obtain a tractable implementation of the DBP
for both binary ballots and judgment sets (Davenport and Kalagnanam, 2004;
Conitzer et al., 2006; Betzler et al., 2009).

Given that winner determination is a highly intractable problem, we shall not
investigate the complexity of strategic manipulation for the DBP.

7.4.4 The DBP in Judgment Aggregation

The first example of a JA procedure based on distances was introduced by Pigozzi
(2006) based on the work of Konieczny and Pino Pérez (2002) in belief merging.
The procedure was defined under the restrictive assumptions that the agenda be
closed under propositional variables and all compound formulas be unanimously
accepted (or rejected) by all agents. Most importantly, the syntactic information
contained in the agenda was discarded by moving the aggregation from the level
of formulas to the level of models.

A syntactic variant of this procedure can be obtained by merging judgment
sets rather than models corresponding to judgment sets. This procedure was
first introduced by Miller and Osherson (2009) under the name Proptotyped, and
studied independently in our previous work (Endriss et al., 2010b) for the case of
d equal to the Hamming distance. The definition of the DBP we have provided
for binary aggregation is a straightforward adaptation of this rule to the case of
binary aggregation. Note that the DBP does not coincide with the procedure of
Pigozzi (2006), even for agendas closed under propositional variables. The main
reason is that the DBP is sensitive to logical correlations between formulas of the
agenda: accepting an atom that is correlated with other formulas in the agenda
“counts” more in our procedure than accepting an independent one.

As shown in previous work (Endriss et al., 2010b), winner determination for
the judgment aggregation version of the DBP is also hard. An analogous version
of Lemma 7.4.2 can be proven by encoding the requirements of consistency of a
judgment set in an integer program, thus showing that WinDet?K(DBP) for judg-
ment aggregation also lies in NP. A proof of Θp

2-completeness for WinDet?(DBP)
can also be obtained with a reduction from the problem of Kemeny winner. To
obtain this result, it is sufficient to enforce the properties of weak orders on judg-
ment sets by means of a polynomial number of spurious formulas in the agenda,
representing the integrity constraints of transitivity and reflexivity.
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7.5 Conclusions: Which Framework is Easier?

In this chapter we have studied the computational complexity of three proce-
dures for collectively rational aggregation. The average voter rule, a generalised
dictatorship that selects those individual ballots that minimise the amount of
disagreements with the remaining ballots in the profile, resulted in a polynomi-
ally computable rule that is also easy to manipulate. The problem of computing
the winner of the distance-based procedure, defined in a similar way but without
restricting the outcome to those ballots submitted by the individuals, is consid-
erably harder, and we proved a Θp

2-completeness result for this case. Finally,
the premise based procedure, which we defined and studied in the framework of
judgment aggregation, satisfies good computational properties, being easy to use
and hard to manipulate (NP-complete).

In Section 6.2.2 we have observed that JA and BA with IC have the same
expressive power, once we enrich the formula-based framework for JA with the
use of constraints (Dietrich and List, 2008b). However, we have also observed
that the embedding of JA into BA with IC may result in an exponential number
of integrity constraints (cf. Section 3.2.2). In this conclusive section, we want to
compare the computational complexity of the two frameworks on a number of
basic problems.

From the point of view of an individual, a decision problem framed in BA with
IC is substantially easier to deal with than one expressed in the JA formalism.
The first problem we consider is the following:

DefCheck
Instance: Integrity constraint IC, ballot B ∈ {0, 1}I

(agenda Φ, judgment set J ∈ 2Φ, respectively)
Question: Is B rational?

(is J consistent, respectively?)

While in BA deciding whether Bi |= IC can be solved with a polynomial model
checking, DefCheck in JA corresponds to solving the satisfiability of the set of
formulas in Ji, a classical NP-complete problem. Another problem that can be
considered is that of inferring knowledge from the result of aggregation:

WinInf
Instance: Winning ballot F (B), formula ϕ ∈ LPS

(Winning set F (J), formula ϕ ∈ LPS, respectively)
Question: Is it the case that F (B) |= ϕ?

(is it the case that F (J) |= ϕ, respectively?)

In this case also, the former instance can be solved in polynomial time with model
checking while the latter is significantly harder. To see this, consider that the
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outcome of a JA procedure is a set of formulas, and that knowledge inference
from a set of propositional formulas is coNP-hard.

From the point of view of the mechanism designer, the computational complex-
ity of the two frameworks does not differ significantly. Consider for instance the
problem of safety of the agenda, as presented in Section 6.3 for the formula-based
framework of JA. We have seen that for most classes of aggregation procedures
this problem is Πp

2-complete, by investigating the complexity of checking a num-
ber of agenda properties. Let us concentrate on one such property, the median
property (Definition 6.3.2). As remarked in Section 6.3.4, an equivalent version
of this problem in BA with IC is given by the following statement: given an in-
tegrity constraint IC, how hard is to check that IC is equivalent to a conjunction
of clauses of maximal size 2? Similar problems in the literature are all placed in
the second level of the polynomial hierarchy (see, e.g., Schaefer and Umans, 2002,
*L9: Short CNF), and this is a good indication that the computational complex-
ity of checking the median property in the two frameworks should be comparable.
A different result is obtained if we consider the SSMP (Definition 6.3.5), which
requires an agenda to be “atomic”, i.e., to allow for all possible judgment sets.
Its analogue in BA is the case of IC being a tautology, thus admitting all possible
ballots as rational. In this case, the complexity of the BA version of this problem
is significantly easier (being a coNP-complete problem) than its JA version, which
we proved to be Πp

2-complete.
If we concentrate on the use of specific aggregation procedures, as we did in

this chapter, then the two frameworks have comparable computational complex-
ity, as we observed in Section 7.4.4.

In conclusion, the framework of BA with IC is computationally at most as
hard as dealing with formulas in the classical JA framework, and it is significantly
easier in some situations. While for many applications it may be more natural
to directly use propositional formulas rather than structure the problem with
binary issues and devise a suitable integrity constraint, we can conclude from the
present section that this step decreases significantly the computational complexity
of many basic problems.



Chapter 8

Conclusions and Perspectives

If we have succeeded in our purpose, then the reader will agree that collective
rationality should take centre stage in the study of aggregation problems. In-
spired by the wide spectrum of potential applications in Artificial Intelligence, we
have put forward a systematic study of collective rationality in binary aggrega-
tion, focusing on the syntactic structure of the integrity constraint that defines an
aggregation problem. Moreover, we have shown that a failure in collective ratio-
nality is at the basis of most of the classical paradoxes in aggregation theory, and
that the source of many (im)possibility results in the literature on preference and
judgment aggregation lies in a clash between a set of axiomatic properties and re-
quirements of collective rationality. By providing a unifying view on aggregation
problems, our framework of binary aggregation with integrity constraints proved
to be a useful and flexible tool for both the analysis of theoretical questions as
well as for the development of solutions for application-oriented problems.

Let us now look back at what has been achieved in this dissertation. Chapter 2
defined the framework of binary aggregation with integrity constraints, in which
individuals make yes/no choices over a finite set of issues and an aggregation pro-
cedure merges them into a collective choice. The choices of individuals are bound
by an integrity constraint or rationality assumption, which we represented as a
formula in a simple propositional language. We provided a definition of collective
rationality which features integrity constraints as a parameter: an aggregation
procedure is collectively rational with respect to an integrity constraint if the
collective outcome satisfies the constraint whenever all individual ballots do. We
called a counterexample to collective rationality a paradox.

In Chapter 3 we explored the generality of our definition of paradox by show-
ing that many classical paradoxes from the literature on Social Choice Theory
can be seen as instances of our definition. In particular, we focused on the Con-
dorcet paradox, the discursive dilemma, the Ostrogorski paradox, and, to a lesser
extent, the paradox of multiple elections.

In Chapter 4 we defined the class CR[L] as the class of collectively rational
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procedures with respect to all integrity constraints in a given language L. By
studying those classes, we discovered that classical axiomatic properties from the
literature on Social Choice Theory correspond to requirements of collective ratio-
nality with respect to some natural syntactically defined languages. For instance,
the class of procedures that are collectively rational with respect to the language
of literals corresponds to the class of unanimous procedures; the language of
equivalences L↔ is associated with the requirement of issue-neutrality; and the
XOR-language LXOR is associated with the axiom of domain-neutrality. Similar
correspondences cannot be proven for certain other axiomatic requirements. For
the axioms of anonymity, independence, and two versions of monotonicity, we
proved negative results which rule out possible characterisations in terms of col-
lective rationality. We then moved to the study of procedures defined by means of
acceptance quotas, a class that includes the majority rule. We characterised the
set of integrity constraints lifted by the majority rule as the language of 2-clauses,
i.e., disjunctions of size at most 2, and we provided conditions about the size of
a clause for other quota rules.

Classical frameworks like preference and judgment aggregation can be em-
bedded into binary aggregation by devising suitable integrity constraints, and
in Chapters 5 and 6 we compared theoretical results in these settings with our
findings in binary aggregation.

Chapter 5 focused on preference aggregation. We obtained a possibility and
an impossibility theorem for different representations of preferences by making
use of our characterisation results from Chapter 4. We also put forward a new
proof of Arrow’s Theorem which aimed at reducing the impossibility to a clash
between the Arrovian axiomatic requirements on the one hand, and collective
rationality with respect to the preferential integrity constraint on the other.

In Chapter 6 we presented in detail the framework of judgment aggregation.
We focused on the problem of safety of the agenda, i.e., characterising the set of
agendas on which a given class of procedures is guaranteed to output a consistent
outcome. For several classes of procedures defined axiomatically, we identified
the class of safe agendas by giving conditions on the structure of the inconsistent
subsets that can be created from formulas in the agenda. For instance, we proved
that a safe agenda for independent procedures only contains inconsistent subsets
composed of a formula and its negation (we called this condition the syntacti-
cally simplified median property). We confronted these results with our findings
in binary aggregation and we investigated the computational complexity of recog-
nising safe agendas. For all the classes under consideration, we proved that the
problem is Πp

2-complete, i.e., highly intractable.
Chapter 7 is devoted to studying aggregation procedures that are designed to

be collectively rational, and that are good candidates to be used in practice. We
focus on three rules that can be employed in both binary and judgment aggrega-
tion: the average voter rule, the premise-based procedure and the distance-based
procedure. For each rule, we investigated their axiomatic properties as well as the
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computational complexity of the problems of winner determination and strategic
manipulation (except for the distance-based rule, for which determining a winner
is already too hard a problem to justify a study of manipulation). We concluded
the chapter by comparing the computational complexity of some simple problems
in binary and judgment aggregation.

There are numerous directions in which this work can be extended. Voting
theory represents a closely connected topic in which many of the results presented
in this dissertation may find application. First, as shown by our Example 2.1.6,
approval voting, k-approval voting and the plurality rule can be seen as binary
aggregation procedures over suitably defined domains. The use of constraints
is not common in the study of voting procedures, but constitutes an interesting
direction for future investigations, as testified by recent work on the topic (Lu and
Boutilier, 2011). Second, our framework can easily generalise to account for the
case of full (rather than binary) combinatorial domains, i.e., product spaces D =
D1 × · · · ×Dm with |Di| > 2. In this more general setting, integrity constraints
could be expressed in the propositional language L′PS built on a set of atomic
formulas PS = {xj=aj | j = 1, . . . ,m and aj ∈ Dj} (cf. Example 2.1.7). Axioms
for aggregation procedures on general combinatorial domains can be adapted
from the literature (see, e.g., Lang, 2007). Preliminary results linking collective
rationality with axiomatic properties can be obtained for the simpler case of
voting for committees, in which the domains Dj are equal to a set of available
candidates D and the combinatorial domain is the set D = Dm. Moreover, a
language to compactly express preferences over a combinatorial domain could be
devised from L′PS by adding a binary predicate <. A study of the expressivity
and succintness of this language constitutes another interesting idea for future
work, comparing it to existing languages for compact representation of preferences
(Uckelman, 2009; Bienvenu et al., 2010).

Binary issues can also be used to represent preferential dependencies, for
instance by encoding the graph underlying a given CP-net (Boutilier et al., 2004).
Every edge in the graph could be associated with a binary issue, and integrity
constraints could then be devised to encode rationality assumptions about pref-
erential dependencies. Moreover, interesting aggregation procedures may be de-
vised by first aggregating individual dependency structures, and then devising
a sequential order of local elections based on the collective dependency graph
obtained. A preliminary study along these lines has been carried out by Airiau
et al. (2011). A similar approach has also been followed by Xia et al. (2008) and
Conitzer et al. (2011).

The generality of the framework of binary aggregation with integrity con-
straints may also suggest that the aggregation of logical structures constitute
an interesting theoretical setting for the study of collective agents. As models de-
scribing autonomous agents get more refined, our simple propositional language
may not be sufficiently expressive or compact to encode more complex constraints.
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The general framework for judgment aggregation developed by Dietrich (2007)
goes in this direction. However, in this line of research the domain of aggregation
is still composed of a sequence of yes/no choices over a set of (non-propositional)
formulas, a framework that does not deviate significantly from binary aggregation.
Instead, it would be interesting to study the aggregation of non-propositional log-
ical models (e.g., first-order models, Kripke structures, etc.) using formulas in
more complex logical languages to express properties of such structures, such as
rationality assumptions. We have recently made an initial step in this direction
by providing a first study of graph aggregation in which integrity constraints may
be expressed in modal logic (Endriss and Grandi, 2012).

Our study of the computational complexity of aggregation procedures is
based on a worst-case analysis. Despite constituting a solid first step in prepara-
tion for a possible implementation of a procedure, this approach has been criti-
cised as failing to capture the actual distribution of the hard instances of a prob-
lem (Faliszewski and Procaccia, 2010; Walsh, 2011a). Thus, an important step
to be taken in future work is a more refined analysis of those problems studied in
the dissertation, by for instance using tools from average complexity (Faliszewski
and Procaccia, 2010) or parametrized complexity (Betzler, 2010). Another in-
teresting possibility is performing an evaluation of the distribution of the hard
instances of some of our problems, an approach that may be useful to shed light
on very hard questions such as our findings on the computational complexity of
recognising safe agendas, as recently done in the domain of the manipulation of
elections (Walsh, 2011b).

Perhaps the most intriguing direction for future research is to move from
theory to applications. The flexibility of our framework has the potential of
bringing interesting insights to the study and development of a diverse range of
aggregation problems, like ranking and recommender systems, but it is in the de-
sign of mechanisms for complex collective decisions that lies its biggest potential.
A recent position paper by Boutilier and Lu (2011) advocates a move from the
study of high-stake and low-frequency situations like elections to low-stake and
high-frequency situations such as those that are encountered in electronic com-
merce and similar applications. While the theoretical framework developed in
this dissertation does not straightforwardly point in this direction, it is in its ap-
plicability and in its potential of suggesting novel solutions to real-world problems
that it will find its main testing ground.



Appendix A

Propositional Logic

This appendix is devoted to introducing the basic terminology and definitions of
propositional logic (for a more detailed presentation see, e.g., Shoenfield, 1967).

A.1 Formulas

Propositional logic is perhaps the simplest formal language that can be defined.
The basic ingredients are a set of atomic propositions PS = {p1, . . . , pm}1 and
propositional connectives : negation (¬), conjunction (∧) and disjunction (∨).
The set of propositional formulas built on PS, which we denote LPS, is defined
recursively in the following way:

(i) every element of PS is a formula;
(ii) if ϕ is a formula, then ¬ϕ is a formula;

(iii) if both ϕ and ψ are formulas, then ϕ ∨ ψ and ϕ ∧ ψ are formulas.

Parentheses may be used to make the priorities between connectives clearer. We
will make use of two additional connectives: implication (ϕ→ ψ) as a shorthand
for ¬ϕ ∨ ψ, and equivalence (ϕ ↔ ψ) as a shorthand for (ϕ → ψ) ∧ (ψ → ϕ).
Here ends the syntactic definition of the propositional language LPS.

Definition A.1.1. We give the following definitions for types of formulas:

(i) an atom is an element of PS;
(ii) a literal is an atom or its negation;

(iii) a cube is a finite conjunction of literals;
(iv) a clause is a finite disjunction of literals.

1Here, we make the more restrictive assumption that the set of propositional symbols PS is
finite, although it is usually only assumed to be countable.
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A.2 Models

Formulas in the propositional language LPS are used to express properties of bi-
nary product spaces {0, 1}m (which is usually called its semantics). An assigment
is a function ρ : PS → {0, 1} (equivalently, an element of {0, 1}PS). We now de-
fine, in a recursive fashion, what it means for an assignment ρ to be a model of
ϕ (and we write this ρ |= ϕ):

(i) if ϕ ∈ PS then ρ |= ϕ iff ρ(ϕ) = 1;
(ii) if ϕ = ¬ψ then ρ |= ϕ iff ρ 6|= ψ;

(iii) if ϕ = ψ1 ∧ ψ2 then ρ |= ϕ iff ρ |= ψ1 and ρ |= ψ2;
(iv) if ϕ = ψ1 ∨ ψ2 then ρ |= ϕ iff ρ |= ψ1 or ρ |= ψ2.

Every formula ϕ ∈ LPS corresponds to the subset of {0, 1}PS of those assigments
that are models of ϕ. We call this set Mod(ϕ). Since we have a finite number
of propositional symbols, we can associate with every assignment ρ a formula
ϕ that has ρ as its unique model. For instance, the formula associated with
the assignment ρ that rejects all propositional symbols in PS is ϕρ = ¬p1 ∧
· · · ∧ ¬pm. Thus, every subset of {0, 1}PS corresponds to the set of models of a
certain formula, obtained as the disjunction of all formulas corresponding to each
assignment in the given subset. LPS is therefore fully expressive with respect to
subsets of {0, 1}PS.

Definition A.2.1. We give the following definitions:
(i) A tautology is a formula that is true for every assignment to its propositional

variables. We denote a tautology with the symbol >.
(ii) A contradiction is a formula that is false for every assignment to its propo-

sitional variables. We denote a contradiction with the symbol ⊥.
(iii) A formula is satisfiable (also, consistent) if it admits a model. A formula is

falsifiable if its negation admits a model.
(iv) A formula is contingent if it is both satisfiable and falsifiable.
(v) A formula ϕ is consistent with a formula ψ if its conjunction ϕ ∧ ψ admits

a model.
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T. R. Daniëls and E. Pacuit. A general approach to aggregation problems.
Journal of Logic and Computation, 19(3):517–536, 2009. (p. 87)

A. J. Davenport and J. Kalagnanam. A computational study of the Kemeny rule
for preference aggregation. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-2004), 2004. (p. 130)

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2nd edition, 2002. (p. 85, 87)

R. Deb and D. Kelsey. On constructing a generalised Ostrogorski paradox:
necessary and sufficient conditions. Mathematical Social Sciences, 14:161–174,
1987. (p. 37)

F. Dietrich. A generalised model of judgment aggregation. Social Choice and
Welfare, 28(4):529–565, 2007. (p. 34, 87, 90, 94, 136)

F. Dietrich. General representation of epistemically optimal procedures. Social
Choice and Welfare, 26(2):263–283, 2010. (p. 108)

F. Dietrich and C. List. Judgment aggregation by quota rules: Majority voting
generalized. Journal of Theoretical Politics, 19(4):391–424, 2007a. (p. 25, 70,
74, 92, 100)

F. Dietrich and C. List. Arrow’s theorem in judgment aggregation. Social Choice
and Welfare, 29(1):19–33, 2007b. (p. 87)

F. Dietrich and C. List. Strategy-proof judgment aggregation. Economics and
Philosophy, 23(3):269–300, 2007c. (p. 112, 115)

F. Dietrich and C. List. Judgment aggregation without full rationality. Social
Choice and Welfare, 31(1):15–39, 2008a. (p. 35, 108)

F. Dietrich and C. List. Judgment aggregation under constraints. In T. Boylan
and R.Gekker, editors, Economics, Rational Choice and Normative Philosophy.
Routledge, London, 2008b. (p. 94, 131)

F. Dietrich and C. List. The aggregation of propositional attitudes: towards a
general theory. Oxford Studies in Epistemology, 3:215–234, 2010. (p. 108)



Bibliography 143

F. Dietrich and P. Mongin. The premiss-based approach to judgment aggrega-
tion. Journal of Economic Theory, 145:562–582, 2010. (p. 122)

E. Dokow and R. Holzman. Aggregation of binary evaluations for truth-
functional agendas. Social Choice and Welfare, 32(2):221–241, 2009. (p. 27,
35, 74, 95)

E. Dokow and R. Holzman. Aggregation of binary evaluations. Journal of
Economic Theory, 145(2):495–511, 2010a. (p. 21, 27, 35, 48, 74, 94, 95, 96)

E. Dokow and R. Holzman. Aggregation of binary evaluations with abstentions.
Journal of Economic Theory, 145(2):544–561, 2010b. (p. 35)

J. S. Dryzek and C. List. Social choice theory and deliberative democracy: A
reconciliation. British Journal of Political Science, 33(01):1–28, 2003. (p. 108)

C. Duddy and A. Piggins. A measure of distance between judgement sets. Social
Choice and Welfare, 2012. In press. (p. 117)

P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial In-
telligence, 77(2):321–358, 1995. (p. 108)

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods
for the web. In Proceedings of the 10th International Conference on World Wide
Web (WWW-2001), 2001. (p. 2)

D. Eckert and C. Klamler. A geometric approach to paradoxes of majority
voting in abstract aggregation theory. In Proceedings of the First International
Conference on Algorithmic Decision Theory (ADT-2009), 2009. (p. 37)

U. Endriss and U. Grandi. Graph aggregation. In Proceedings of 4th Inter-
national Workshop on Computational Social Choice (COMSOC-2012), 2012.
(p. 82, 87, 136)

U. Endriss, M. S. Pini, F. Rossi, and K. B. Venable. Preference aggregation over
restricted ballot languages: Sincerity and strategy-proofness. In Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009),
2009. (p. 4)

U. Endriss, U. Grandi, and D. Porello. Complexity of judgment aggregation:
Safety of the agenda. In Proceedings of the 9th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2010), 2010a. (p. 4,
11, 22, 25, 92, 108)



144 Bibliography

U. Endriss, U. Grandi, and D. Porello. Complexity of winner determination and
strategic manipulation in judgment aggregation. In Proceedings of the 3rd In-
ternational Workshop on Computational Social Choice (COMSOC-2010), 2010b.
(p. 4, 108, 130)

P. Everaere, S. Konieczny, and P. Marquis. The strategy-proofness landscape
of merging. Journal of Artificial Intelligence Research (JAIR), 28:49–105, 2007.
(p. 112)

P. Faliszewski and A. D. Procaccia. AI’s war on manipulation: Are we winning?
AI Magazine, 31(4):53–64, 2010. (p. 111, 136)

P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. A richer
understanding of the complexity of election systems. In S. Ravi and S. Shukla,
editors, Fundamental Problems in Computing: Essays in Honor of Professor
Daniel J. Rosenkrantz. Springer, 2009. (p. 111)

W. Gaertner. Domain Conditions in Social Choice Theory. Cambridge Univer-
sity Press, 2001. (p. 78)

W. Gaertner. A Primer in Social Choice Theory. Oxford University Press, 2006.
(p. 7, 10, 19, 31, 77, 79, 112)

P. Gärdenfors. A representation theorem for voting with logical consequences.
Economics and Philosophy, 22(02):181–190, 2006. (p. 96)

J. Geanakoplos. Three brief proofs of Arrow’s impossibility theorem. Economic
Theory, 26(1):211–215, 2005. (p. 83)

A. Gibbard. Social choice and the Arrow conditions. Mimeo, 1969. (p. 84, 86)

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica,
41(4):587–601, 1973. (p. 12)

C. Gonzales, P. Perny, and S. Queiroz. Preference aggregation with graphical
utility models. In Proceedings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence, (AAAI-2008), 2008. (p. 4)

U. Grandi. The common structure of paradoxes in aggregation theory. In
Proceedings of 4th International Workshop on Computational Social Choice
(COMSOC-2012), 2012. (p. 39)

U. Grandi and U. Endriss. Lifting rationality assumptions in binary aggregation.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-
2010), 2010. (p. 46)



Bibliography 145

U. Grandi and U. Endriss. Binary aggregation with integrity constraints. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI-2011), 2011. (p. 94, 117)

U. Grandi and U. Endriss. First-order logic formalisation of impossibility theo-
rems in preference aggregation. Journal of Philosophical Logic, 2012. In press.
(p. 61)

U. Grandi and G. Pigozzi. On compatible multi-issue group decisions. In Pro-
ceedings of the 10th Conference on Logic and the Foundations of Game and
Decision Theory (LOFT-2012), 2012. (p. 42, 122)

D. Grossi. Unifying preference and judgment aggregation. In Proceedings of
the 8th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2009), 2009. (p. 87, 88, 108)

D. Grossi. Correspondences in the theory of aggregation. In Proceedings of the
9th Conference on Logic and the Foundations of Game and Decision Theory
(LOFT-8), 2010. (p. 87, 88)
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S. Konieczny and R. Pino Pérez. Merging information under constraints: A
logical framework. Journal of Logic and Computation, 12(5):773–808, 2002.
(p. 3, 13, 20, 130)
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Samenvatting

Deze dissertatie presenteert het systeem van binaire aggregatie met integriteitsvoor-
waarden en vergelijkt deze met bestaande systemen uit de theorie van collectieve
besluitvorming die zijn ontwikkeld in de sociale keuzetheorie en de kunstmatige
intelligentie. Daarbij verkent het theoretische resultaten die kunnen leiden tot de
implementatie van dit systeem.

In ons systeem moet een verzameling van individuen een keuze maken uit
een verzameling van binaire kwesties. Elk individu dient een ja/nee-keuze in
voor elke kwestie en deze keuzes worden samengevoegd tot een collectieve keuze
gebaseerd op een aggregatie-procedure. Individuele keuzes zijn afgegrensd door
een rationaliteits-aanname die de verscheidenheid aan antwoorden definieert die
als rationeel worden beschouwd. Wij representeren rationaliteits-aannames met
eenvoudige propositionele formules die integriteitsvoorwaarden worden genoemd.
Dit systeem kan worden gebruikt om een verscheidenheid aan situaties van col-
lectieve besluitvorming te representeren, zoals samengestelde referenda en com-
missieverkiezingen alsook het probleem van aggregatie van individuele voorkeuren
of oordelen.

Een concept dat centraal staat in de gehele dissertatie is dat van de collec-
tieve rationaliteit : onderstellend dat elk individu voldoet aan een gegeven in-
tegriteitsvoorwaarde, zijn wij gëınteresseerd te achterhalen of het resultaat van
een aggregatie-procedure nog steeds voldoet aan dezelfde integriteitsvoorwaarde.

We noemen een situatie waarin niet aan collectieve rationaliteit wordt voldaan
een paradox. En we tonen aan dat de meeste klassieke paradoxen uit de lit-
eratuur over de sociale keuzetheorie kunnen worden beschouwd als voorbeelden
van onze algemene definitie. We concentreren onze analyse op de Condorcet
paradox, het discursieve dilemma, de Ostrogorski paradox en de samengestelde
verkiezingen, en identificeren een gemeenschappelijke syntactische eigenschap in
de integriteitsvoorwaarde die deze paradoxale situaties definieert.

We classificeren integriteitsvoorwaarden in syntactisch gedefinieerde talen en
definieren CR[L] als de verzameling van procedures die collectief rationeel zijn
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met betrekking tot elke integriteitsvoorwaarde in een bepaalde taal L. We in-
diceren bijvoorbeeld met CR[cubes] de verzameling van aggregatie-procedures die
collectief rationeel zijn met betrekking tot de integriteitsvoorwaarden die kunnen
worden omschreven als conjuncties van literalen (i.e. cubes). Anderzijds worden
verzamelingen van aggregatie-procedures normaal gesproken gedefinieerd in ter-
men van axioma’s, en indiceren we met F[AX] de verzameling van procedures die
voldoen aan de axioma’s AX. We onderzoeken de relatie tussen deze twee definities
voor verscheidene fragmenten van de propositionele logische taal en voor verschei-
dene axioma’s uit de literatuur van de sociale keuzetheorie. We bewijzen bijvoor-
beeld dat de verzameling van collectief rationele procedures, met betrekking tot de
cubes, gelijk is aan de verzameling van eensgezinde procedures, i.e., de aggregaten
accepteren (wijzen af) een gegeven kwestie indien alle individuen overeenkomen
tot het accepteren (afwijzen) van de kwestie: CR[L] = F[Unanimity].

De systemen van aggregatie-voorkeur en -oordeel zijn de belangrijkste sys-
temen die zijn ontwikkeld voor het bestuderen van problemen gerelateerd aan
de aggregatie van individuele uitdrukkingen. We verstrekken een inbedding van
beide systemen in binaire aggregatie door het construeren van een geschikte in-
tegriteitsvoorwaarde en we bieden alternatieve bewijzen van een aantal van de
klassieke resultaten in deze systemen door gebruikmaking van onze resultaten over
collectieve rationaliteit. In het systeem van aggregatie-oordeel focussen we op het
nieuw ontstane probleem van veiligheid van de agenda: hoe kunnen we met een
verzameling van propositionele formules die het object van oordeel vormen , i.e.,
de agenda, garanderen dat het collectieve oordeel consistent zal zijn wanneer alle
individuele oordelen dat zijn. Voor verscheidene verzamelingen van aggregatie-
procedures gedefinieerd in axiomatische termen, verstrekken we noodzakelijke en
toereikende condities voor een veilige agenda. En we laten zien dat het probleem
van controleren van deze condities een zeer hardnekkig probleem is (Πp

2-complete)
voor alle overwogen verzamelingen.

Er zijn verscheidene voorbeelden van aggregatie-procedures die collectief ra-
tioneel zijn voor alle mogelijke integriteitsvoorwaarden. En we concluderen de
dissertatie met het bestuderen van drie zulke procedures. We onderzoeken de
computationele complexiteit van de twee klassieke problemen van de bepaling
van de winnaar en de strategische manipulatie, i.e., we vergelijken de complex-
iteit van het berekenen van de winnaar van een verkiezing met het probleem van
de bepaling of individuen stimulansen hebben om hun stem te veranderen ten
gunste van hun eigen positie.

Deze dissertatie vormt een systematische studie naar het probleem van col-
lectieve rationaliteit in binaire aggregatie. Dit vraagstuk staat centraal in de
literatuur van de sociale keuzetheorie en heeft zich nuttig bewezen meer inzicht
te verwerven in een variëteit aan toepassingen in de kunstmatige intelligentie.



Abstract

This dissertation presents the framework of binary aggregation with integrity con-
straints, positioning it with respect to existing frameworks for the study of collec-
tive decision making developed in Social Choice Theory and Artificial Intelligence,
and exploring theoretical results which may pave the way for its implementation.

In our setting, a set of individuals need to make a choice over a set of binary
issues. Each individual submits a yes/no choice for each of the issues, and these
choices are then aggregated into a collective choice by means of an aggregation
procedure. Individual choices are bound by a rationality assumption, specifying
the range of answers that is considered to be rational. We represent rationality as-
sumptions with formulas in a simple propositional language, calling them integrity
constraints. This framework can be employed to model a variety of situations of
collective decision making, such as multiple referenda, committee elections, as
well as the problem of aggregating individual preferences or judgments.

A concept that is central to the whole dissertation is that of collective ratio-
nality : assuming that each individual satisfies a given integrity constraint, we are
interested in finding out whether the output of a given aggregation procedure still
satisfies the same integrity constraint.

We call a situation in which collective rationality is not satisfied a paradox, and
we show that most of the classical paradoxes studied in the literature on Social
Choice Theory can be seen as instances of our general definition. We focus our
analysis on the Condorcet paradox, the discursive dilemma, the Ostrogorski para-
dox and the multiple election paradox, identifying a common syntactic property
in the integrity constraints that define these paradoxical situations.

We classify integrity constraints into syntactically defined languages, and de-
fine CR[L] as the class of collectively rational procedures with respect to all in-
tegrity constraints in a given language L. For instance, we indicate with CR[cubes]
the class of aggregation procedures that are collectively rational with respect to
integrity constraints that can be expressed as conjunctions of literals (i.e., cubes).
On the other hand, classes of aggregation procedures are usually defined in ax-
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iomatic terms, and we indicate with F[AX] the class of procedures satisfying a
list of axiomatic properties AX. We investigate the relation between these two
definitions for several natural fragments of the language of propositional logic,
and for several axiomatic properties from the literature on Social Choice Theory.
As an example, we prove that the class of collectively rational procedures with
respect to cubes coincides with the class of unanimous procedures, i.e., those ag-
gregators that accept (reject) a given issue if all individuals agree on accepting
(rejecting) the issue: CR[cubes] = F[Unanimity].

The frameworks of preference aggregation and judgment aggregation are the
main settings developed in the literature to study problems related to the aggre-
gation of individual expressions. We provide an embedding from each of the two
frameworks into binary aggregation by devising a suitable integrity constraint,
and we provide alternative proofs of some of the classical results in these set-
tings by making use of our characterisation results of collective rationality. In the
framework of judgment aggregation we focus on the novel problem of safety of
the agenda: given a set of propositional formulas which constitute the objects of
judgment, i.e., the agenda, how can we guarantee that the collective judgment will
be consistent when all individual judgments are. For several classes of procedures
defined in axiomatic terms, we provide necessary and sufficient conditions for an
agenda to be safe, and we show that the problem of checking such conditions is
a highly intractable problem (Πp

2-complete) for all classes under consideration.
There are several examples of aggregation procedures that are collectively

rational for every possible integrity constraint, and we conclude the dissertation
by studying three such procedures. We investigate the computational complexity
of the two classical problems of winner determination and strategic manipulation,
i.e., we compare the complexity of computing the winner of an election with the
problem of determining whether individuals have incentives to misrepresent their
vote in order to favour their own position.

Overall, this dissertation constitutes a systematic study of the problem of col-
lective rationality in binary aggregation, a problem that is central to the literature
in Social Choice Theory and that proved useful to gain insight into a variety of
applications in Artificial Intelligence.



Riassunto

Questa tesi introduce un modello formale per l’aggregazione di questioni binarie
con vincoli di integrità, confrontandolo con i modelli di scelta collettiva sviluppati
nella teoria della scelta sociale e in intelligenza artificiale, e ottenendo risultati
teorici indirizzati ad una sua possibile implementazione.

La situazione di base nel nostro modello è composta da un insieme di indi-
vidui che deve operare una scelta su una sequenza di questioni binarie. Ogni
individuo esprime una scelta affermativa o negativa per ognuna delle questioni,
e tali scelte sono in seguito aggregate in una scelta collettiva per mezzo di una
procedura di aggregazione. Le scelte individuali sono vincolate da ipotesi di
razionalità, atte a specificare l’insieme delle risposte considerate razionali. Nel
nostro modello rappresentiamo le ipotesi di razionalità tramite formule espresse
in un semplice linguaggio basato sulla logica proposizionale denomitate vincoli di
integrità. Questo modello può essere utilizzato per rappresentare svariate situ-
azioni di scelta collettiva, come referendum multipli, elezioni di comitati, nonché
i classici problemi dell’aggregazione di preferenze e dell’aggregazione di giudizi.

Poniamo al centro dell’attenzione il concetto di razionalità collettiva: as-
sumendo che ogni individuo soddisfi un dato vincolo di integrità, ci chiediamo
se il risultato collettivo ottenuto tramite una data procedura di aggregazione
continui a soddisfare lo stesso vincolo di integrità.

Definiamo paradosso ogni situazione in cui la razionalità collettiva non viene
soddisfatta, e mostriamo come i classici paradossi studiati nell’ambito della teoria
della scelta sociale possano per la maggior parte essere interpretati come casi
particolari della nostra definizione di paradosso. Concentriamo la nostra analisi
sul paradosso di Condorcet, sul dilemma discorsivo, sul paradosso di Ostrogorski
e sul paradosso delle elezioni multiple, ed identifichiamo una proprietà sintattica
comune a tutti i vincoli di integrità alla base di queste situazioni paradossali.

I vincoli di integrità possono essere suddivisi in linguaggi definiti in maniera
sintattica, e definiamo CR[L] la classe di procedure di aggregazione che sono col-
lettivamente razionali rispetto ai vincoli di integrità nel linguaggio L. Ad esempio,
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CR[cubes] indica la classe di procedure collettivamente razionali rispetto ai quei
vincoli di integrità che possono essere espressi attraverso congiunzioni di letterali,
detti cubes. Le procedure di aggregazione sono solitamente classificate in termini
assiomatici, e denotiamo con F[AX] la classe di procedure che soddisfano una
data lista di assiomi AX. In questa tesi esaminiamo le relazioni che intercorrono
tra queste due diverse definizioni di classi di procedure, variando da un lato il lin-
guaggio in cui i vincoli di integrità vengono espressi, e dall’altro le possibili combi-
nazioni di assiomi introdotte nella letteratura sulla teoria della scelta sociale. Per
esempio, dimostriamo che la classe di procedure collettivamente razionali rispet-
to al linguaggio dei cubes coincide con la classe delle procedure unanimi, ossia
quelle procedure che accettano (rifiutano) una questione quando tutti gli individui
accettano (rifiutano) unanimemente tale questione: CR[cubes] = F[Unanimity].

Nella letteratura sulla teoria della scelta sociale i principali modelli sviluppati
per lo studio dell’aggregazione di espressioni individuali sono i modelli dell’ag-
gregazione delle preferenze e dell’aggregazione dei giudizi. In questa tesi mostri-
amo come, sviluppando adeguati vincoli di integrità, entrambi questi modelli pos-
sono essere tradotti nel modello dell’aggregazione binaria e diamo dimostrazioni
alternative di alcuni risultati classici facendo uso dei nostri risultati di caratter-
izzazione per procedure collettivamente razionali. Nel modello dell’aggregazione
dei giudizi introduciamo il problema della sicurezza dell’agenda: dato un insieme
di formule proposizionali che costituiscono l’oggetto del giudizio, i.e., l’agenda, ci
chiediamo se sia possibile garantire che il giudizio collettivo sia coerente, sapendo
che tutti i giudizi individuali lo sono. Per diverse classi di procedure di ag-
gregazione definite in termini assiomatici troviamo condizioni necessarie e suffi-
cienti per la sicurezza dell’agenda, e dimostriamo che il problema di controllare
queste condizioni è altamente intrattabile (Πp

2-completo) per tutte le classi di
procedure prese in considerazione.

La tesi viene conclusa studiando tre procedure di aggregazione che sono col-
lettivamente razionali rispetto ad ogni possibile vincolo di integrità. Studiamo
la complessità computazionale di due problemi classici, la determinazione del
vincitore e la manipolazione strategica, ossia compariamo quanto è complicato
dal punto di vista computazionale determinare il vincitore di una data elezione
rispetto al problema di determinare se sussistono incentivi a modificare il voto
individuale per favorire la propria posizione a livello collettivo.

Nel complesso, questa tesi costituisce uno studio sistematico del problema
della razionalità collettiva nell’aggregazione di questioni binarie, un problema
che risulta essere centrale nella teoria della scelta sociale e che si è dimostrato
di grande utilità per comprendere e sviluppare diverse applicazioni nel campo
dell’intelligenza artificiale.
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