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1

Overview

In which we introduce the topics & contributions of this thesis: syntax and literature,
analyzed with computational models.

There is a traditional contrast in the study of language between linguistics
and philology; this thesis presents computational work in both areas.
Computational linguistics, and its applied variant Natural Language

Processing (nlp), takes language as its object of study and uses computers as an
instrument to develop and evaluate models. Evaluation of predictive models
provides an important methodological heuristic that sets computational linguis-
tics apart from other fields of linguistics and many branches of science. New
tasks or improved models for existing tasks are benchmarked with quantita-
tive metrics (this has been referred to as the common task framework, Liberman
2015b), giving an immediate indication of how much has been achieved and
what remains to be done. One such task which is considered in the first part of
this thesis is that of syntactic parsing, where the goal is to analyze the syntactic
phrases or relations between words in a sentences.

Philology means the love of words, learning, interpretation, and literature;
often from a historical perspective. The second part of this thesis deals with
a topic in what could be called computational philology, more specifically,
computational literary stylistics. The increasing availability of digitized texts
and effective computational methods to study them offer new opportunities.
These methods not only allow more data to be processed, they also suggest
different questions. Machine learning and the broader field of data science offer
the possibility of extracting knowledge from data in an automated, reproducible
manner.

Research questions. Since this thesis covers two main topics, we state the
research question for each topic, and another connecting the two.

Parsing language: To what extent is it possible to create linguistically rich pars-
ing models without resorting to handwritten rules by exploiting statistics
from annotated data?

Probabilistic algorithms for parsing and disambiguation select the most probable
analysis for a given sentence in accordance with a certain probability distribu-
tion. A fundamental property of such algorithms is thus the definition of the
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space of possible sentence structures that constitutes the domain of the probability
distribution. Modern statistical parsers are often automatically derived from
corpora of syntactically annotated sentences (“treebanks”). In this case, the
“linguistic backbone” of the probabilistic grammar naturally depends on the
convention for encoding syntactic structure that was used in annotating the
corpus.

Statistical parsers are effective but are typically limited to producing projec-
tive dependencies or constituents. On the other hand, linguistically rich parsers
recognize non-local relations, and analyze both form and function phenomena
but rely on extensive manual grammar engineering. We combine advantages of
the two by building a statistical parser that produces richer analyses.

Markers of literariness: What sorts of syntactic and lexical patterns may cor-
relate with and explain the concept of literature?

In contrast to genre fiction, literary novels do not deal with specific themes and
topics. However, they may still share stylistic and other implicit characteristics
that may be uncovered using text analysis and machine learning.

These two research questions are connected by the following question:

Syntax in literature: For what sorts of stylistic and stylometric tasks and un-
der which conditions can morphosyntactic information be exploited fruit-
fully?

Previous work has shown that simple textual features that are easy to extract,
in particular Bag-of-Words features, typically outperform structural features
such as syntax, which are comparatively expensive to extract. Our aim is to see
to what degree this holds in the case of (literary) fiction, and whether there are
specific aspects for which syntax is important.

Outline. The common themes in the two parts of this thesis are (a) the use of
tree fragments as building blocks and predictive features, and (b) non-local and
functional relations.

Part I deals with parsing and is concerned with general language use as made
available in annotated data sets of several languages.

Part II deals with literature and focuses on contemporary Dutch novels and
in particular on what differentiates literary language from the language of genre
fiction. This work is done in the context of the project “The Riddle of Literary
Quality,” which aims to investigate the concept of literature empirically by
searching for textual features of literary conventions in contemporary novels.

The two parts of this thesis can be read independently. One exception is that
the algorithm for extracting recurring tree fragments defined in part I is used in
part II, and should be referred to for specifics on that method.

Contributions. The contributions of this thesis can be summarized as follows:
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• Efficient extraction of recurring patterns in parse trees, which can be used
to build grammars, as features in machine learning tasks, and in linguistic
research in general. The method that is presented provides a significant
improvement in efficiency and makes it possible to handle much larger
corpora.

• A statistical parser automatically learned from treebanks, reproducing
rich linguistic information from the treebanks, such as discontinuous
constituency & function tags. The parsers are induced from data with
minimal manual intervention and evaluated on several languages.

• An investigation of what makes texts literary, use ratings from a large
online survey, and machine learning models of texts to predict those
ratings.

• These models, based on lexical, topical, and syntactic features, demon-
strate that the concept of literature is non-arbitrary, and predictable from
textual characteristics to a large extent.
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1 Syntax & Parsing Background

In which we survey previous work on syntactic analysis by computer, with particular
attention to Data-Oriented Parsing (DOP).

La plus part des occasions des troubles du monde sont
Grammariens. Noz procez ne naissent que du debat de
l’interpretation des loix; et la plus part des guerres, de
cette impuissance de n’avoir sçeu clairement exprimer
les conventions et traictez d’accord des Princes.
Most of the occasions for the troubles of the world are gram-
matical. Our lawsuits spring only from debate over the
interpretation of the laws, and most of our wars from the
inability to express clearly the conventions and treaties of
agreement of princes.

— de Montaigne (Essais, II, 12; trans. D. Frame, 1958)

Since this thesis is intended for a multi-disciplinary readership, this chapter
introduces the background for statistical parsing, including basic linguis-
tic notions. What is syntax, and why do we need it? It turns out that the

answer is not obvious, and ultimately boils down to the question why natural
languages are as complex as they are.

The rest of this chapter reviews syntactic representations and parsing tech-
nology for automatically assigning syntactic analyses to sentences. We end with
an exposition of Data-Oriented Parsing, the parsing framework that will be
used in this thesis, followed by a reflection on the competence-performance
distinction.

1.1 Syntax

Grammar determines the set of well-formed sentences that are part of a lan-
guage. Grammar consists of syntax and morphology. The syntax of a language
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governs which combinations of words form sentences1 and morphology which
combinations of morphemes form words and how they function in the sentence.
A trivial example:2

(1) a. the book
b. *book the

Note that there is nothing natural about the fact that a determiner should
precede its noun. There are languages in which determiners follow nouns, as
well as languages without any determiners.

Another role of syntax is to assign structure to a sentence. Syntactic relations
answer questions such as who did what to whom, while structure may also reveal
the building blocks of the sentence. For example:3

(2) a. a book [ about walking [ in the woods ] ]
b. #a book [ about walking] [ in the woods ]

Here we also see an example of an attachment ambiguity, which is a major source
of syntactic ambiguity. The first bracketing expresses the normal interpretation
of book that tells you about the kind of walking in woods. The second interpre-
tation is of a book that is specified to be both about walking and in the woods
(i.e., it is the book which is in the woods). Although the latter interpretation is
obviously absurd, note that there is no structural reason why this is so.

The division of labor between syntax and morphology depends on the def-
inition of what is a word. This is not an unproblematic notion, because there
is no definition that works across all languages. Two ways of defining words
are the prosodic definition (words are identified by stressed syllables) and the
grammatical definition (words are the units that can occur in isolation according
to morphology and syntax). For a given language with a clear definition of what
a word is, the division between morphology and syntax is clear.

On the other side syntax interfaces with semantics, viz. the meaning of words
and sentences. Although syntax is sometimes viewed as completely separate
from semantics and other linguistics divisions (“the autonomy of syntax”), there
is overlap in many cases, such as in the aforementioned who did what to whom, in
which semantic information is realized by syntactic means, and, conversely, in
syntactic ambiguities that can be resolved by semantics, such as the attachment
ambiguity above.

1Word order is often invoked when defining syntax. However, this reliance is not an inherent feature
of syntax. In less- and non-configurational languages morphology plays a larger role.
2 This thesis follows the common convention of prefixing ungrammatical examples with an asterisk.
3 The # symbol indicates a sentence or interpretation that is not felicitous, although not ungrammati-
cal.
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1.1.1 Why do languages have syntax?

It is instructive to wonder whether syntax is actually necessary for a language,
or at least, why it is as complex as it is. We will distinguish two aspects of
syntax (Koenig and Michelson, 2014). Compositional syntax specifies how the
meanings of expressions may be combined. Formal syntax determines which
combinations of words are accepted as part of the language. It is especially the
latter whose complexity seems incidental and non-essential.

Consider the language of simple arithmetic expressions. These are ordinarily
written in infix notation, with the operator between its operands:

2 ` 2

p3 ` 4q ˚ 5

The following are all ungrammatical:

2 2 `

3 4 ` 5 ˚

The latter examples use postfix notation,4 in which operators come after their
operands. In postfix notation, every permutation of numerals and operators ar-
guably forms a syntactically valid expression.5 Additionally, any ordering of op-
erations can be achieved without parentheses. This does mean that tokens must
be delimited in some way, because there is no alternation “operand–operator” as
in infix notation. Clearly, in the case of arithmetic expressions, syntax (beyond
the lexical level) is optional. Infix notation introduces a context-free grammar
along with attachment ambiguities that need to be resolved with parentheses
and precedence order, but this complexity is not intrinsic to the task.6

What this example shows is that it is perfectly possible to define a language
in which every possible sequence of tokens is a valid expression. So what is the
trade-off that is being made in a language that rejects a large part of the space of
possible expressions? Or is it simply an aspect of what makes natural languages
natural?

We can speculate about various reasons:

Processing: The encoding and decoding of a message with minimal syntax may
be more expensive. In postfix notation of arithmetic, interpretation relies
on keeping track of one or more stacks. The stack may be modified at each
step, and the effect of a given token depends on the current state of the
stack.

4 Postfix notation is also known as reverse Polish notation, in honor of logician Jan Łukasiewicz.
5 Caveat: there may not be enough operands on the stack, or operands may be left on the stack at
the end of the expression. For the sake of the argument this should be considered a semantic issue.
After all, the same expression could be used in another context where it does fit.
6 The similarities between infix notation and natural language do not end here. Experimental research
has shown that arithmetic attachment ambiguities influence natural language ambiguities, and vice
versa (Scheepers et al., 2011), suggesting that they rely on the same cognitive representations.
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Reliability: There is an advantage to being able to recognize a malformed
message, e.g., when communicating through an unreliable channel and
a sentence comes through only partially, this may be detected by its un-
grammaticality.

Language change: Since natural languages are generally not planned but
change for a variety of reasons, it may not be possible to maintain a
language where every combination of tokens is interpreted consistently;
i.e., given that other aspects of language are subject to change, there is no
reason why syntax would stay perfectly fixed.

Inherent complexity: What natural languages are used for is inherently more
complex than arithmetic expressions or computer instructions. Specif-
ically, it could be that language users have hierarchical internal repre-
sentations (Kirby, 2002), and it would therefore be natural that language
evolves to express them.

Instead of looking for a priori reasons for syntax, we can also consider em-
pirical evidence from linguistic typology, which maps the common and distin-
guishing features of the world’s languages.

There exist languages that are much simpler than most. The so-called pidgin
languages emerge when different groups of people come into contact that do
not share a language. The language combines vocabulary of the languages of
each of the group, but is syntactically simple.

Pidgin languages may creolize, which means that the language evolves into
a creole as the next generation learns the pidgin as a first language. This tends
to make the language more complex, including syntactically.

Another example is the case of Pirahã, a language spoken by a tribe of the
same name from the Amazonian jungle (Everett, 2005, 2009). The language
is claimed not to employ recursion—although this is a contentious claim (e.g.,
Nevins et al., 2009), which is difficult to resolve since the only outsiders who
have learned the language are Everett and two other missionaries. The language
makes it impossible to refer to something not directly witnessed, or indirectly to
the first degree (you know the person who witnessed it).7 Furthermore, Pirahã
counting is restricted to 1, 2, and many, noun phrases may only contain one or
two words, there are no words for colors, nor future or past tenses. In fact, both
the language and its syntax, as well as their culture, appear to be simpler than
most extant languages or cultures,8 and Everett (2005) concludes that these are
connected.

Jackendoff andWittenberg (2014) argue for a new hierarchy to describe gram-
matical complexity. Unlike the Chomsky hierarchy which is strictly concerned
with the formal power of types of rewrite rules, their hierarchy is designed to

7 This fact played a role in his failure to convert the tribe to Christianity; he gave up his ambitions
as a missionary and proceeded with an anthropological and linguistic study. He also abandoned
Chomskyan linguistics.
8 The language does make elaborate use of suffixing and compounding, but this does not affect the
argument that its syntax is exceptionally simple.
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accommodate empirical evidence on languages of differing grammatical com-
plexity. The hierarchy is as follows:

1. (a) One-word grammar
(b) Two-word grammar
(c) Linear grammar: sentences consist of an arbitrary number of words

2. Simple phrase grammar: words may be grouped into phrases
3. Recursive phrase grammar: possibility of recursive phrases is introduced.
4. Morphology: structure in words, independent of syntax.
5. Fully complex grammars may include: syntactic categories, grammatical

functions, long-distance dependencies, etc.

Almost all languages are at least in the recursive category. Languages with
a linear grammar or a simple phrase grammar may still fulfill all the semantic
and pragmatic needs of language users; they achieve this by relying more
on pragmatics and contextual factors. Jackendoff and Wittenberg (2014) cite
Pirahã, described above, and Riau Indonesian, as languages with a simple phrase
grammar. On the other hand, more complex grammars entail the possibility for
more precise sentences (generally less ambiguous).9

In conclusion, it seems that there is no clear and precise a priori reason
why languages need to rely on syntax and accept only particular sentences.
Other kinds of languages are possible. However, looking at different languages
of the world suggests that cognitive and cultural factors are most important
in explaining the role of syntax. There is a trade-off where complex syntax
increases precision and reduces the difficulty of interpretation and reliance on
contextual information.

1.1.2 Representations of syntax

Twomajor representations of syntax are constituency and dependency structures.
Both representations are hierarchical. This is evident for constituency structures,
which are often rendered as tree structures; dependency structures can be
rendered similarly, except that nodes consist solely of terminals.

Constituency structures, also known as phrase-structure trees, are built
around the notion of a constituent: a grouping of words or constituents that
functions as a unit (constituents with two or more words are called phrases).
Constituents may be labeled by a syntactic category. Edges between constituents
may be labeled by a (grammatical) function tag, although this is typically not
done for historical reasons.10 Figure 1.1 shows an example of a constituency
tree.

9 An important distinction here is that a complex grammar enables more precisely specified sentences
that are less ambiguous to the hearer; however, the complexity of the grammar would make the
language harder to parse for a computer. The simpler grammar is underspecified.

10Within generative linguistics work on English, functional relations were assumed to be derivable
from phrase structure. This works well for English, since it is a highly configurational language in
which for example the subject typically precedes the verb.
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Sentence

VP

NP

bookthe

Verb

took

NP

manthe

Figure 1.1: The first context-free grammar parse tree (Chomsky, 1956).

the man took the book
DET NOUN VERB DET NOUN

DET NSUBJ

DOBJ

DET

ROOT

Figure 1.2: A dependency structure for the same sentence as in Figure 1.1.

When words can be said to form a unit is not always self-evident. There
exist a range a constituency tests that can be applied as heuristics. We briefly
discuss the most commonly used tests (Santorini and Kroch, 2007, ch. 2). The
substitution test is the most basic. If a group of words in a given context can be
exchanged for a “pro-form,” then this provides evidence for constituent-hood.
A pro-form is a function word that stands in for a word or phrase (e.g., he for a
person, it for a noun, how for an adverb, so for an adjective). The movement test
moves a given phrase to another position in the sentence, to see if the sentence
is still grammatical. This may require the right intonation, for example when
a direct object is topicalized and moved to the sentence-initial position. The
question test attempts to use the phrase as the answer to a question, which needs
to be a constituent.

Dependency structures consist of word-to-word relations (with specific con-
straints). To adequately represent a sentence, these relations should be directed
and labeled. Each relation is from a head word to one of its dependents (an
argument or modifier). They do not directly encode higher-level units such as
constituents,11 nor do they carry syntactic category labels. The labels express
functional relations. This means that dependency structures are simpler and
more minimal than constituency structures; the same sentence may contain half
as much nodes in a dependency analysis as in a constituency analysis. Figure 1.2
shows an example of a dependency structure.

11 Some phrases can be derived by starting from the head word and recursively following its depen-
dents. On the other hand, dependency structures deliberately avoid encoding finite verb phrases,
so these cannot be inferred without additional heuristic rules. This is an instance of an exocentric
constituent, where two or more elements are combined without a clearly identifiable head.
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It is generally not possible to mechanically convert a constituency structure
into a dependency structure, or vice versa. This is because the constituency
structure will typically not encode the head word of each constituent, nor its
functional relations, while the dependency structure does not encode phrases
and their categories. Going from dependency to constituency is harder. For
particular languages and particular annotation schemes, it may be possible
to design a conversion procedure, although this will typically need to rely on
heuristics (e.g., Daum et al., 2004; Choi and Palmer, 2010).

However, if we consider dependency and constituency structures purely as
data structures, the labels can be used to encode anything we want, including
additional structural information. This strategy has been used to encode depen-
dency structures in constituency trees (Eisner, 1996), and vice versa (Hall and
Nivre, 2008; Fernández-González and Martins, 2015), in a way that is reversible
without information loss. Structures may be transformed for processing, and
back-transformed to the final output used in evaluation. In other words, the
linguistic and theoretical considerations about the right representations are
completely separate from the practical, technical aspects of which is the most
expedient structure to use.

The labels in syntactic analyses represent discrete distributionally-defined
categories based on intuitions of linguists.12 For purposes of evaluation, these
categories are taken as-is. However, it is unlikely that a given set of categories
is ideal, since it must lie on an arbitrary point in the spectrum of granularity.
Furthermore, certain choices are bound to be arbitrary due to different possible
perspectives. For example, consider verbs that are used as adjectives: the
walking man. ‘Walking’ is a verb in the form of a gerund, but it is modifying a
noun so it behaves like an adjective. Clearly, it has properties of both. Finally,
it can be argued that the categoricity itself is artificial and that the categories
may be replaced altogether by a continuous vector representation. For practical
purposes, the original syntactic categories will be used as gold standard in this
thesis.

Until now we considered the basic syntactic structure of sentences, which
is typically the focus in statistical parsing. Syntactic representations can also
encode more elaborate structure such as morphology, long-distance dependen-
cies, as well as preserving both form and function (syntactic categories and
functional relations). In fact it is possible to encode all of this information and
synthesize the information in dependency and constituency structures (Skut
et al., 1997). This is the kind of representation we will work with in Chapter 3.

More fine-grained representations are common in linguistically oriented
work. Examples are attribute-value matrices and feature structures, which may
encode more detailed information, from morphological features to semantic de-

12 Note that ultimately most evidence and data in (computational) linguistics rests on intuitions of
language users. Worse, most annotations are based not on field work and sufficient samples of
speakers, but on the introspective judgments of linguists themselves, with manifest limits in terms
of inter-annotator agreement.
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pendencies. These representations are more closely tied to particular linguistic
theories.

1.2 Parsing technology

Parsing consists of assigning the correct syntactic analysis to a given sentence,
chosen from among a set of candidates licensed by the grammar. Two main
challenges are to ensure that the correct analysis is among the possible candi-
dates (coverage), and that the correct analysis picked out from among these
candidates (accuracy, which requires resolving ambiguity).

It is perhaps surprising that the number of candidates is huge, even when no
ambiguity is apparent. Computational linguistics has been instrumental to this
realization. Church (1988, p. 138) gives an example of the trivial sentence “I see
a bird” and shows that the part of speech of each word is ambiguous according
to the dictionary (e.g., I may be a numeral, see occurs as noun in “the holy see”,
etc). Most combinations of part-of-speech tags are grammatical, so syntax cannot
rule the ambiguities out either. The way to cope with such ambiguity is to take
probabilities into account; the alternate part-of-speech tags for these words are
vanishingly rare.

We can distinguish several axes on which parsing technologies vary:

Manual versus automatic: manual grammars are handwritten by linguists;
other grammars are automatically induced from corpora. However, there
are several other degrees of manual intervention in between. Tree transfor-
mations and syntactic refinements can help bring out linguistic generaliza-
tions. Statistical and machine learning methods have tunable parameters,
which can have a large effect on the final outcome.

Statistical/probabilistic versus knowledge-intensive: statistics from lan-
guage use can be used to make parsing decisions. Grammars that do not
use statistics are sometimes referred to as rule-based or symbolic—but
this terminology is not helpful, since statistical parsers use rules and
symbols as well; a better terminology might be data-intensive versus
knowledge-intensive models.

Linguistically rich versus basic analyses: A basic analysis consists of phrase-
structures or dependencies. A linguistically rich analysis contains more
detailed information and aims for a consistent cross-linguistic account of
linguistic phenomena. Basic analyses enable effective statistical learning
methods; generalizing from richer analyses gets increasingly difficult due
to the complexity and sparsity of the data. Despite this, it should be
stressed that it is a pragmatic consideration.

Computational efficiency: On one end there are dependency and shift-reduce
parsers, which have become exceedingly fast in recent years (measured
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in hundreds of sentences per second). On the other end there are parsing
formalisms that are computationally intractable, which can only be used
with heuristics and approximations.

Historically, parsers have been based on handwritten grammars. This tradi-
tion continues to this day under the names grammar engineering, high-precision
grammars, and broad- or wide-coverage parsing; e.g., Grammatical Frame-
work (Ranta, 2011), Head-Driven Phrase-Structure Grammar (hpsg; Bender
et al., 2002; Bouma et al., 2001), and Lexical-Functional Grammar (lfg; Kaplan
and Bresnan, 1982). This work is characterized by detailed linguistic analyses,
often represented in attribute-value matrices. Analyses include grammatical
functions, long-distance relations, morphology, and co-indexation. However,
writing a grammar by hand is time consuming, and it is a task that is difficult
to manage: correcting an error may introduce more errors, all grammatical
sentences must be accepted (coverage), and only correct analyses should be pro-
duced (precision). Another common problem is that rich grammar formalisms
are often computationally intractable (Trautwein, 1995).

The availability of large amounts of data and computing power makes it
possible to exploit statistics of actual language use. Such data can be used
for estimating the probabilities of handwritten rules, or disambiguating the
analyses licensed by them. However, the logical next step is derive the grammar
from data as well. This has led to a line of work known as statistical parsing.

Most work in statistical constituency parsing is based on Probabilistic
Context-Free Grammars (pcfg) and extensions thereof.13 A context-free gram-
mar (cfg) consists of productions that rewrite a constituent into its direct
descendants; the latter may either be further constituents, or terminals (words):

NP Ñ DET NOUN NOUN Ñ book

The above productions state that one valid noun phrase consist of a determiner
followed by a noun, and that ‘book’ may be used as a noun. A set of productions
can be induced automatically from syntactic trees. When relative frequencies
of productions are included as well, a probabilistic model obtains, a pcfg. This
provides a simple, efficient and reasonably accurate model, given simple re-
finements to overcome the strong independence assumptions made by the pcfg
model. These assumptions can be broken down as follows (taken from Manning
and Schütze, 1999, ch. 11):

Place invariance: The probability of a subtree does not depend on where in
the string the words it dominates are [...]

Context-free: The probability of a subtree does not depend on words not
dominated by the subtree. [...]

Ancestor-free: The probability of a subtree does not depend on nodes in the
derivation outside the subtree. [...]

13 Another important line of work is dependency parsing (e.g., Nivre et al., 2007); however, this thesis
is focused on constituency analyses.
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Examples of refinements to weaken these assumptions are including parent
categories in the labels and introducing linguistic distinctions not present in the
original annotation (Klein andManning, 2003). Higher accuracy can be obtained
with further, automatic refinements, as well as different estimation methods that
go beyond the generative model. Examples are coarse-to-fine parsing (Charniak
and Johnson, 2005), discriminative re-ranking (Collins and Koo, 2005), latent
variable models (Matsuzaki et al. 2005; later picked up by Petrov et al. 2006, etc.),
and neural parsers (Henderson, 2004; Socher et al., 2013). These models have
established a steep curve of increasing accuracy and efficiency over the years,
but there is a single-minded focus on attaining the highest score, without much
attention to whether the analyses adequately describe the linguistic phenomena,
or whether the parser could serve as a plausible cognitive model.

An alternative is to strike a balance between linguistic adequacy and effi-
ciency, and find a grammar formalism that is just powerful enough to describe
the syntax of natural language. Joshi (1985) proposes Mildly Context-Sensitive
grammars, which are beyond context-free, but avoid the computational com-
plexity that comes with the full class of context-sensitive grammars. The first
formalism developed in this framework was Tree-Adjoining Grammar (tag;
Joshi, 1985). There has been work on automatic extraction of tree-adjoining
grammars from corpora (Chiang, 2000; Xia et al., 2001; Kaeshammer and Dem-
berg, 2012), and formal extensions such as multi-component tag (Weir, 1988;
Schuler et al., 2000; Kallmeyer, 2009). Another successful formalism in this
line of research is Combinatory Categorial Grammar (ccg; Steedman, 2000), a
lexicalized grammar formalism based on combinatory logic.

The (somewhat informal) notion of mild context-sensitivity was introduced
by Joshi (1985) to capture precisely the amount of generative capacity needed to
describe natural languages—as opposed to employing richer frameworks which
require ad-hoc constraints to be tractable. Mildly context-sensitive languages
are characterized by the following properties:

1. limited crossed dependencies
2. constant growth
3. polynomial time parsing

For a formal description of these properties, refer to e.g., Groenink (1997). A
diverse set of formalisms with these properties has since developed. However,
while their structures and operations differ wildly, it has been observed that
they share two common properties (Vijay-Shanker et al., 1987; Weir, 1988):

Linear: only a bounded amount of structure can be added or removed by
applying productions, i.e., operations are size preserving

Context-free: choices during a derivation are independent of the context in
the derivation (where context is anything which is not being rewritten)

Furthermore, it does not matter whether the formalism rewrites strings,
tuples, or trees. This led to the introduction of Linear Context-Free Rewriting
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Systems (lcfrs), which subsumes all formalisms with these properties. Groenink
(1997) states that “[t]he class of mildly context-sensitive languages seems to be
most adequately approached by lcfrs.”

This thesis will use lcfrs to model discontinuous constituents.

1.3 Data-Oriented Parsing (dop)

Data-Oriented Parsing (dop; Scha, 1990; Bod, 1992) departs from the assump-
tion that language users process sentences based on fragments from previous
language experience. This experience can help in two ways:

A memory bias: “[T]he number of constructions that is used to re-construct the
sentence in order to recognize it must be as small as possible.” (Scha, 1990).

A probabilistic bias: “More frequent constructions are to be preferred above
less frequent ones.” (Scha, 1990).

In Data-Oriented Parsing the grammar is implicit in the treebank itself, and
in principle all possible fragments from its trees can be used to derive new
sentences. Grammar induction is therefore conceptually simple (even though
the grammar may be very large), as there is no training or learning involved.
This maximizes re-use of previous experience.

The use of all possible fragments allows for multiple derivations of the same
tree; this spurious ambiguity is seen as a virtue in dop, because it combines the
specificity of larger fragments and the smoothing of smaller fragments. For
example, consider two large fragments from sentence A and B that provide
evidence for a given analysis of a sentence, but they cannot form a derivation
together because they overlap or a piece is missing. By using them in two
separate derivations, they both contribute towards preferring this analysis.

This is in contrast to parsimonious approaches which decompose each tree in
the training corpus into a sequence of fragments representing a single derivation,
such as in Bayesian Tree-Substitution Grammars (tsg; Post and Gildea, 2009;
Cohn et al., 2010). In Bayesian approaches for tsg induction the treebank is
used to induce a corpus of derivations. This leads to a gain in efficiency and is
based on sound statistical theory, but the performance of Bayesian tsg models
has been lower than heuristically trained dopmodels. This may be simply due to
the fact that the former models are parsimonious, which leads to smaller models
with less fragments.

The definition of a dop model can be broken down into four parts (Bod,
1995a):

Fragments: what are the units on which the model operates?
Operations: what operations can be performed to combine or alter fragments?
Estimation: how will the probability of performing operations on particular

fragments be determined?
Disambiguation: how will the most appropriate parse tree be selected among

candidates?
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1.3.1 dop operationalized with Tree-Substitution Grammar

The first instantiation of dop is dop1 (Bod, 1992), which is a Probabilistic Tree-
Substitution Grammar (ptsg).14 A tree-substitution grammar can be seen as a
context-free grammar which rewrites trees instead of strings. It is defined by a
set of elementary trees and a substitution operation which combines these trees
until they form a derivation of a complete sentence.

A derivation is defined as a sequence of elementary trees combined through
left-most substitution. Left-most substitution is defined for any two trees t1 and
t2, such that t1 has a frontier node labeled X and rootpt2q “ X; the result of
t1 ˝ t2 is a new tree where t2 is substituted for the first frontier node labeledX in
t1. The probability of a derivation is the product of the weights of its elementary
trees.

In general, a tree-substitution grammar is not equivalent to a context-free
grammar. However, in the case of dop1, the set of elementary trees is such that
their generative powers are in fact identical. Specifically, all fragments are built
up out of cfg rules, and all cfg rules are themselves fragments of depth 1, so
the generative power must coincide.

Although the generative power of the underlying grammar is identical to a
context-free grammar, probabilities are estimated not just on the basis of the
frequencies of cfg rules, but by considering all connected fragments of the trees
in the training15 data. More specifically, a fragment of a tree is a tree of depth
ě 1, such that every node has a corresponding node in the original tree, and has
either no children, or the same children as in the original tree. When a node in a
fragment has zero children, it is called a frontier node. Frontier nodes are the
substitution sites of fragments, and correspond to open slots in constructions.
Figure 1.3 shows the bag of fragments extracted from a sentence; Figure 1.4
shows a dop1 derivation with these fragments.

Since these fragments can cover an arbitrary number of terminals & non-
terminals, the independence assumptions made in parsing are much weaker,
and much more information from the training data is exploited during parsing.
It is tempting to conclude that dop models all possible statistical dependen-
cies, because dop uses all fragments. This is not true, however, for several
reasons. For one, there could be more general definitions of what constitutes a
fragment; e.g., relaxing the assumption that a ‘fragment’ must be a connected
subset. Furthermore, certain statistical regularities cannot be captured using
frequencies of fragments, such as Markov processes or phenomena that violate
the place-invariance assumption. Lastly, and most importantly, while dop1 is
strong on modeling structural relations, it is not sensitive to lexical dependen-
cies (Sima’an, 2000). The dop1 model does weaken both the context-free and

14 Sometimes the name Stochastic Tree-Substitution Grammar (stsg) is used, but ‘probabilistic’ avoids
confusion with synchronous grammars.

15 Technically, a dop model is not trained, because its probabilities are directly derived from data. We
will, however, maintain the terminology of training and testing to distinguish the part of the data
which the parser has at its disposal and the strictly separated part which the model is evaluated on.
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Figure 1.3: The fragments as extracted from “Daisy loved Gatsby.”

S

NP VP

VB NP

loves

NP

Daisy

NP

Gatsby

S

NP VP

VB NP

Daisy loves Gatsby

Figure 1.4: A dop1 derivation. Note that “Daisy” becomes the subject, because
fragments are combined with left-most substitution.

the ancestor-free assumptions made by pcfg models, through its probabilities of
larger fragments. Additionally, there can be multiple sequences of fragments
which cover the sentence, because there will be overlap. This so-called spurious
ambiguity should be exploited because it allows a more fine-grained comparison
of possible analyses for a sentence.

This suggests two fundamental methods of disambiguation based on fre-
quencies: the most probable derivation (mpd), and the most probable parse (mpp).
The former maximizes the probability of an individual derivation (one sequence
of fragments leading to a complete analysis). The latter maximizes the sum of
derivations leading to the same analysis, i.e., we choose t to maximize

P ptq “
ÿ

dPDptq

ź

fPd

ppfq

where Dptq is the set of possible derivations of t. Bod (1995b) cites a score of
65% when using the mpd, and 96% with the mpp. Unfortunately, this step of
calculating not just the mpd but the mpp is often neglected in dop-inspired tree-
substitution grammars (O’Donnell et al., 2009; Cohn et al., 2009; Post and Gildea,
2009), in pursuit of a more economical or efficient model. However, there are
arguments for keeping track of all possible frequencies, namely the importance
of frequency in grammaticalization and the formation of idioms (Bybee, 2007).
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Since it appears that arbitrary units can partake in this process, all fragments
& frequencies must be available. This leaves the door open to topics such
as language change & acquisition, instead of modeling a parsimonious but
synchronic snapshot provided by the sample that is the training corpus.

It has been shown that the problem of finding the most probable parse
is np-hard (Sima’an, 2002). Consider that there is an exponential number of
fragments for each tree, hence a potentially exponential number of derivations,
and it follows that the exact best parse cannot be identified in polynomial time,
in the general case. However, this is not a problem in practice, as there are
methods to approximate the best parse effectively, using any number of random
or best derivations.

There is also a non-probabilistic method of disambiguation, the shortest
derivation (Bod, 2000). The objective is to minimize the length of the derivation.
In order to break ties of multiple shortest derivations, some additional criterion
is necessary. An example of this is the most probable shortest derivation (mpsd),
which breaks ties by looking at derivation probabilities.

1.3.2 Estimators

In dop1 the probability of a fragment f from the set of all fragments F being
substituted for a frontier node with label rootpfq in a derivation is given by its
relative frequency:

freqpfq
ř

f 1PF 1 freqpf 1q
where F 1 “ t f 1 P F | rootpf 1q “ rootpfq u

Johnson (2002a) has shown that this estimator is biased and inconsistent. The bias
of an estimator is the difference between the estimator’s expected value16 and
the true value of the parameter being estimated. For a dop estimator, a sample
consists of a sequence of parse trees (a training corpus) sampled from the true
distribution; the parameter being estimated is a distribution over parse trees.
A dop estimator is biased iff there is a distribution such that the estimator’s
expected probability distribution given all training corpora of a certain size
has a non-zero difference with the true distribution. Bias can be a good thing:
it allows the estimator to make systematic generalizations not licensed by the
data, e.g., a preference for re-use. It has been shown that an unbiased dop

estimator is useless: it must assign a weight of zero to any parse tree not part
of the training corpus (Prescher et al., 2003). Still, the kind of bias is crucial.
An issue with dop1 is that it has a bias for larger trees Bonnema et al. (1999).
There are many more large trees than small trees; analogously, a large tree has
many more fragments than a small tree. This is reflected in dop1’s probabilities
since these directly reflect frequencies. However, it is rather easy to remedy this
particular deficiency by scaling the probabilities appropriately, as suggested

16 The expected value of an estimator is the average estimate given all possible samples.
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by Bonnema et al. (1999) and Goodman (2003). Goodman’s strategy, the equal
weights estimate (ewe), is employed by Bod (2003) and yields good results.

A more serious challenge is inconsistency. An estimator is consistent iff
the predictions of the estimator get arbitrarily close to the real distribution
as the amount of training data grows to infinity. Note that this property only
guarantees convergence in the limit; an estimator can be consistent without
performing well on real-world corpora, and vice versa. A reason for dop1’s
inconsistency is the fact that, by design, it reserves probability mass for all
fragments, even those for which productivity has not been attested. For example,
in the Wall Street Journal, the contraction ‘won’t’ is annotated as two words,
but ‘wo’ does not combine with any other word, so the true distribution simply
assigns a probability of zero for any fragment containing ‘wo’ but not ‘n’t’, while
dop1 will always reserve probability mass for such combinations which may
never materialize (Zuidema, 2007).

Observe why bias and consistency are orthogonal: bias is a property of all
the estimates taken together (does the mean of the estimates equal the true
distribution?), whereas consistency is a property of a sequence of estimators
(will it progress towards and reach the true distribution?). If we take as an
example throwing darts at a dartboard while aiming for the bulls-eye, then
hitting a circular pattern around the bulls-eye is unbiased, no matter the error,
while consistency refers to approaching the bulls-eye after practice.

Zuidema (2006) argues convincingly that bias and consistency are simply not
useful criteria for judging ptsg estimators: the problem of estimating fragment
weights from corpora is underdetermined. We can also consider the frequencies
of trees produced by a ptsg compared to the expected frequencies of trees in
the true distribution. In this case it is possible to achieve consistency, as dop*
does, but only with an estimator that, in the limit, assigns all its weight to full
parse trees. Different criteria such as speed of convergence (Zollmann, 2004) or
robustness in the face of noise might yield more immediate benefits.

Despite these theoretical issues, the best results in dop on the Penn tree-
bank have been attained with inconsistent estimators based on relative frequen-
cies (Bod, 2003; Sangati and Zuidema, 2011).

1.3.3 The importance of fragment selection

Until now we have considered the statistical properties of estimators and
whether they assign the right probabilities. A more fundamental question
is which productions the grammar should be composed of. In the case of dop,
this amounts to which fragments to assign a non-zero weight. The minimal
model which corresponds to a treebank pcfg includes all productions of the
training set which guarantees that those trees can be generated. Between this
minimalist model and the maximalist all-fragments model, there is a whole
spectrum of possible choices of fragments. It is important to note that while the
fragments are extracted from the treebank, they are not observed as such, since
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there is no evidence of fragment boundaries; another way of stating this is that
the treebank provides a corpus of complete parse trees, but not of derivations
with derivation steps. This choice of fragments can be considered from a statisti-
cal point of view, but this is not necessary. It is also possible to turn to heuristics,
as we will see in the next chapter.

In my experience getting the right productions is the more decisive aspect in
practice: without the right productions or fragments, no amount of statistical
sophistication will produce the right analyses. In terms of the dop biases,
this means that the memory bias trumps the probabilistic bias. If a given
sentence fragment has beenmemorized, there is no need to determine its internal
structure using probabilistic reckoning. Concretely, this means that, all else
being equal, a larger fragment grammar will typically perform better, even with
simplistic relative-frequency weights.

Relatedly, all manner of preprocessing steps are more crucial and contribute
more to the final performance of the model than its statistical modeling or
clever optimization techniques. A case in point is the Collins parser, a parser
that exploits bilexical dependencies and incorporates an impressive amount of
linguistic knowledge (Collins, 1999). However, the efforts of Bikel (2004) at
reimplementing the Collins parser show

that bilexical dependencies are barely used by the model and that
head choice is not nearly as important to overall parsing performance
as once thought.

Various details that were previously unpublished accounted for an 11 %
relative error reduction, while a host of published preprocessing steps amount
to an even more dramatic improvement over the treebank pcfg baseline.

1.4 Revisiting competence and performance

The notions of competence and performance (Chomsky, 1965) have been influen-
tial in linguistics, including computational linguistics.17 Linguistic competence
comprises a language user’s “knowledge of language,” usually described as a
system of rules, while linguistic performance includes the details of the user’s
production and comprehension behavior. For a computational model, its syn-
tactic competence defines the set of possible sentences that it can process in
principle, and the structures it may assign to them, while its performance
includes such aspects as disambiguation using occurrence frequencies of gram-
matical constructions. Thus, the choice of a formalism to describe the system’s

17 The notions of competence and performance go further back. De Saussure introduced the related but
not equivalent concepts langue and parole. Both have been influenced by Wilhelm von Humboldt’s
notions of energeia (activity) and ergon (the product of such activity), which are again not equivalent
to the previous distinctions. However, the details shall not concern us since in this section we are
specifically concerned with the influence of the notion of competence on computational linguistics.
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competence grammar depends on one’s decisions on how syntax should be
formalized.

Regular and context-free grammars have been argued to be too lim-
ited (Chomsky, 1956; Shieber, 1985), while richer alternatives—context-sensitive
and beyond—are considered too powerful to allow for an efficient computa-
tional implementation; this applies to Transformational Grammar (Peters and
Ritchie, 1973), Lexical-Functional Grammar, and Head-Driven Phrase Structure
Grammar (Trautwein, 1995). A third option is to seek a careful comprise, such
as Mildly Context-Sensitive grammar (Joshi, 1985), which are beyond context-
free, but avoid the computational complexity that comes with the full class
of context-sensitive grammars. This has been relatively successful, although
there always seem to be recalcitrant phenomena that fall outside the generative
capacity of a particular formalism, rendering it unlikely that the search for the
‘true’ formalism will converge on describing all of natural language.

Irrespective of whether one accepts the competence-performance dichotomy,
a practical natural language system needs to deal with phenomena that depend
on world knowledge reflected in language use (e.g., the fact that in “eat pizza with
a fork”, with a fork is prototypically related to eat rather than to pizza). This has
led to a statistical turn in computational linguistics, in which models are directly
induced from treebanks (Scha, 1990; Charniak, 1996; Bod et al., 2003; Geman
and Johnson, 2004). If the end goal is to make an adequate model of language
performance, there is actually no need to have a competence grammar which is
‘just right.’ Instead, we might reduce some of the formal complexity by encoding
it in statistical patterns. Concretely, we can opt for a grammar formalism that
deliberately overgenerates, and count on grammatical analyses having a higher
probability of being selected during disambiguation. This operationalizes the
idea of there being a spectrum between ungrammaticality, markedness, and
felicity. In a later chapter (Section 3.3.1) we introduce an approximation of
lcfrs that makes it possible to produce discontinuous constituents in cubic time
using a context-free grammar, by encoding information in non-terminal labels.
A probabilistic variant of the resulting grammar makes stronger independence
assumptions than the equivalent lcfrs, but as a component in a larger statistical
system this does not have to pose a problem.

In the debate about the context-freeness of language, cross-serial depen-
dencies have played an important role (Huybregts, 1976; Bresnan et al., 1982;
Shieber, 1985). Consider the following example in Dutch:

(3) Jan
Jan

zag
saw

dat
that

Karel
Karel

hem
him

haar
her

laat
lets

leren
teach

zwemmen.
swim.

‘Jan saw that Karel lets him teach her to swim.’

Ojeda (1988) gives an account using discontinuous constituents; cf. Figure 1.5. In
Section 3.3.1 we show how such analyses may be produced by an overgenerating
context-free grammar.

This is an instance of the more general idea of approximating rich formal
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Figure 1.5: Cross-serial dependencies in Dutch expressed with discontinuous
constituents.

models in formally weaker but statistically richer models, i.e., descriptive as-
pects of language that can be handled as a performance rather than a competence
problem. Another instance of this is constituted by the various restricted ver-
sions of tag, whose string languages form a proper subset of those of lcfrs.
Restricted variants of tag that generate context-free string languages are Tree-
Insertion Grammar (Schabes and Waters, 1995; Hoogweg, 2003; Yamangil and
Shieber, 2012), and off-spine tag (Swanson et al., 2013); tsg is an even more
restricted variant of tag in which the adjunction operation is removed altogether.
These results suggest that there is a trade-off to be made in the choice of for-
malism. While on the one hand Mild Context-Sensitivity already aims to limit
formal complexity to precisely what is needed for adequate linguistic descrip-
tion, a practical, statistical implementation presents further opportunities for
constraining complexity.

The idea that non-local relations can be expressed in context-free grammar is
not new. For example, Schmid (2006) uses slash features in non-terminal labels,
which in turn was inspired by generalized phrase structure grammar (gpsg;
Gazdar et al., 1985). gpsg was a project which aimed to offer both a practical
and formal description of natural language in a context-free framework using
innovations such as generated grammar rules, feature instantiations, and separa-
tion of immediate dominance and linear precedence. However, as the evidence
against the context-freeness of language surfaced, and gpsg was displaced by its
successor Head-Driven Phrase Structure Grammar (hpsg), which as a unification-
based formalism lacks the computational properties to ensure efficient analysis,
the aim of restricting the complexity of grammar formalisms lost appeal, and
the notion that the unbounded possibilities of competence should dictate the
capabilities of the grammar formalism was, tacitly or not, reinstated.

Another performance aspect of language relevant for computational linguis-
tics is pruning. While normally considered an implementation aspect made
necessary by practical computational limitations, finding linguistically and
psychologically plausible shortcuts in language processing forms an interest-
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ing research question. Schuler et al. (2010) present a parser with human-like
memory constraints based on a finite-state model. Although Roark et al. (2012)
are not concerned with cognitive plausibility, they also work with finite-state
methods and show that cfg parsing can be done in quadratic or even linear time
with finite-state pruning methods.

As a specific example of a cognitive limitation relevant to parsing algorithms,
consider center embedding. Karlsson (2007) reports from a corpus study that
center embeddings only occur up to depth 3 in written language, and up to
depth 2 in spoken language. If a statistical parser would take such cognitive
limitations into account, many implausible analyses could be ruled out from
the outset. More generally, it is worthwhile to strive for an explicit performance
model that incorporates such cognitive and computational limitations as first
class citizens.

In this work we do not go all the way to a finite-state model, but we do
show that the non-local relations expressed in discontinuous constituents can
be expressed in a context-free grammar model. We start with a mildly context-
sensitive grammar formalism to parse discontinuous constituents, augmented
with tree substitution. We then show that an approximation with context-free
grammar is possible and effective. We find that the reduced independence as-
sumptions and larger contexts taken into account as a result of tree substitution
make it possible to capture non-local relations without going beyond context-
free. Tree substitution thus increases the capabilities of the performance side
without increasing the complexity of the competence side. A performance phe-
nomenon that is modeled by this is that non-local relations are only faithfully
produced as far as observed in the data.
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2 Extracting recurring tree fragments

In which we present an efficient method for finding recurring patterns in treebanks,
which we will use to build grammars and analyze texts.

Einmal ist keinmal.
Once doesn’t count
— German proverb

We present an algorithm and implementation for extracting recurring
fragments from treebanks. Using a tree-kernel method the largest
common fragments are extracted from each pair of trees. The algo-

rithm presented achieves a thirty-fold speedup over the previously available
method on the Wall Street Journal data set. It is also more general, in that it
supports trees with discontinuous constituents. The resulting fragments can
be used as a tree-substitution grammar or in classification problems such as
authorship attribution and other stylometry tasks.

Treebanks are a rich source of lexical and structural patterns. A simple
and common approach is to consider the frequencies of individual grammar
productions; the main example being treebank grammars for parsing (Charniak,
1996), but also stylometry (cf. Baayen et al., 1996; Raghavan et al., 2010; Ashok
et al., 2013). Richer patterns involve multiple lexical items or constituents; i.e.,
they may consist of the co-occurrence of a sequence of productions that make
up a specific phrase or a grammatical construction. Kernel methods, which
quantify similarity by decomposing a signal into components, and specifically
tree-kernel methods (Collins and Duffy, 2001, 2002), consider such patterns
but obtain only a numeric value about the degree of similarity of structures,1

without making explicit what the structures have in common. The usefulness of
extracting explicit fragments, however, is underscored by one of the conclusions
of Moschitti et al. (2008, p. 222):

The use of fast tree kernels (Moschitti, 2006a) along with the pro-
posed tree representations makes the learning and classification

1 In fact, the practice of using a kernel to quantify similarity without making it explicit is referred to
as the ‘kernel trick’ in the machine learning literature.
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much faster, so that the overall running time is comparable with
polynomial kernels. However, when used with [Support Vector Ma-
chines] their running time on very large data sets (e.g., millions
of instances) becomes prohibitive. Exploiting tree kernel-derived
features in a more efficient way (e.g., by selecting the most relevant
fragments and using them in an explicit space) is thus an interesting
line of future research.

Post and Bergsma (2013) reports experiments demonstrating this difference in
efficiency between implicit and explicit features. svm-like, adaptive algorithms
now exist (Crammer et al., 2006; Shalev-Shwartz et al., 2011), which may over-
come the efficiency challenge. but that still leaves that fact that the enormous
feature space may be inherently unwieldy, and being able to reason about an
explicit list of features remains useful.

Aside from their use as features in machine learning tasks, tree fragments
also have applications in computational linguistics for statistical parsing and
corpus linguistics.

Since we will focus on the problem of finding the largest common fragments
in tree pairs, there is an intuitive relation to the problem of finding all longest
common subsequences of a string pair. However, in the case of tree structures
the problem is more constrained than with sequences, since any matching nodes
must be connected through phrase-structure.

An algorithm for extracting recurring phrase-structure fragments was first
presented by Sangati et al. (2010). Their algorithm is based on a Quadratic Tree
Kernel that compares each node in the input to all others, giving a quadratic
time complexity with respect to the number of nodes in the treebank. Moschitti
(2006b) presents the Fast Tree Kernel, which operates in linear average time.
However, his algorithm only returns a list of matching nodes. This chapter
presents an algorithm that exploits the Fast Tree Kernel of Moschitti (2006b) to
extract recurring fragments, providing a significant speedup over the quadratic
approach.

2.1 Applications, related work

The two main applications of tree fragment extraction so far are in parsing and
classification problems.

Tree fragments can be used as grammar productions in Tree-Substitution
Grammars (tsg). tsgs are used in the Data-Oriented Parsing framework;
dop (Scha, 1990; Bod, 1992). In Data-Oriented Parsing the treebank is consid-
ered as the grammar, from which all possible fragments can in principle be
used to derive new sentences through tree-substitution. Grammar induction is
therefore conceptually straightforward (although the grammar is very large),
as there is no training or learning involved. This maximizes re-use of previous
experience.
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Since representing all possible fragments of a treebank is not feasible (their
number is exponential in the number of nodes), one can resort to using a sub-
set, but sampling or arbitrary restrictions are likely to lead to a suboptimal
set of fragments, since the vast majority of fragments occur only once in the
treebank (Sangati et al., 2010). Double-dop; 2dop (Sangati and Zuidema, 2011)
avoids this by restricting the set to fragments that occur at least twice. The
heuristic of this model is to construct the grammar by extracting the largest
common fragments for every pair of trees, just as the tool presented in this chap-
ter. A recent implementation generalizes this model to trees with discontinuous
constituents (van Cranenburgh and Bod, 2013).

An alternative to the all-fragments assumption of dop takes a Bayesian
approach to selecting fragments and assigning probabilities (O’Donnell et al.,
2009; Post and Gildea, 2009; Cohn et al., 2010; Shindo et al., 2012) Such Bayesian
tsgs are induced by sampling fragments using Markov Chain Monte Carlo
(mcmc) following a Zipfian long tail distribution.

Aside from the generative use of fragments in tsgs, tree fragments are also
used for discriminative re-ranking. Implicit fragment features (counted but
not extracted) are used in Collins and Duffy (2001, 2002) through a tree kernel,
and explicit fragment features are used in Charniak and Johnson (2005, p. 178:
HeadTree and NGramTree features). Another discriminative application of
recurring fragments is in text classification tasks. Common tree fragments can
be used to define a similarity measure between texts, which can be applied to the
task of authorship attribution (van Cranenburgh, 2012c). In the latter case the
efficiency of extracting fragments has been exploited by extracting fragments at
classification time, i.e., a memory-based approach, without defining features in
advance. Other classification tasks have been modeled with fragments induced
by Bayesian tsgs: e.g., native language detection (Swanson and Charniak, 2012),
stylometry of scientific papers (Bergsma et al., 2012), and corpus analysis of
source code (Allamanis and Sutton, 2014).

Finally, there is a tradition in the data mining literature called frequent
tree mining or frequent structure mining (Jiménez et al., 2010). This tradition
does not apply the maximal fragment constraint and explores different kinds
of fragments and trees. The approach is based on the Apriori algorithm and
works by generating candidates that occur with a specified minimum frequency.
However, the relaxation of the maximality constraint results in an exponential
number of fragments, while for linguistic applications the focus on frequent
fragments is arguably in conflict with the importance of the long tail in language,
specifically, the importance of low frequency events. See Martens (2010) though,
which applies a frequent tree mining approach to unordered dependency trees.

2.2 Definitions

The notion of a tree fragment is defined as follows:

Definition 1. A fragment f of a tree T is a connected subgraph of T , such that
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f contains at least 2 nodes, and each node in f either is an empty node (a
substitution site), or immediately dominates the same immediate children as
the corresponding node in T .

For the purposes of fragment extraction, we identify a non-terminal node of
a tree with its (grammar) production. The production at a non-terminal node is
a tuple of labels of that node and its immediate children. A label is either the
phrase label of a non-terminal node, or the lexical item of a terminal node.

Note that in Moschitti (2006a), this fragment definition corresponds to the
subset tree (sst) kernel. The sst kernel can be contrasted with the subtree
(st) kernel where all descendants of a subtree are retained, and the partial
tree (pt) kernel where nodes may include a subsequence of the children of the
corresponding node in the original tree. We only address the sst kernel.

The subset of possible recurring fragments we consider is defined by the
largest overlapping fragments for any pair of trees in the input:

Definition 2. Given a pair of trees xa, by, and a pair of nodes xp, qy such that
p is a node in a, q is a node in b, with p and q having the same production, the
maximal common fragment defined by xp, qy is the largest fragment f that occurs
in a incorporating node p and occurs in b incorporating node q.

Note that our definition of maximal common fragment differs from the one
in Sangati et al. (2010, sec. 2):

“A (partial) fragment τ shared between [two] trees is maximal if
there is no other shared (partial) fragment starting with the same
node as in τ and including all its nodes.”

Furthermore, in their formulation, maximality of fragments is determined
with respect to the first tree in the comparison (cf. Sangati et al., 2010, Algorithm
2, second statement). Our formulation determines maximality with respect to
node pairs, i.e., involving both trees. A consequence of this is that for the
algorithm of Sangati et al. (2010), the order of the trees in the input can have
an effect on the result; i.e., the extraction of fragments from a node pair is
not a commutative operation. Consider a pair of trees and the fragments that
FragmentSeeker (Sangati et al., 2010) extracts from them:
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When the order of the input is reversed, the second fragment is not extracted,
because it is a subset of the first. With our algorithm following Definition 2, the
two fragments are extracted regardless of the order of the input.
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Figure 2.1: Top: two example trees containing recurring patterns; the super-
script denotes an identifier for each node. Bottom: all maximal
fragments in the pair of trees on the left (frequencies in parentheses).
Note that the second fragment is a subgraph of the first fragment,
but is still a maximal fragment when considering xNP 1, NP 2y of
the first and second tree, respectively.
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We are also interested in the frequencies of fragments. The frequency is not
defined with respect to occurrences as maximal common fragment, but with
respect to all occurrences:

Definition 3. The occurrence count of a fragment in a treebank is the total
number of occurrences of a fragment in a collection of trees.

As an example of the preceding definitions, see Figure 2.1, which shows two
trees and their maximal common fragments with occurrence counts.

2.3 Fragment extraction with tree kernels

In this section we first discuss the Fast Tree Kernel, followed by the algorithm
to extract fragments from the matching nodes it finds. We then discuss two
extensions that find occurrence counts and handle discontinuous constituents.

Algorithm 1 lists the pseudocode for the Fast Tree Kernel (ftk) by Moschitti
(2006b). The pseudocode for extracting fragments is shown in Algorithm 2; the
main entry point is function recurring-fragments. This formulation is restricted
to binary trees, without loss of generality, since trees can be binarized into a
normal form and debinarized without loss of information.

Sangati et al. (2010) define the extraction of fragments as considering all pairs
of trees from a single treebank. Since it may also be interesting to investigate
the commonalities of two different treebanks, we generalize the task of finding
recurring fragments in a treebank to the task of finding the common fragments
of two, possibly equal, treebanks. In case the treebanks are equal, only half
of the possible tree pairs have to be considered: the fragments extracted from
xtn, tmy, with n ă m, are equal to those of xtm, tny.

2.3.1 The Fast Tree Kernel

See Algorithm 1 for the pseudocode of the Fast Tree Kernel. The insight that
makes this kernel fast on average is that the problem of finding common produc-
tions can be viewed as the problem of finding the intersection of two multisets
that have been sorted in advance. The input of the function fast-tree-kernel
is a pair of trees xa, by, that are represented as a list of nodes sorted by their
productions.2 The requirement for sorted input depends on an ordering defined
over the grammar productions, but note that the nature of this ordering is ir-
relevant, as long as it is consistently applied (e.g., productions may be sorted
lexicographically by the labels of the left and right hand sides of productions;
or productions can be assigned a sequence number when they are first encoun-
tered). The output is a boolean matrix where the bit at pn,mq is set iff the nodes
at those indices in the respective trees have the same production. From this

2 The requirement for sorted input does not affect the asymptotic complexity of the algorithm because
each tree is sorted separately, so is not affected by the total number of nodes in the treebank.
Furthermore, the sorting is done offline and only once.
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Input: A pair of trees xa, by, with the nodes of each tree sorted by a common
ordering on their productions. aris returns the i-th production in a.

Output: A boolean matrix M with Mri, js true iff the production at aris equals
the one at brjs.

1: function fast-tree-kernelpa, bq
2: i Ð 0, j Ð 0
3: M Ð |a| ˆ |b| boolean matrix, values initialized as false.
4: while i ă |a| ^ j ă |b|
5: if aris ă brjs

6: j Ð j ` 1
7: else if aris ą brjs

8: i Ð i ` 1
9: else

10: while aris “ brjs

11: j1 Ð j
12: while aris “ brj1s

13: Mri, j1s Ð true
14: j1 Ð j1 ` 1
15: i Ð i ` 1

Algorithm 1: The Fast Tree Kernel, adapted from Moschitti (2006b).

table the bitvectors corresponding to fragments are collected and stored in the
results table.

Given the trees from the introduction as input, the resulting set of matching
node pairs can be seen as a matrix; cf. Table 2.1. The matrix visualizes what
makes the algorithm efficient: there is a diagonal path along which comparisons
have to be made, but most node pairs (i.e., the ones with a different label) do not
have to be considered. The larger the number of production types, the higher
the efficiency. In case there is only a single non-terminal label, and hence only
one phrasal, binary production, the efficiency of the algorithm degenerates and
the worst-case quadratic complexity obtains.

2.3.2 Extracting maximal connected subsets

After the matrix with matching nodes has been filled, we identify the maximal
fragments that matching nodes are part of. We traverse the second tree in
depth-first order, in search for possible root nodes of fragments; cf. Algorithm 2,
line 6.

The fast tree kernel in Algorithm 1 returns matching node pairs as output.
The resulting adjacency matrix M is iterated over in line 8. This may appear to
be quadratic in the number of nodes of the trees, but only the cells for matching
node pairs need to be visited, and each pair is visited once. Since it is possible
to scan for cells with 1-bits efficiently (cf. Section 2.5), the linear average time
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Table 2.1: Matrix when trees in Figure 2.1 are compared. Highlighted cells
are nodes with a common production. The numbers indicate the
fragments extracted, corresponding with those in Figure 2.1. Note
that for expository purposes, the nodes are presented in depth-first
order.

complexity is maintained.
Whenever a 1-bit corresponding to a matching node pair is encountered, a

fragment with that node pair is extracted. Both trees are traversed in parallel,
top-down from that node pair onwards, to collect the subset of nodes for the
fragment; cf. Algorithm 2, line 9. Both trees need to be considered to ensure that
extracted subsets are connected in both trees. Every node pair that is visited
contributes a subtree corresponding to the production at the node pair, which is
added to the fragment that is being constructed. The node pair is marked such
that it will not be used in another fragment.

Note that the algorithm of Sangati et al. (2010) combines the tree kernel
and extraction of maximal connected subsets in a single pass, and is thus a
dynamic programming approach. That is, as the algorithm iterates over possibly
matching pairs of nodes, a new fragment may result which subsumes a fragment
extracted at an earlier stage. Our approach is able to use a greedy algorithm
for finding maximal subgraphs by using a two pass approach consisting of first
finding all matching nodes, and then extracting fragments.

2.3.3 Occurrence counts

It is possible to keep track of the number of times a fragment is extracted.
Because of the maximality constraint, this count is a lower bound on the true
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Input: A treebank TB, with the nodes of each tree sorted by their productions.
Output: A set F with maximal recurring fragments from TB.
1: function recurring-fragmentspTBq

2: F Ð H

3: for all xa, by P TB ˆ TB with a ‰ b
4: M Ð fast-tree-kernelpa, bq
5: F Ð F Y fragmentspa, b, rootpbq,Mq

Input: a, b are trees with arisl, arisr the index of
the left and right child of node i of a (mutatis mutandis for brjsl and brjsr).
M is a boolean matrix with Mri, js true iff the production at aris equals the
one at brjs.

Output: The set F of maximal fragments in a and b.
6: function fragmentspa, b, j,Mq {Traverse tree b top-down starting from j.}
7: F Ð H

8: for all i such that Mri, js

9: F Ð F Y extract-atpa, b, i, j,Mq

10: if has-left-childpbrjsq

11: F Ð F Y fragmentspa, b, brjsl,Mq

12: if has-right-childpbrjsq

13: F Ð F Y fragmentspa, b, brjsr,Mq

Input: Indices i, j denoting start of a fragment in trees a, b.
Output: The fragment f rooted at aris and brjs.
14: function extract-atpa, b, i, j,Mq {Traverse a and b top-down, in parallel.}
15: f Ð tree-from-productionparisq {Create a depth 1 subtree from a

grammar production.}
16: Mri, js Ð false {do not extract a fragment with this node pair again.}
17: if has-left-childparisq ^ Mrarisl, brjsls

18: fl Ð extract-atpf, a, b, arisl, brjsl,Mq {add as left subtree}
19: if has-right-childparisq ^ Mrarisr, brjsrs

20: fr Ð extract-atpf, a, b, arisr, brjsr,Mq {add as right subtree}

Algorithm 2: Extract maximal recurring fragments given common nodes for
each pair of trees in a treebank.
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occurrence count of a fragment. The true occurrence count may be useful for
a probabilistic model or for corpus analysis. To obtain such a count, a second
pass needs to be made over the treebank, in which for each fragment, all its
occurrences are counted—including occurrences that are not maximal for any
tree pair.

Counting exploits an inverted index listing the set of trees which contain
a given production. The inverted index is implemented with a compressed
bitmap (Chambi et al., 2016) that computes intersections efficiently. By taking
the intersection of the sets for all productions in a fragment, a set of candi-
date trees can be composed efficiently. These candidates will contain all of the
productions in the fragment, but it is necessary to traverse the candidates ex-
haustively to confirm that the productions are present in the right configuration
corresponding to the fragment.

Aside from obtaining counts, it is also possible to obtain for each fragment a
vector of indices of all trees that contain the fragment. This makes it possible to
inspect the contexts in which a fragment occurs—and also to address diachronic
questions, if the trees in the input are presented in chronological order.
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Dat werkwoord uitgevondenhad ze zelf

Figure 2.2: An illustration of the representation for trees with discontinuous
constituents. Shown on the left is the original discontinuous tree
from the Alpino treebank (van der Beek et al., 2002). On the right is
a version in which the phrase structure has been decoupled from its
surface form using indices.
Translation: That verb she had invented herself.
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2.4 Discontinuous fragments

The aforementioned fragment extraction algorithms can be adapted to support
trees with discontinuous constituents. A discontinuous constituent is a con-
stituent whose yield does not consist of a single contiguous string, but rather a
tuple of strings. As a simple example in English, consider:

(1) a. Wake your friend up
b. [VP Wake . . . up]

Where the phrasal verb in (1-a) may be said to constitute the discontinuous
constituent (1-b).

The first treebank that introduced discontinuous constituents as a major
component of its annotation is the German Negra treebank (Skut et al., 1997).
Syntax trees in this style of annotation are defined as unordered trees, with the
caveat that there is a total ordering of the words in the original sentence. This
caveat is important because for example in the case of the problem of calculating
the tree-edit distance between trees, the problem is tractable for ordered trees,
but not for unordered trees (Zhang et al., 1992).

We use a transform-backtransform approach which makes it possible to use
the fragment extraction algorithm without further modification. In order to use
the unordered trees from treebanks with discontinuous constituents, we use
the ordering of the words in the sentences to induce a canonical order for the
internal nodes of the tree. This makes it possible to use the same data structures
as for continuous trees.

We use a representation where leaf nodes are decorated with indices indicat-
ing their position in the sentence (cf. Figure 2.2). Using the indices a canonical
order for internal nodes is induced based on the lowest index dominated by
each node.

Indices are used not only to keep track of the order of lexical nodes, but
also to store where contributions of substitution sites end up relative to the
contributions of other non-terminals. This is necessary in order to preserve
the configuration of the yield in the original sentence. When leaf nodes are
compared, the indices stand in for the token at the sentence position referred
to. After a fragment is extracted, any indices need to be canonicalized. The
indices originate from the original sentence, but need to be decoupled from
this original context. This process of canonicalization is analogous to how a
production of a Linear Context-Free Rewriting System (lcfrs) can be read off
from a tree with discontinuous constituents (Maier and Søgaard, 2008), where
intervals of indices are replaced by variables.

The canonicalization of fragments is achieved in three steps, as defined
in the pseudocode of Algorithm 3; Figure 2.3 illustrates the process. In the
examples, substitution sites have spans denoted with inclusive start:end intervals,
as extracted from the original parse tree, which are reduced to variables denoting
contiguous spans whose relation to the other spans is reflected by their indices.
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As an example of this procedure, consider two variants of a famous quotation
attributed to Churchill, mocking the notion that sentences should not end with
a preposition:3

(2) a. Ending a sentence with a preposition is the sort of English up with
which I will not put.

b. This is the sort of tedious nonsense up with whichWinston Churchill
did not put.

Input: A tree fragment t with indexed terminals wi or intervals xi : j, . . . y as leaves
(0 ď i ă j ă n)

Output: A tree fragment with modified indices.
1: k Ð the smallest index in t
2: subtract k from each index in t
3: for all intervals I = xi : j, . . . y of the frontier non-terminals in t
4: for all i : j P I
5: replace i : j with i
6: subtract j ´ i from all indices k s.t. k ą j
7: for all indices i in t
8: if the indices i ` 1 and i ` 2 are not in t
9: k Ð the smallest index in t s.t. k ą i
10: subtract k ´ i from all indices y s.t. y ą i

Algorithm 3: Canonicalizing discontinuous fragments.

If we apply an analysis with discontinuous constituents, these sentences
contain a common verb phrase as an argument to the verb phrase “I will not” or
“Winston Churchill did not”, namely (3-a) and (3-b). If these are canonicalized,
they map to the same fragment (3-c):

(3) a. [VP up11 with12 which13 . . . put17 ]
b. [VP up7 with8 which9 . . . put14 ]
c. [VP up0 with1 which2 . . . put4 ]

However, the unmarked word order for this sentence would form a different
fragment, because a fragment represents a fixed configuration:

(4) This is the sort of tedious nonsense . . .
a. up with which I will not put

[VP up with which . . . put ]
b. with which I will not put up

[VP with which . . . put up ]
c. which I will not put up with

[VP which . . . put up with ]

When recurring fragments are extracted from the Tiger treebank (cf. Sec-

3 The (arguably unwarranted) proscription against preposition stranding is due to the influence of
Latin grammar and the notion that it signals an informal style (Yáñez-Bouza, 2006).
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Figure 2.3: Canonicalization of fragments extracted from parse trees. These
sample fragments have been extracted from the tree in Figure 3.1.
The fragments are visualized here as discontinuous tree structures,
but since the discontinuities are encoded in the indices of the yield,
they can be represented in a standard bracketing format as used by
the fragment extractor.
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tion 3.5.1), we find that 10.4 % of fragment types contain a discontinuous
node (root, internal, or substitution site). This can be contrasted with the
observation that 30 % of sentences in the Tiger treebank contain one or more
discontinuous constituents, and that 20.9% of production types in the plcfrs
treebank grammar of Tiger contain a discontinuous non-terminal. On the other
hand, when occurrence frequencies are taken into account, both the fragments
and productions with discontinuities account for around 6.5 % of the total
frequency mass.

2.5 Implementation

A number of strategies have been employed to implement the fragment ex-
traction algorithm as efficiently as possible. We use the Cython programming
language (Behnel et al., 2011) which is a superset of the Python language that
translates to C code and compiles to Python extension modules that seamlessly
integrate with larger Python applications. We use manual memory management
for the treebank and temporary arrays of the algorithm. This avoids the over-
head of garbage collection and the requirement that all values must reside in an
object (‘boxed’) as in Python and other managed languages.

A tree is represented as an array of tightly packed structs for each node, with
the grammar production represented as an integer ID, and child nodes using
array indices. Mapping productions to integer idsensures that comparisons
between productions are cheap. In contrast to a pointer-based tree, traversing
this array representation does not require indirection and has good memory
locality.

When a pair of trees is compared, the results are stored in a bit matrix. The
operations that need to iterate over set bits exploit cpu instructions to do this
efficiently on one machine word (typically 64 bits) at a time (e.g., the ‘find first
set’ instruction that finds the index of the first set bit of an integer). Fragments
are first stored as a bitvector of a given tree, where each bit refers to the presence
or absence of a particular production in the tree. These bitvectors are later
converted to a string with the fragment in bracket notation. This ensures that
fragments as extracted from different trees are recognized as equivalent and it
is the format in which the results are returned.

The problem of extracting fragments from a treebank is a so-called embar-
rassingly parallel problem. This means that the work on a single tree pair is not
affected by any other part of the treebank, and computations can be trivially
distributed over any available computing power. In order to exploit multiple
processing cores, we use the Python multiprocessing library. After reading the
treebank the tree pairs are distributed evenly over a pool of processes, after
which the results are collected.



2.6 Benchmark 41

Number of Time (hr:min)
Method Corpus Trees Fragments Wall cpu

Sangati et al. (2010):
qtk wsj 2–21 39,832 990,156 8:23 124:04

This work:
ftk wsj 2–21 39,832 990,890 0:18 4:01
ftk Negra, train set 18,602 176,060 0:04 0:32
ftk Gigaword, nyt 1999–11 502,424 9.7million 9:54 „ 160

Table 2.2: Performance comparison of fragment extraction with the Quadratic
Tree Kernel (qtk) and the Fast Tree Kernel (ftk) based algorithm. Wall
clock time is when using 16 cores.

2.6 Benchmark

As a benchmark we use the training sections of the wsj and Negra treebanks
(Marcus et al., 1993; Skut et al., 1997), and a section of the Annotated Giga-
word (Napoles et al., 2012, nyt_eng_199911), to validate that the more efficient
algorithm makes it possible to handle larger treebanks. The wsj treebank is
binarized with h “ 1, v “ 2 markovization (Klein and Manning, 2003) and
stripped of traces and function tags. To demonstrate the capability of work-
ing with discontinuous treebanks, we use the German Negra treebank, also
binarized with h “ 1, v “ 2 markovization, and punctuation re-attached as
described in van Cranenburgh (2012a). The Gigaword section is binarized with-
out markovization. Work is divided over 16 cpu cores to demonstrate that the
algorithm lends itself to parallelization.

See Table 2.2 for a performance comparison. For the Sangati et al. (2010)
implementation we use the implementation published as part of Sangati and
Zuidema (2011). Because we use the markovization setting of h “ 1, v “ 2
described above, we get a larger number of fragments and longer running time
than the results for the non-binarized wsj treebank in Sangati et al. (2010). The
times reported include the work for obtaining occurrence counts of fragments.4

Note that there is a slight difference in the number of fragments found, but
both implementations agree on 99.93 % of fragments found in the wsj tree-
bank. This difference is due to the difference in definition of what constitutes
a maximal fragment discussed in Section 2.2. The figure of 124 hours for the
wsj treebank with the implementation of Sangati et al. (2010) might seem large,
as the training set of wsj is not particularly large, at about 40K sentences, and
quadratic algorithms are typically considered reasonable. However, note that
the algorithm is quadratic with respect to the number of nodes in the treebank.
After binarization, there are 2,045,118 nodes in the training set of wsj, and the

4 Erratum: an earlier report on this work (van Cranenburgh, 2012b) reported run times without
occurrence counts, while the results of Sangati et al. (2010) include them, which exaggerated the
speedup.
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square of that number is considerable.

The Fast Tree Kernel delivers a substantial asymptotic improvement: we
obtain a 30-fold speedup over Sangati et al. (2010). This speedup opens up the
possibility of applying fragment extraction to much larger corpora. In addition
to the improvement in run time, the memory usage is eight times lower (less
than 1 gb per process).

Part of this speedup is attributable to the more low-level style of program-
ming using bitvectors and tightly packed data structures. However, in earlier
experiments with a re-implementation of the algorithms specified by Sangati
et al. (2010) with these optimizations, only a two-fold speedup was achieved.
Therefore, most of the speedup comes from the Fast Tree Kernel and the greedy
depth-first fragment extraction introduced in this chapter.

About 8.5 % of fragments extracted from the Negra treebank contain a
discontinuous root or internal node, compared to 30 % of sentences in the
treebank that contain one or more discontinuous constituents.

When the fragment extraction is applied to a larger number of trees from
Gigaword, the extraction of fragments is still feasible, as long as occurrence
counts are not requested, which does not scale as well as the other parts in terms
of run time. This is because obtaining the counts requires iterating over all
fragments and trees, both of which grow proportionately with treebank size.
Future work should focus on optimizing this aspect of the algorithm by improv-
ing the indexing of the treebank. Perhaps this can be done using a variant of
a suffix array. A suffix array of a corpus allows for arbitrary substring search
in time linear to the length of the substring (Abouelhoda et al., 2004). Suffix
arrays have been used for machine translation (Lopez, 2007). However, suffix
arrays only deal with strings. They would either need to be generalized to tree
structures, or adapted as a filter to speed up finding trees with matching termi-
nals. Alternatively, it may be the case that for the application of Probabilistic
Tree-Substitution Grammars, approximate frequencies suffice.

Figure 2.4 plots the number of fragments and run time as the number of trees
is increased. It is clear that the number of fragments extracted grows linearly
with the number of trees. The plot of the running time is not linear, but has a
slight curvature (similar to the graphs in Moschitti 2006a). While the tree kernel
is linear average time in the number of nodes, the number of tree pairs that are
compared is quadratic in the number of trees, when all tree pairs are considered.
The complexity can be limited further by only considering tree pairs with a
certain number of overlapping lexical items, or looking only at a sample of tree
pairs. A further optimization, suggested in Collins and Duffy (2001, sec. 5) and
implemented in Aiolli et al. (2007), is to exploit common subtrees in the input
by representing the set of trees as a single directed acyclic graph. Rieck et al.
(2010) present an Approximate Tree Kernel which attains a large speedup by
significantly reducing the space of fragments that are considered.
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Figure 2.4: A plot of the running time and the number of fragments as a function
of the number of trees in the input. The input is the Penn treebank,
Wall Street Journal section 2–21, binarized h “ 8, v “ 1; without
extracting occurrence counts.

2.7 Summary

We have presented a method and implementation for fragment extraction using
an average case linear time tree kernel. We obtain a substantial speedup over the
previously presented quadratic-time algorithm, and the resulting fragments and
frequencies have been validated against the output of the latter. Additionally,
we introduced support for discontinuous constituents.
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3 Richer Data-Oriented Parsing models

In which we extend DOP to handle discontinuous constituents and function tags,
and evaluate on multiple languages.

In this chapter we investigate new techniques to implement treebank-based
parsers that allow for discontinuous constituents. We present two systems.
One system is based on a string-rewriting Linear Context-Free Rewriting

System (lcfrs), while using a Probabilistic Discontinuous Tree-Substitution
Grammar (pdtsg) to improve disambiguation performance. Another system
encodes the discontinuities in the labels of phrase-structure trees, allowing for
efficient context-free grammar parsing.

3.1 Towards discontinuous parsing

When different parsing and disambiguation algorithms are applied to the same
treebank, their relative accuracy scores can be objectively assessed if the treebank
is split into a training set (that is used to induce a grammar and its probabilities)
and a test set (that provides a “gold standard” to assess the performance of the
system). This is common practice now. In many cases, however, the linguistic
significance of these evaluations may be questioned, since the test sets consist of
phrase-structure trees, i.e., part-whole structures where all parts are contigu-
ous chunks. Non-local syntactic relations are not represented in these trees;
utterances in which such relations occur are therefore skipped or incorrectly
annotated.

For certain practical applications this restriction may be harmless, but from
a linguistic (and cognitive) viewpoint it cannot be defended. Since Chomsky’s
transformational-generative grammar, there have been many proposals for for-
mal grammars with a less narrow scope. Some of these formalisms have been
employed to annotate large corpora; in principle, they can thus be used in
treebank grammars extracted from these corpora.

The Penn treebank, for instance, enriches its phrase-structure representations
with “empty constituents” that share an index with the constituent that, from a
transformational perspective, would be analyzed as originating in that position.
Most grammars based on the Penn treebank ignore this information, but it was
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SMAIN

PPART

NP

VNW N WW VNW BW WW

Dat
That

werkwoord
verb

had
had

ze
she

zelf
herself

uitgevonden
invented

Figure 3.1: A tree from the Dutch Alpino treebank (van der Beek et al.,
2002). ppart is a discontinuous constituent (indicated with crossing
branches) due to its extraposed np object. Key to part-of-speech
tags: vnw=pronoun, n=noun, ww=verb, bw=adverb. The tags also
contain additional morphological features not shown here, which
distinguish personal pronouns from others, and auxiliary verbs from
main verbs, etc. Translation: That verb she had invented herself.

Dat werkwoord had ze zelf uitgevonden
VNW N WW VNW BW WW

det

obj1

su
predm

vc

root

Figure 3.2: A dependency structure derived from the tree in Figure 3.1. The
obj1 arc makes this structure non-projective.

used by, e.g., Johnson (2002b), Dienes and Dubey (2003), and Gabbard et al.
(2006).

Another perspective on non-local syntactic dependencies generalizes the
notion of a “syntactic constituent,” in that it allows “discontinuous constituent
structures,” where a non-terminal node dominates a lexical yield that consists
of different non-contiguous parts (McCawley, 1982). Several German and Dutch
treebanks have been annotated in terms of discontinuous constituency, and
some statistical parsers have been developed that use these treebanks. Also,
phrase structures with co-indexed traces can be converted into discontinuous
constituent structures; the Penn treebank can therefore be transformed and
used in the discontinuous constituency approach (Evang and Kallmeyer, 2011).
Figure 3.1 shows an example of a tree with discontinuous constituents.

It is an annotation choice to employ discontinuous constituents; some tree-
banks elect not to model non-local phenomena, while others may choose differ-
ent mechanisms. For example, two German treebanks employ discontinuous
constituents (Skut et al., 1997; Brants et al., 2002), while another German tree-
bank does not (Telljohann et al., 2004, 2012). The annotation scheme of the
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latter treebank lacks information expressed in the former two. For instance, it
cannot encode the heads of non-local modifiers; with discontinuous constituents,
a modifier is a sibling of its head, regardless of their configuration. On the other
hand, the co-indexed traces of the Penn treebank provide more information
than discontinuous constituents, because they assume that constituents have
been moved from somewhere else in the tree and encode the original posi-
tion. Discontinuous constituents describe surface structure without making
such assumptions. Some phenomena that can be analyzed with discontinuous
constituents are extraposition, topicalization, scrambling, and parentheticals;
cf. Maier et al. (2014) for an overview of such phenomena in German.

The notion of discontinuous constituents in annotation is useful to bridge the
gap between the information represented in constituency and dependency struc-
tures. Constituency structures capture the hierarchical structure of phrases—
which is useful for identifying re-usable elements; discontinuous constituents
extend this to allow for arbitrary non-local relations that may arise due to such
phenomena as extraposition and free word order. There is a close relation of
discontinuous constituency to non-projectivity in dependency structures (Maier
and Lichte, 2011). Compare Figure 3.2, which shows a dependency structure for
the constituency tree in Figure 3.1. Note that in this dependency structure, the
edge labels are grammatical functions present in the original treebank, while
the constituent labels in Figure 3.1 are syntactic categories. The dependency
structure encodes the non-local relations within the discontinuous constituent.
On the other hand, it does not represent the hierarchical grouping given by
the np and ppart constituents. By encoding both hierarchical and non-local
information, trees with discontinuous constituents combine the advantages of
constituency and dependency structures. We will also come back to grammatical
function labels.

The present chapter is concerned with treebank-based parsing algorithms
that accept discontinuous constituents. It takes its point of departure in work
by Kallmeyer and Maier (2010, 2013) that represents discontinuous structures
in terms of a string-rewriting version of Linear Context-Free Rewriting Systems
(Section 3.2.1). In addition, we employ Tree-Substitution Grammar (tsg). We
make the following contributions:

1. We show that Tree-Substitution Grammar can be applied to discontinuous
constituents (Section 3.2.2) and that it is possible, using a transformation,
to parse with a Tree-Substitution Grammar without having to write a
separate parser for this formalism (Section 3.3.2).

2. We induce a tree-substitution grammar from a treebank (Section 3.4) using
a method called Double-dop (Sangati and Zuidema, 2011). This method
extracts a set of recurring tree fragments. We show that compared to
another method which implicitly works with all possible fragments, this
explicit method offers an accuracy and efficiency advantage (Section 3.3.2,
Section 3.6).
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recurring
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PRT
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Figure 3.3: Diagram of the systems explored in this chapter.

3. Fragments make it possible to treat discontinuous constituency as a statis-
tical phenomenon within an encompassing context-free framework (Sec-
tion 3.3.1, Section 3.4.5); this yields a considerable efficiency improvement
without hurting accuracy (Section 3.6).

4. Finally, we present an evaluation on three languages. We employ manual
state splits from previous work for improved performance (Section 3.5)
and discuss methods and results for grammars that produce function tags
in addition to phrasal labels (Section 3.5.3).

This work explores parsing discontinuous constituents with Linear Context-
Free Rewriting Systems and Context-Free Grammar, as well as with and without
the use of tree fragments through tree substitution. Figure 3.3 gives an overview
of these systems and how they are combined in a coarse-to-fine pipeline (cf. Sec-
tion 3.4.4).

3.2 Grammar formalisms

In this section we describe two formalisms related to discontinuous constituents:
(string rewriting) Linear Context-Free Rewriting Systems and Discontinuous
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Tree-Substitution Grammar.
(String rewriting) Linear Context-Free Rewriting Systems (lcfrs; Vijay-

Shanker et al., 1987) can produce such structures. An lcfrs generalizes cfg
by allowing non-terminals to rewrite tuples of strings instead of just single,
contiguous strings. This property makes lcfrs suitable for directly parsing
discontinuous constituents (Kallmeyer and Maier, 2010, 2013), as well as non-
projective dependencies (Kuhlmann and Satta, 2009; Kuhlmann, 2013).

A tree-substitution grammar (tsg) provides a generalization of context-free
grammar (cfg) that operates with larger chunks than just single grammar pro-
ductions. A probabilistic tsg can be seen as a pcfg in which several productions
may be applied at once, capturing structural relations between those produc-
tions.

Before defining these formalisms, we first define the tree structures they
operate on. The notion of a “discontinuous tree” stems from a long linguistic
tradition (Pike 1943, §§4.12–14; Wells 1947, §§55–62; McCawley 1982). It
generalizes the usual notion of a phrase-structure tree in that it allows a non-
terminal node to dominate a lexical span that consists of non-contiguous chunks.
In our interpretation of this idea, it results in three formal differences:

1. A non-terminal with non-contiguous daughters does not have a non-
arbitrary place in the left-to-right order with respect to its sibling nodes.
Therefore, it is not obvious anymore that the left-to-right order of the ter-
minals is to be described in terms of their occurrence in a tree with totally
ordered branches. Instead, we employ trees with unordered branches, while
every node is augmented with an explicit representation of its (ordered)
yield.

2. An “ordinary” (totally ordered) tree has a contiguous string of leaf nodes
as its yield. When we allow discontinuities, this property still applies to
the (totally lexicalized) complete trees of complete sentences. But for tree
fragments, it fails; their yields may contain gaps. In the general case, the
yield of a discontinuous tree is thus a tuple of strings.

3. Extracting a fragment from a tree now consists of two steps:

(a) Extracting a connected subset of nodes, and
(b) Updating the yield tuples of the nodes. In the yield tuple of every

non-terminal leaf node, every element (a contiguous chunk of words)
is replaced by a terminal variable. This replacement is percolated up
the tree, to the yield tuples of all nodes. Different occurrences of
the same word carry a unique index, to allow for the percolation to
proceed correctly.

We now proceed to give a more formal definition of our notion of a discon-
tinuous tree.
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Definition 4. A discontinuous syntactic tree is a rooted, unordered tree. Each
node consists of a label and a yield. A yield is a tuple of strings composed
of lexical items; the tuple of strings denotes a subsequence of the yield at the
root of the tree. We write xa by to denote a yield consisting of the contiguous
sequence of lexical items ‘a’ and ‘b’, while xa b, cy denotes a yield containing ‘a b’
followed by ‘c’ with an intervening gap. Given a node X ,

• the yield of X is composed of the terminals in the yields of the children of
X;

• conversely, the yield of each child of X is a subsequence of the yield of X ;
• the yields of siblings do not overlap.

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

WW
xuitgevondeny

WW
xhady

N
xzey

BW
xzelfy

Figure 3.4: A discontinuous tree with yield tuples.

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

WW
xuitgevondeny

NP
xDat werkwoordy

N
xwerkwoordy

VNW
xDaty

BW
xzelfy

N
xzey

WW
xhady

Figure 3.5: An equivalent representation of the tree in Figure 3.4, without cross-
ing branches.

Figure 3.4 shows a tree according to this definition in which discontinuities
are visualized with crossing branches as before. The same tree is rendered in
Figure 3.5, without crossing branches, to highlight the fact that the information
about discontinuities is encoded in the yields of the tree nodes.

Definition 5. An incomplete tree is a discontinuous tree in which the yields may
contain variables vn with n P N in addition to lexical items. Variables stand
in for any contiguous string of lexical items. An incomplete tree contains 2 or
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SMAIN
xv1v2v3v4v5v6y

PPART2

xv1v2, v6y

WW
xv3y

N
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BW
xv5y

SMAIN
xv1v2v3v4v5y

PPART2

xv1, v5y
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xv2y

N
xv3y

BW
xv4y

Figure 3.6: Reducing variables in a fragment extracted from the tree in Fig-
ure 3.4.

more nodes, or a single node with only lexical items in its yield. A node without
children whose yield consists solely of variables is called a substitution site.

An incomplete tree may be derived from an extracted tree fragment. The tree
fragment may contain variables for substrings which need to be distinguished
in other parts of the tree, but only occur contiguously in the fragment. We
reduce these strings of contiguous variables to single variables; i.e., we abstract
fragments from their original context by reducing strings of variables that
appear contiguously across the fragment into single variables. Figure 3.6 shows
an example.

The fan-out of a non-terminal node equals the number of terminals in its
yield that are not directly preceded by another terminal in the same yield; i.e.,
the number of contiguous substrings (components) of which the yield consists.1

From here on we denote the fan-out of a discontinuous non-terminal with a
subscript that is part of its label.

3.2.1 Linear Context-Free Rewriting Systems

String-rewriting lcfrs can be seen as the discontinuous counterpart of cfg, and
its probabilistic variant can be used to articulate a discontinuous treebank gram-
mar. lcfrs productions differ from cfg productions in that they generate for a
given non-terminal one or more strings at a time in potentially non-adjacent
positions in the sentence. The number of these positions, the measure of discon-
tinuity in a constituent, is called the fan-out. A cfg is an lcfrs with a maximum
fan-out of 1. Together with the number of non-terminals on the right-hand
side, the fan-out defines a hierarchy of grammars with increasing complexity,
of which cfg is the simplest case. We use the simple rcg notation (Boullier,
1998) for lcfrs. We focus on string-rewriting lcfrs and use the tree produced
as a side-effect of a string’s derivation as its syntactic analysis. It is possible to
define an lcfrs that rewrites trees or graphs; however, the formalisms used in
this thesis are all expressible as string-rewriting lcfrss.

Definition 6. A string-rewriting lcfrs is a tuple G “ xN,T, V, P, Sy. N and T
are disjoint finite sets of non-terminals and terminals, respectively. A function
ϕ : N Ñ t1, 2, . . . , u specifies the unique fan-out for every non-terminal symbol.

1 Note that a distinction is often made between the fan-out of non-terminals in grammar productions,
and the block degree of nodes of a syntactic tree (Maier and Lichte, 2011; Kuhlmann, 2013). Due to
the fact that the productions of a tsg are trees, these notions coincide for our purposes.
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V is a finite set of variables; we refer to the variables as xi
j with i, j P N. S is

the distinguished start symbol with S P N and ϕpSq “ 1. P is a finite set of
productions, of the form:

Apα1, . . . αϕpAqq Ñ B1px1
1, . . . , x

1
ϕpB1qq . . . Brpxr

1, . . . , x
r
ϕpBrqq

for r ě 0, where A, B1, . . . , Br P N , each xi
j P V for 1 ď i ď r, 1 ď j ď ϕpBiq,

and αj P pT Y V q
` for 1 ď j ď ϕpAq. Observe that a component αj is a

concatenation of one or more terminals and variables.

The rank r refers to the number of non-terminals on the right-hand side of
a production, while the fan-out ϕ of a non-terminal refers to the number of
components it covers. A rank of zero implies a lexical production; in that case
the right hand side (rhs) is notated as ε implying no new non-terminals are
produced (not to be confused with generating the empty string), and the hand
side (lhs) argument is composed only of terminals.

Productions must be linear and non-erasing: if a variable occurs in a produc-
tion, it occurs exactly once on the lhs, and exactly once on the rhs. A production
is monotone2 if for any two variables x1 and x2 occurring in a non-terminal on
the rhs, x1 precedes x2 on the lhs iff x1 precedes x2 on the rhs. Due to our
method of grammar extraction from treebanks, (cf. Section 3.2.1 below) all
productions in this work are monotone and, except in some examples, at most
binary (r ď 2); lexical productions (r “ 0) have fan-out 1 and introduce only a
single terminal.

A production is instantiated when its variables are bound to spans such
that for each component αj of the lhs, the concatenation of the strings that its
terminals and bound variables point to forms a contiguous, non-overlapping
span in the input. In the remainder we will notate discontinuous non-terminals
with a subscript indicating their fan-out.

When a sentence is parsed by an lcfrs, its derivation tree (Boullier 1998,
§ 3.3; Kallmeyer 2010, p. 115–117) is a discontinuous tree. Conversely, given a
set of discontinuous trees, a set of productions can be extracted that generate
those trees.

In a probabilistic lcfrs (plcfrs), each production is associated with a proba-
bility and the probability of derivation is the product of the probabilities of its
productions. Analogously to a pcfg, a plcfrs may be induced from a treebank
by using relative frequencies as probabilities (Maier and Søgaard, 2008).

Definition 7. The language of an lcfrs G is defined as follows (Kallmeyer and
Maier, 2013):

1. For every A P N , we define the yield of A, yieldGpAq as follows:

(a) For every production Aptq Ñ ε with t P T , xty P yieldGpAq

2 This property is called ordered in the rcg literature.
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N “ tSMAIN, PPART, NP, VNW, N, WW, BWu

V “ ta, b, c, d, eu

ϕ “ tSMAIN : 1, PPART : 2, NP : 1,
VNW : 1, N : 1, WW : 1, BW : 1u

S “ SMAIN

P “ tSMAINpabcdeq Ñ WWpbq Npcq BWpdq PPARTpa, eq,

PPARTpa, bq Ñ NPpaq WWpbq,

NPpabq Ñ VNWpaq Npbq,

VNWpDatq Ñ ε, Npwerkwoordq Ñ ε, WWphadq Ñ ε,

Npzeq Ñ ε, BWpzelfq Ñ ε, WWpuitgevondenq Ñ εu

Figure 3.7: The lcfrs G “ xN,T, V, P, Sy extracted from the tree in Figure 3.4.

(b) For every production

Apα1, . . . αϕpAqq Ñ B1px1
1, . . . , x

1
ϕpB1qq . . . Brpxr

1, . . . , x
r
ϕpBrqq

and for all τi P yieldGpBiq with 1 ď i ď r:

xfpα1q, . . . fpαϕpAqqy P yieldGpAq

where f is defined as follows:

i. fptq “ t for all t P T ,
ii. fpxi

jq “ τirjs for all 1 ď i ď r, 1 ď j ď ϕpBiq, and
iii. fpabq “ fpaqfpbq for all a, b P pT Y V q`.

(c) Nothing else is in yieldGpAq.

2. The language of G is then LpGq “ yieldGpSq.

Extracting lcfrs productions from trees

lcfrs productions may be induced from a discontinuous tree, using a procedure
described in Maier and Søgaard (2008). We extend this procedure to handle sub-
stitution sites, i.e., non-terminals with only variable terminals in their yield, but
no lexical items; such nodes occur in tree fragments extracted from a treebank.
The procedure is as follows:

Given a discontinuous tree, we extract a grammar production for each non-
leaf non-terminal node. The label of the node forms the lhs non-terminal,
and the labels of the nodes immediately dominated by it form the rhs non-
terminals. The arguments of each rhs non-terminal are based on their yield
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tuples. Adjacent variables in the yield of the rhs non-terminals are collapsed
into single variables and replaced on both lhs and rhs. Consider the tree
fragment in Figure 3.6, which gives the following lcfrs production:

SMAINpabcdeq Ñ PPARTpa, eq WWpbq Npcq BWpdq

Pre-terminals yield a production with their terminal as a direct argument to the
pre-terminal, and an empty rhs. Substitution sites in a tree only appear on the
rhs of extracted productions, since it is not known what they will expand to.
See Figure 3.7 for examples of lcfrs productions extracted from a discontinuous
tree.

3.2.2 Discontinuous Tree-Substitution Grammar

We now employ string-rewriting lcfrs, introduced in the previous section, to
replace the cfg foundation of tsgs. Note that the resulting formalism directly
rewrites elementary trees with discontinuous constituents, making it an instan-
tiation of the more general notion of a tree-rewriting lcfrs. Tree-rewriting
lcfrss are more general because they allow other rewriting operations besides
substitution. However, since we limit the operations in the formalism to sub-
stitution, it remains possible to specify a direct mapping to a string-rewriting
grammar, as we shall see in the next section. As noted before, a tsg can be seen
as a tag without the adjunction operation. A discontinuous tsg may be related
to a special case of set-local multi-component tag (Weir, 1988; Kallmeyer, 2009).
A multi-component tag is able to specify constraints that require particular
elementary trees to apply together; this mechanism can be used to generate the
non-local elements of discontinuous constituents.

The following definitions are based on the definition for continuous tsg

in Sima’an (1997).

Definition 8. A probabilistic, discontinuous tsg (pdtsg) is a tuple xN,T, V, S, C,Py,
where N and T are disjoint finite sets that denote the set of non-terminal and
terminal symbols, respectively; V is a finite set of variables; S denotes the
start non-terminal; and C is a finite set of elementary trees. For all trees in C
it holds that for each non-terminal, there is a unique fan-out; this induces a
function ϕ Ă N ˆ t1, 2, . . .u with ϕpAq being the unique fan-out of A P N . For
convenience, we abbreviate ϕprootptqq for a tree t as ϕptq. The function P assigns
a value 0 ă P ptq ď 1 (probability) to each elementary tree t such that for every
non-terminal A P N , the probabilities of all elementary trees whose root node is
labeled A sum to 1.

The tuple xN,T, V, S, Cy of a given pdtsg xN,T, V, S, C,Py is called the dtsg
underlying the pdtsg.

Definition 9. Substitution: The substitution A ˝ B is defined iff the label of the
left-most substitution site of A equals the label of the root node of B. The left-
most substitution site of an incomplete treeA is the leaf node containing the first
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Figure 3.8: A discontinuous tree-substitution derivation of the tree in Figure 3.1.
Note that in the first fragment, which has a discontinuous substitu-
tion site, the destination for the discontinuous spans is marked in
advance, shown with variables (vn) as placeholders.

occurrence of a variable in the yield of the root of A. When defined, the result of
A˝B equals a copy of the treeAwithB substituted for the left-most substitution
site of A. In the yield argument of A, each variable terminal is replaced with
the corresponding component of one or more contiguous terminals from B. For
example, given yieldpAq “ xl1v2, l4y and yieldpBq “ xl2l3y where ln is a lexical
terminal and vn a variable, yieldpA ˝ Bq “ xl1l2l3, l4y.

Definition 10. A left-most derivation (derivation henceforth) d is a sequence
of zero or more substitutions T “ p. . . pf1 ˝ f2q ˝ . . .q ˝ fm, where f1, . . . , fm P

C, rootpT q “ rootpf1q “ S, ϕpT q “ 1 and T contains no substitution sites. The
probability P pdq is defined as:

P pf1q ¨ . . . ¨ P pfmq “

m
ź

i“1

P pfiq

Cf. Figure 3.8 for an example.

Definition 11. A parse is any tree which is the result of a derivation. A parse
can have various derivations. Given the set DpT q of derivations yielding parse
T , the probability of T is defined as

ř

dPDpT q P pdq.
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3.3 Grammar transformations

cfg, lcfrs, and dtsg can be seen as natural extensions of each other. This makes
it possible to define transformations that help to make parsing more efficient.
Specifically, we define simplified versions of these grammars that can be parsed
efficiently, while their productions or labels map back to the original grammar.

3.3.1 A cfg approximation of discontinuous lcfrs parsing

Barthélemy et al. (2001) introduced a technique to guide the parsing of a range
concatenation grammar (rcg) by a grammar with a lower parsing complex-
ity. Van Cranenburgh (2012a) applies this idea to probabilistic lcfrs parsing
and extends the method to prune unlikely constituents in addition to filtering
impossible constituents.

The approximation can be formulated as a tree transformation instead of
a grammar transformation. The tree transformation by Boyd (2007) encodes
discontinuities in the labels of tree nodes.3 The resulting trees can be used to
induce a pcfg that can be viewed as an approximation to the corresponding
plcfrs grammar of the original, discontinuous treebank. We will call this a
Split-pcfg.

Definition 12. A Split-pcfg is a pcfg induced from a treebank transformed by
the method of Boyd (2007); that is, discontinuous constituents have been split
into several non-terminals, such that each new non-terminal covers a single
contiguous component of the yield of the discontinuous constituent. Given a
discontinuous non-terminal Xn in the original treebank, the new non-terminals
will be labeled X˚m

n , with m the index of the component, s.t. 1 ď m ď n.

For example:

lcfrs productions: Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

cfg approximation: S Ñ VP*1
2 NP VP*2

2

VP*1
2 Ñ VB

VP*2
2 Ñ PRT

In a postprocessing step, pcfg derivations are converted to discontinuous trees
by merging siblings marked with ‘*’. This approximation overgenerates com-
pared to the respective lcfrs, i.e., it licenses a superset of the derivations of the
respective lcfrs. For example, a component VP*1

2 may be generated without

3 Hsu (2010) compares three methods for resolving discontinuity in trees: (a) node splitting, as applied
here; (b) node adding, a simpler version of node splitting that does not introduce new non-terminal
labels; and (c) node raising, the more commonly applied method of resolving discontinuity. While
the latter two methods yield better performance, we use the node splitting approach because it
provides a more direct mapping to discontinuous constituents, which, as we shall later see, makes it
a useful source of information for pruning purposes.
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Figure 3.9: Cross-serial dependencies in Dutch expressed with discontinuous
constituents (top); and the same parse tree, after discontinuities have
been encoded in node labels (bottom).

generating its counterpart VP*2
2 ; such derivations can be filtered in postprocess-

ing. Furthermore, two components VP*1
2 and VP*2

2 may be generated which were
extracted from different discontinuous constituents, such that their combination
could not be generated by the lcfrs.4 Another problem would occur when pro-
ductions contain discontinuous constituents with the same label; the following
two productions map to the same productions in the cfg approximation:

VPpadcebq Ñ VP2pa, bq CNJpcq VP2pd, eq

VPpadcbeq Ñ VP2pa, bq CNJpcq VP2pd, eq

However, such productions do not occur in any of the treebanks used in this
work. The increased independence assumptions due to rewriting discontinuous
components separately are more problematic, especially with nested discontinu-
ous constituents. They necessitate the use of non-local statistical information
to select the most likely structures, for instance by turning to tree-substitution

4 A reviewer points out that if discontinuous rewriting is seen as synchronous rewriting (synchronous
cfgs are equivalent to lcfrss with fan-out 2), the split transformation is analogous to taking out the
synchronicity.
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grammar (cf. Section 3.2.2). (Note that the issue is not as problematic when the
approximation is only used as a source of pruning information).

As a specific example of the transformation, consider the case of cross-serial
dependencies. Figure 3.9 shows the parse tree for the example sentence from
the previous section, along with the grammar productions for it, before and
after applying the cfg approximation of lcfrs. Note that in the approximation,
the second level of inf nodes may be rewritten separately, and a context-free
grammar cannot place the non-local constraint that each transitive verb should
be paired with a direct object. On the other hand, through the use of tree sub-
stitution, an elementary tree may capture the whole construction of two verbs
cross-serially depending on two objects, and the model needs only to prefer an
analysis with this elementary tree. Once an elementary tree contains the whole
construction, it no longer matters whether its internal nodes contain discontinu-
ous constituents or indexed node labels, and the complexity of discontinuous
rewriting is weakened to a statistical regularity.

A phenomenon which cannot be captured in this representation, not even
with the help of tree-substitution, is recursive synchronous rewriting (Kallmeyer
et al., 2009). Although this phenomenon is rare, it does occur in treebanks.

3.3.2 tsg compression

Using grammar transformations, it is possible to parse with a tsgwithout having
to represent elementary trees in the chart explicitly, but instead work with a
parser for the base grammar underlying the tsg (typically a cfg, in our case an
lcfrs).

In this section we present such a transformation for an arbitrary discontinu-
ous tsg to a string-rewriting lcfrs. We first look at well-established strategies
for reducing a continuous tsg to a cfg, and then show that these carry over to
the discontinuous case. Previous work was based on probabilistic tsg without
discontinuity; this special case of pdtsg is referred to as ptsg.

Compressing ptsg to pcfg

Goodman (2003) gives a reduction to a pcfg for the special case of a ptsg based
on all fragments from a given treebank and their frequencies. This reduction is
stochastically equivalent to an all-fragments ptsg after the summation of proba-
bilities from equivalent derivations—however, it does not admit parsing with
tsgs consisting of arbitrary sets of elementary trees or assuming arbitrary proba-
bility models. Perhaps counter-intuitively, restrictions on the set of fragments
increase the size of Goodman’s reduction (e.g., depth restriction, Goodman,
2003, p. 134). While Goodman (2003) gives instantiations of his reduction with
various probability models, the limitation is that probability assignments of
fragments have to be expressible as a composition of the weights of the produc-
tions in each fragment. Since each production in the reduction participates in
numerous implicit fragments, it is not possible to adjust the probability of an
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Figure 3.10: Transforming a discontinuous tree-substitution grammar into an
lcfrs backtransform table. The elementary trees are extracted from
the tree in Figure 3.1 with labels abbreviated. The first production
of each fragment is used as an index to the backtransform table so
that the original fragments in derivations can be reconstructed.

individual fragment without affecting related fragments. We leave Goodman’s
reduction aside for now, because we would prefer a more general method.

A naive way to convert any tsg is to decorate each internal node of its el-
ementary trees with a globally unique number, which can be removed from
derivations in a postprocessing step. Each elementary tree then contributes one
or more grammar productions, and because of the unique labels, elementary
trees will always be derived as a whole. However, this conversion results in a
large number of non-terminals, which are essentially ‘inert’: they never partici-
pate in substitution but deterministically rewrite to the rest of their elementary
tree.

A more compact transformation is used in Sangati and Zuidema (2011),
which can be applied to arbitrary ptsgs, but adds a minimal number of new
non-terminal nodes. Internal nodes are removed from elementary trees, yielding
a flattened tree of depth 1. Each flattened tree is then converted to a grammar
production. Each production and original fragment is stored in a backtransform
table. This table makes it possible to restore the original fragments of a deriva-
tion built from flattened productions. Whenever two fragments would map to
the same flattened production, a unary node with a unique identifier is added
to disambiguate them. The weight associated with an elementary tree carries
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over to the first production it produces; the rest of the productions are assigned
a weight of 1.

Compressing pdtsg to plcfrs

The transformation defined by Sangati and Zuidema (2011) assumes that a
sequence of productions can be read off from a syntactic tree, such as a standard
phrase-structure tree that can be converted into a sequence of context-free
grammar productions. Using the method for inducing lcfrs productions from
syntactic trees given in Section 3.3.2, we can apply the same tsg transformation
to discontinuous trees as well.

Due to the design of the parser we will use, it is desirable to have grammar
productions in binarized form, and to separate phrasal and lexical productions.
We therefore binarize the flattened trees with a left-factored binarization that
adds unique identifiers to every intermediate node introduced by the binariza-
tion. In order to separate phrasal and lexical productions, a new pos tag is
introduced for each terminal, which selects for that specific terminal. A se-
quence of productions is then read off from the transformed tree. The unique
identifier in the first production is used to look up the original elementary tree
in the backtransform table.5

Figure 3.10 illustrates the transformation of a discontinuous tsg. The middle
column shows the productions after transforming each elementary tree. The
rightmost column shows how relative frequencies can be used as weights, where
f is the frequency of the elementary tree in the treebank, and f 1 is the frequency
mass of elementary trees with the same root label. Note that the productions
for the first elementary tree contain no discontinuity, because the discontinuous
internal node is eliminated. Conversely, the transformation may also introduce
more discontinuity, due to the binarization (but cf. Section 3.5.1 below).

Figure 3.11 presents an overview of the methods of grammar induction
presented thus far, as well as the approach for finding recurring fragments that
will be introduced in the next section.

3.4 Parsing with plcfrs and pdtsg

We use the fragment extractor introduced in the previous chapter to define
the grammar. This yields a Double-dop grammar (2dop; Sangati and Zuidema,
2011). Since our fragment extractor supports discontinuous constituents, we
call our model Disco-2dop.

After extracting fragments we augment the set of fragments with all depth 1
fragments, in order to preserve complete coverage of the training set trees. Since
depth 1 fragments are equivalent to single grammar productions, this ensures

5 Note that only this first production requires a globally unique identifier; to reduce the grammar
constant, the other identifiers can be merged for equivalent productions.
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Figure 3.11: Diagram of the methods of grammar induction.

strong equivalence between the tsg and the respective treebank grammar.6 We
then apply the grammar transformation (cf. Section 3.3.2) to turn the fragments
into productions. Productions corresponding to fragments are assigned a proba-
bility based on the relative frequency of the respective fragment, productions
introduced by the transformation are given a probability of 1. For an example,
please refer to Figure 3.10.

We parse with the transformed grammar using the disco-dop parser (van
Cranenburgh et al., 2011; van Cranenburgh, 2012a). This is an agenda-based
parser for plcfrs based on the algorithm in Kallmeyer and Maier (2010, 2013),
extended to produce n-best derivations (Huang and Chiang, 2005) and exploit
coarse-to-fine pruning (Charniak et al., 2006).

Parsing with lcfrs can be done with a weighted deduction system and an
agenda-based parser. The deduction steps are given in Figure 3.12; for the
pseudocode of the parser see Algorithm 4, which is an extended version of the
parser in Kallmeyer and Maier (2010, 2013) that obtains the complete parse
forest as opposed to just the Viterbi derivation.

In Section 3.4.1 we describe the probabilistic instantiation of dtsg and the
criterion to select the best parse. Section 3.4.2 describes how derivations from the
compressed tsg are converted back into trees composed of the full elementary
trees. Section 3.4.4 describes how coarse-to-fine pruning is employed to make
parsing efficient.

6 Previous dop work such as Zollmann and Sima’an (2005) adds all possible tree fragments up to
depth 3. Preliminary experiments on 2dop gave no improvement on performance, while tripling the
grammar size; therefore we do not apply this in further experiments.
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Lexical: p : rA, xxwiyys p : Apwiq Ñ ε P G

Unary:
x : rB,αs

p ¨ x : rA,αs

p : Apαq Ñ Bpαq is an instanti-
ated rule from G

Binary:
x : rB, βs, y : rC, γs

p ¨ x ¨ y : rA,αs

p : Apαq Ñ Bpβq Cpγq is an in-
stantiated rule from G

Goal: rS, xxw1 ¨ ¨ ¨wnyys

Figure 3.12: Weighted deduction system for binarized lcfrs.

Input: A sentence w1 ¨ ¨ ¨wn, a grammar G
Output: A chart C with Viterbi probabilities, a parse forest F .
1: initialize agenda A with all possible pos tags for input
2: while A not empty
3: xI, xy Ð pop item with best score on agenda
4: add xI, xy to C
5: for all xI 1, zy that can be deduced from xI, xy and items in C
6: if I 1 R A Y C
7: enqueue xI 1, zy in A
8: else if I 1 P A ^ z ą score for I 1 in A
9: update weight of I 1 in A to z
10: add edge for I 1 to F

Algorithm 4: A probabilistic agenda-based parser for lcfrs.
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3.4.1 Probabilities and disambiguation

Our probabilistic model uses the relative frequency estimate (rfe), which has
shown good results with the Double-dop model (Sangati and Zuidema, 2011).
The relative frequency of a fragment is the number of its occurrences, divided
by the total number of occurrences of fragments with the same root node.

In dop many derivations may produce the same parse tree, and it has been
shown that approximating the most probable parse, which considers all deriva-
tions for a tree, yields better results than the most probable derivation (Bod,
1995b). To select a parse tree from a derivation forest, we compute tree prob-
abilities on the basis of the 10,000 most probable dop derivations, and select
the tree with the largest probability. Although the algorithm of Huang and
Chiang (2005) makes it is possible to extract the exact k-best derivations from a
derivation forest, we apply pruning while building the forest.

3.4.2 Reconstructing derivations

After a derivation forest is obtained and a list of k-best derivations has been pro-
duced, the backtransform is applied to these derivations to recover their internal
structure. This proceeds by doing a depth-first traversal of the derivations, and
expanding each non-intermediate7 node into a template of the original frag-
ment. These templates are stored in a backtransform table indexed by the first
binarized production of the fragment in question. The template fragment has its
substitution sites marked, which are filled with values obtained by recursively
expanding the children of the current constituent.

3.4.3 Efficient discontinuous parsing

We review several strategies for making discontinuous parsing efficient. As noted
by Levy (2005, p. 138), the intrinsic challenge of discontinuous constituents is
that a parser will generate a large number of potential discontinuous spans.

Outside estimates

Outside estimates (also known as context-summary estimates and figures-of-
merit) are computed offline for a given grammar. During parsing they provide
an estimate of the outside probability for a given constituent, i.e., the probability
of a complete derivation with that constituent divided by the probability of
the constituent. The estimate can be used to prioritize items in the agenda.
Estimates were first introduced for discontinuous lcfrs parsing in Kallmeyer
and Maier (2010, 2013). Their estimates are only applied up to sentences of 30
words. Beyond 30 words the table grows too large.

7 An intermediate node is a node introduced by the binarization.
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A different estimate is given by Angelov and Ljunglöf (2014), who succeed
in parsing longer sentences and providing an A* estimate, which is guaranteed
to find the best derivation.

Non-projective dependency conversion

Hall and Nivre (2008), Versley (2014), and Fernández-González and Martins
(2015) apply a reversible dependency conversion to the Tiger treebank, and use
a non-projective dependency parser to parse with the converted treebank. The
method has the advantage of being fast due to the greedy nature of the arc-eager,
transition-based dependency parser that is employed. The parser copes with
non-projectivity by reordering tokens during parsing. Experiments are reported
on the full Tiger treebank without length restrictions.

Reducing fan-out

The most direct way of reducing the complexity of lcfrs parsing is to reduce
the fan-out of the grammar.

Maier et al. (2012) introduces a linguistically motivated reduction of the
fan-outs of the Negra and Penn treebanks to fan-out 2 (up to a single gap per
constituent). This enables parsing of sentences of up to length 40.

Nederhof and Vogler (2014) introduce a method of synchronous parsing with
an lcfrs and a definite clause grammar. A parameter allows the fan-out (and
thus parsing complexity) of the lcfrs to be reduced. Experiments are reported
on sentences of up to 30 words on a small section of the Tiger treebank.

Coarse-to-fine pruning

We will focus on coarse-to-fine pruning, introduced in Charniak et al. (2006)
and applied to discontinuous parsing by van Cranenburgh (2012a), who reports
parsing results on the Negra treebank without length restrictions. Compared
to the previous methods, this method does not change the grammar, but adds
several new grammars to be used as preprocessing steps. Compared to the
outside estimates, this method exploits sentence-specific information, since
pruning information is collected during parsing with the coarser grammars.

Pauls and Klein (2009) present a comparison of coarse-to-fine and (hierar-
chical A*) outside estimates, and conclude that except when near-optimality is
required, coarse-to-fine is more effective as it prunes a larger number of unlikely
constituents.

A similar observation is obtained from a comparison of the discontinuous
coarse-to-fine method and the outside estimates of Angelov and Ljunglöf (2014):
coarse-to-fine is faster with longer sentences (30 words and up), at the cost of
not always producing the most likely derivation (Ljunglöf, personal communi-
cation).
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3.4.4 Coarse-to-fine pipeline

In order to tame the complexity of lcfrs and dop, we apply coarse-to-fine prun-
ing. Different grammars are used in the sequel, each being an overgenerating
approximation of the next. That is, a coarse grammar will generate a larger
set of constituents than a fine grammar. Parsing with a coarser grammar is
more efficient, and all constituents which can be ruled out as improbable with
a coarser grammar can be discarded as candidates when parsing with the next
grammar. A constituent is ruled improbable if it does not appear in the k-best
derivations of a parse forest. We use the same setup as in van Cranenburgh
(2012a); namely, we parse in three stages, using three different grammars:

1. Split-pcfg: A cfg approximation of the discontinuous treebank grammar;
rewrites spans of discontinuous constituents independently.

2. plcfrs: The discontinuous treebank grammar; rewrites discontinuous
constituents in a single operation. A discontinuous span Xnxx1, . . . , xny is
added to the chart only if all of X˚m

n xxmy with 1 ď m ď n are part of the
k-best derivations of the chart of the previous stage.

3. Disco-dop: The discontinuous dop grammar; uses tree fragments in-
stead of individual productions from treebank. A discontinuous span
Xnxx1, . . . , xny is added to the chart only if Xnxx1, . . . , xny is part of the
k-best derivations of the chart of the previous stage, or ifXn is an interme-
diate symbol introduced by the tsg compression.

The first stage is necessary because without pruning, the plcfrs generates
too many discontinuous spans, the majority of which are improbable or not even
part of a complete derivation. The second stage is not necessary for efficiency
but gives slightly better accuracy on discontinuous constituents.

For example, while parsing the sentence “Wake your friend up,” the discon-
tinuous vp “Wake . . . up” may be produced in the plcfrs stage. Before allowing
this constituent to enter into the agenda and the chart, the chart of the previ-
ous stage is consulted to see if the two discontinuous components “Wake” and
“up” were part of the k-best derivations. In the dop stage, multiple elementary
trees may be headed by this discontinuous constituent, and again they are only
allowed on the chart if the previous stage produced the constituent as part of its
k-best derivations.

The initial values for k are 10,000 and 50, for the plcfrs and dop grammar
respectively. These values are chosen to be able to directly compare the new
approach with the results in van Cranenburgh (2012a). However, experiment-
ing with a higher value for k for the dop stage has shown to yield improved
performance. In other coarse-to-fine work the pruning criterion is based on
posterior thresholds (e.g., Charniak et al., 2006; Bansal and Klein, 2010); the
k-best approach has the advantage that it does not require the computation of
inside and outside probabilities.

For the initial pcfg stage, we apply beam search as in Collins (1999). The
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highest scoring item in each cell is tracked and only items up to 10,000 times
less probable are allowed to enter the chart.

Experiments and results are described in Section 3.5 and 3.6.

3.4.5 Discontinuity without lcfrs

The idea up to now has been to generate discontinuous constituents using for-
mal rewrite operations of lcfrs. It should be noted, however, that the pcfg

approximation used in the pruning stage reproduces discontinuities using infor-
mation derived from the non-terminal labels. Instead of using this technique
only as a crutch for pruning, it can also be combined with the use of fragments
to obtain a pipeline that runs in cubic time. While the cfg approximation in-
creases the independence assumptions for discontinuous constituents, the use
of large fragments in the dop approach can mitigate this increase. To create
the cfg approximation of the discontinuous treebank grammar, the treebank is
transformed by splitting discontinuous constituents into several non-terminal
nodes (as explained in Section 3.3.1), after which grammar productions are
extracted. This last step can also be replaced with fragment extraction to obtain
a dop grammar from the transformed treebank. We shall refer to this alternative
approach as ‘Split-2dop.’ The coarse-to-fine pipeline is now as follows:

1. Split-pcfg: A treebank grammar based on the cfg approximation of dis-
continuous constituents; rewrites spans of discontinuous constituents
independently.

2. Split-2dop grammar: tree fragments based on the same transformed tree-
bank as above.

Since every discontinuous non-terminal is split up into a new non-terminal
for each of its spans, the independence assumptions for that non-terminal in a
probabilistic grammar are increased. While this representation is not sufficient
to express the full range of nested discontinuous configurations, it appears
adequate for the linguistic phenomena in the treebanks used in this work,
since their trees can be unambiguously transformed back and forth into this
representation. Moreover, the machinery of Data-Oriented Parsing mitigates
the increase in independence assumptions through the use of large fragments.
We can therefore parse using a dopmodel with a context-free grammar as the
symbolic backbone, and still recover discontinuous constituents.

3.5 Experimental setup

In this section we describe the experimental setup for benchmarking our discon-
tinuous Double-dop implementations on several discontinuous treebanks.
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3.5.1 Treebanks and preprocessing

We evaluate on three languages: for German, we use the Negra (Skut et al., 1997)
and Tiger (Brants et al., 2002) treebanks; for English, we use a discontinuous
version of the Penn treebank (Evang and Kallmeyer, 2011); and for Dutch, we
use Lassy (Van Noord, 2009) and cgn (van der Wouden et al., 2002) treebanks;
cf. Table 3.1. Negra and Tiger contain discontinuous annotations by design, as
a strategy to cope with the relatively free word order of German. The discon-
tinuous Penn treebank consists of the wsj section in which traces have been
converted to discontinuous constituents; we use the version used in Evang and
Kallmeyer (2011, sec. 5.1–5.2) without restrictions on the transformations. The
Lassy treebank is referred to as a dependency treebank but when discontinuity
is allowed it can be directly interpreted as a constituency treebank. The Corpus
Gesproken Nederlands (cgn, Spoken Dutch Corpus; van der Wouden et al., 2002)
is a Dutch spoken language corpus with the same syntactic annotations. We use
the syntactically annotated sentences from the Netherlands (i.e., without the
Flemish part) of up to 100 tokens. The train-dev-test splits we employ are as
commonly used for the Penn treebank: sec. 2–21, sec. 24, sec. 23, respectively.
For Negra we use the one defined in Dubey and Keller (2003). For Tiger we fol-
low Hall and Nivre (2008) who define sections 0–9 where sentence i belongs to
section imod 10, sec. 0 is used as test, sec. 1 as development, and 2–9 as training.
When parsing the Tiger test set, the development set is added to the training set
as well; while this is not customary, it ensures the results are comparable with
Hall and Nivre (2008). The same split is applied to the cgn treebank but with a
single training set. For Lassy the split is our own.8

For purposes of training we apply heuristics for head assignment (Klein
and Manning, 2003) and binarize the trees in the training sets head-outward

8 The Lassy split derives from 80–10–10 partitions of the canonically ordered sentence ids in each
subcorpus (viz. dpc, WR, WS, and wiki). Canonically ordered refers to a ‘version sort’ where an
identifier such as ‘2.12.a’ is treated as a tuple of three elements compared consecutively.

Treebank train (sents.) dev (sents.) test (sents.)

G E R M A N
Negra 1–18,602 19,603–20,602 18,603–19,602
Tiger 40,379 / 45,427 5048 5047

E N G L I S H
ptb: wsj 39,832 1346 2416

D U T C H
Lassy small 52,157 6520 6523
CGN 70,277 2000 2000

Table 3.1: The discontinuous treebanks used in the experiments.
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with h “ 1, v “ 1 markovization; i.e., n-ary nodes are factored into nodes
specifying an immediate sibling and parent. Note that for lcfrs, a binarization
may increase the fan-out, and thus the complexity of parsing. It is possible to
select the binarization in such a way as to minimize this complexity (Gildea,
2010). However, experiments show that this increase in fan-out does not actually
occur, regardless of the binarization strategy (van Cranenburgh, 2012a). Head-
outward means that constituents are binarized in a right-factored manner up
until the head child, after which the rest of the binarization continues in a
left-factored manner.

We add fan-out markers to guarantee unique fan-outs for non-terminal
labels, e.g., tVP, VP2, VP3, . . .u, which are removed again for evaluation.

For the Dutch and German treebanks, punctuation is not part of the syntactic
annotations. This causes spurious discontinuities, as the punctuation interrupts
the constituents dominating its surrounding tokens. Additionally, punctuation
provides a signal for constituent boundaries, and it is useful to incorporate it
as part of the rest of the phrase structures. We use the method described in
van Cranenburgh (2012a): punctuation is attached to the highest constituent
that contains a neighbor to its right. With this strategy there is no increase
in the amount of discontinuity with respect to a version of the treebank with
punctuation removed. The cgn treebank contains spoken language phenomena,
including disfluencies such as interjections and repeated words. In preprocess-
ing, we treat these as if they were punctuation tokens; i.e., they are moved to an
appropriate constituent (as defined above) and are ignored in the evaluation.

The complexity of parsing with a binarized lcfrs isOpn3ϕq with ϕ the highest
fan-out of the non-terminals in the grammar (Seki et al., 1991). For a given
grammar, it is possible to give a tighter upper bound on the complexity of
parsing. Given the unique fan-outs of non-terminals in a grammar, the number
of operations it takes to apply a production is the sum of the fan-outs in the
production (Gildea, 2010):

cppq “ ϕpAq `

r
ÿ

i“1

ϕpBiq

The complexity of parsing with a grammar is then the maximum value of this
measure for productions in the grammar. In our experiments we find a worst-
case time complexity of Opn9q for parsing with the dop grammars extracted
from Negra and wsj. The following sentence from Negra contributes a grammar
production with complexity 9. The production is from the vp of vorgeworfen;
bracketed words are from other constituents, indicating the discontinuities:

(1) Den
The

Stadtteilparlamentariern
district-mps

[ist]
have

immer
always

wieder
again

[“Kirchturmpolitik”]
“parochialism”

vorgeworfen
accused

[worden],
been,

weil
because

sie
they

nicht
not

über
beyond

die
the

Grenzen
boundaries

des
of-the

Ortsbezirks
local-district

hinausgucken
look-out

würden.
would.



3.5 Experimental setup 69

Feature Description

AC All capital letters
SC Initial capital, first word in sentence
C Initial capital, other position

L, U Has lower / upper case letter
S No letters

N, n All digits / one or more digits
H, P, C Has dash / period / comma
x Last character if letter and length ą 3

Table 3.2: Unknown word features, Stanford Model 4.

‘Time and again, the district mpshave been accused of “parochialism” because they would
not look out beyond the boundaries of the local district.’

The complexities for Tiger and Lassy areOpn10q andOpn12q respectively, due
to a handful of anomalous sentences; by discarding these sentences, a grammar
with a complexity of Opn9q can be obtained with no or negligible effect on
accuracy.

3.5.2 Unknown words

In initial experiments we present the parser with the gold standard part-of-
speech tags, as in previous experiments on discontinuous parsing. Later we
show results when tags are assigned automatically with a simple unknown
word model, based on the Stanford parser (Klein and Manning, 2003). An open
class threshold σ determines which tags are considered open class tags; tags
that rewrite more than σ words are considered open class tags, and words they
rewrite are open class words. Open class words in the training set that do not
occur more than 4 times are replaced with signatures based on a list of features;
words in the test set which are not part of the known words from the training
set are replaced with similar signatures. The features are defined in the Stanford
parser as Model 4, which is relatively language independent; cf. Table 3.2 for the
list of features. Signatures are formed by concatenating the names of features
that apply to a word; e.g., ‘forty-two’ gives _UNK-L-H-o. A probability mass ε is
assigned for combinations of known open class words with unseen tags. We use
ε “ 0.01. We tuned σ on each training set to ensure that no closed class words
are identified as open class words; for English and German we use σ “ 150, and
σ “ 100 for Dutch.
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3.5.3 Function tags

We investigated two methods of having the parser produce function tags in
addition to the usual phrase labels. The first method is to train a separate
discriminative classifier that adds function tags to parse trees in a postprocessing
step. This approach is introduced in Blaheta and Charniak (2000). We employed
their feature set.

Another approach is to simply append the function tags to the non-terminal
labels, resulting in, e.g., np-sbj and np-obj for subject and object noun phrases.
While this approach introduces sparsity and may affect the performance without
function tags, we found this approach to perform best and therefore report
results with this approach. Gabbard et al. (2006) and Fraser et al. (2013) use
this approach as well. Compared to the classifier approach, it does not require
any tuning, and the resulting model is fully generative. We apply this to the
Tiger, wsj, and Lassy treebanks.

The Penn treebank differs from the German and Dutch treebanks with
respect to function tags. The Penn treebank only has function tags on selected
non-terminals (never on preterminals) and each non-terminal may have several
function tags from four possible categories; whereas the German and Dutch
treebanks have a single function tag on most non-terminals. The tag set also
differs considerably; the Penn treebank has 20 function tags, Lassy has 31, and
Tiger has 43.

3.5.4 Treebank refinements

We apply a set of manual treebank refinements based on previous work. In
order to compare the results on Negra with previous work, we do not apply the
state splits when working with gold standard pos tags.

For Dutch and German we split the pos tags for the sentence-ending punctu-
ation ‘.!?’. For all treebanks we add the feature ‘year’ to the preterminal label of
tokens with numbers in the range 1900–2040, and replace the token with 1970.
Other numbers are replaced with 000.

Tiger

For Tiger we apply the refinements described in Fraser et al. (2013). Since the
Negra treebank is only partially annotated with morphological information, we
do not apply these refinements to that treebank.

wsj

We follow the treebank refinements of Klein and Manning (2003) for the Wall
Street Journal section of the Penn treebank.
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Lassy

The Lassy treebank contains fine-grained part-of-speech tags withmorphological
features. It is possible to use the full part-of-speech tags as the preterminal
labels, but this introduces sparsity. We select a subset of features to add to the
preterminal labels:

• nouns: proper/regular;
• verbs: auxiliary/main, finite/infinite;
• conjunctions: coordinating/subordinating;
• pronouns: personal/demonstrative;
• pre- vs. postposition.

Additionally, we percolate the feature identifying finite and infinite verbs to
the parents and grandparents of the verb.

For multi-word units (mwu), we append the label of its head child. This
helps distinguish mwusas being nominal, verbal, prepositional, or otherwise.

The last two transformations are based on those for Tiger. Unary nps are
added for single nouns and pronouns in sentential, prepositional and infinitival
constituents. For conjuncts, the function tag of the parent is copied. Both
transformations can be reversed.

Since the cgn treebank uses a different syntax for the fine-grained pos tags,
we do not apply these refinements to that treebank.

3.5.5 Metrics

We employ the exact match and Parseval measures (Black et al., 1992) as evalua-
tion metrics. Both are based on bracketings that identify the label and yield of
each constituent. The exact match is the proportion of sentences in which all
labeled bracketings are correct. The Parseval measures consist of the precision,
recall, and F-measure of the correct labeled bracketings averaged across the
treebank. Since the pos accuracy is crucial to the performance of a parser and
neither of the previous metrics reflect it, we also report the proportion of correct
pos tags.

We use the evaluation parameters typically used with EVALB on the Penn
treebank. Namely, the root node and punctuation are not counted towards
the score (similar to COLLINS.prm,9 except that we discount all punctuation,
including brackets). Counting the root node as a constituent should not be done
because it is not part of the corpus annotation and the parser is able to generate
it without doing any work; when the root node is counted it inflates the F-score
by several percentage points. Punctuation should be ignored because in the
original annotation of the Dutch and German treebanks, punctuation is attached
directly under the root node instead of as part of constituents. Punctuation
can be re-attached using heuristics for the purposes of parsing, but evaluation
should not be affected by this.

9 This file is part of the EVALB software, cf. http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/
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S

VP2

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP2, t1, 2, 5uy

xNP, t1, 2uy

S

VPNP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP, t5uy

xNP, t1, 2uy

Figure 3.13: Bracketings from a tree with and without discontinuous con-
stituents.

It is not possible to directly compare evaluation results from discontinuous
parsing to existing state-of-the-art parsers that do not produce discontinuous
constituents, since parses without discontinuous constituents contain a different
set of bracketings; cf. Figure 3.13, which compares discontinuous bracketings to
the bracketings extracted from a tree in which discontinuity has been resolved by
attaching non-head siblings higher in the tree, as used in work on parsing Negra.
Compared to an evaluation of bracketings without discontinuous constituents,
an evaluation including discontinuous bracketings is more stringent. This is
because bracketings are scored in an all-or-nothing manner, and a discontinuous
bracketing includes non-local elements that would be scored separately when
discontinuity is removed in a preprocessing step.

For function tags we use two metrics:

1. The non-null metric of Blaheta and Charniak (2000), which is the F-score
of function tags on all correctly parsed bracketings. Since the German and
Dutch treebanks include function tags on pre-terminals, we also include
function tags on correctly tagged words in this metric.

2. A combined F-measure on bracketings of the form xC,F, spany, where C
is a syntactic category and F a function tag.

3.6 Evaluation

This section presents an evaluation on three languages, and with respect to the
use of function tags, tree fragments, pruning, and probabilities.
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3.6.1 Main results on three languages

Table 3.3 lists the results for discontinuous parsing of three Germanic languages,
with unknown word models. The cited works by Kallmeyer and Maier (2013)
and Evang and Kallmeyer (2011) also use lcfrs for discontinuity but employ
a treebank grammar with relative frequencies of productions. Hall and Nivre
(2008), Versley (2014), and Fernández-González and Martins (2015) use a con-
version to dependencies discussed in Section 3.4.3. For English and German our
results improve upon the best known discontinuous constituency parsing results.
The new system achieves a 16% relative error reduction over the previous best
result for discontinuous parsing on sentences of length ď 40 in the Negra test
set. In terms of efficiency, the Disco-2dop model is more than three times as fast
as the dop reduction, taking about 3 hours instead of 10 on a single core. The
grammar is also more compact: the Disco-2dop grammar is only a third of the
dop reduction, at 6 mb versus 18 mb compressed size.

Table 3.3 also includes results from van Cranenburgh and Bod (2013) who
do not add function tags to non-terminal labels nor apply the extensive treebank
refinements described in Section 3.5.3 and 3.5.4. Although the refinements
and some of the function tags improve the score, the rest of the function tags
increase sparsity and consequently the resulting F-scores are slightly lower, but
this trade-off seems to be justified in order to get parse trees with function tags.
The results on cgn show a surprisingly high exact match score. This is due to a
large number of interjection utterances, e.g., “uhm.”; since such sentences only
consist of a root node and pos tags, the bracketing F1-score is not affected by
this.

3.6.2 Function tags

Table 3.4 reports an evaluation including function tags. For these three tree-
banks, the models reproduce most information in the original treebank. The
following parts are not yet incorporated. The German and Dutch treebanks
contain additional lexical information consisting of lemmas and morphological
features. These could be added to the non-terminal labels of the model or ob-
tained from an external pos tagger. Lastly, some non-terminals have multiple
parents, referred to as secondary edges in the German and Dutch treebanks.

3.6.3 All-fragments vs. recurring fragments

The original Disco-dop model (van Cranenburgh et al., 2011) is based on an all-
fragments model, while Disco-2dop is based on recurring fragments. Table 3.5
compares previous results of Disco-dop to the new Disco-2dop implementation.
The second column shows the accuracy for different values of k, i.e., the number
of coarse derivations that determine the allowed labeled spans for the fine
stage. While increasing this value did not yield improvements using the dop

reduction, with Disco-2dop there is a substantial improvement in performance,
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DEV TEST
Parser, treebank |w| POS F1 EX POS F1 EX

G E R M A N

Negra, van Cranenburgh (2012a)* ď 40 100 74.3 34.3 100 72.3 33.2
Negra, Kallmeyer and Maier (2013)*† ď 30 100 75.8
Negra, this work, Disco-2dop* ď 40 100 77.7 41.5 100 76.8 40.5
Negra, this work, Disco-2dop ď 40 96.7 76.4 39.2 96.3 74.8 38.7

Tiger, Hall and Nivre (2008) ď 40 97.0 75.3 32.6
Tiger, Versley (2014) ď 40 100 74.2 37.3
Tiger, FeMa2015 ď 40 82.6 45.9
Tiger, vanCraBod2013, Disco-2dop ď 40 97.6 78.7 40.5 97.6 78.8 40.8
Tiger, this work, Disco-2dop ď 40 96.6 78.3 40.2 96.1 78.2 40.0
Tiger, this work, Split-2dop ď 40 96.6 78.1 39.2 96.2 78.1 39.0

E N G L I S H

wsj, Evang and Kallmeyer (2011)*† ă 25 100 79.0
wsj, vanCraBod2013, Disco-2dop ď 40 96.0 85.2 28.0 96.6 85.6 31.3
wsj, this work, Disco-2dop ď 40 96.1 86.9 29.5 96.7 87.0 34.4
wsj, this work, Split-2dop ď 40 96.1 86.7 29.5 96.7 87.0 33.9

D U T C H

Lassy, vanCraBod2013, Disco-2dop ď 40 94.1 79.0 37.4 94.6 77.0 35.2
Lassy, this work, Disco-2dop ď 40 96.7 78.3 36.2 96.3 76.6 34.0
Lassy, this work, Split-2dop ď 40 96.8 78.0 34.9 96.3 76.2 32.7

CGN, this work, Disco-2dop ď 40 96.7 72.6 64.1 96.7 73.0 63.8
CGN, this work, Split-2dop ď 40 96.6 71.2 63.4 96.7 72.2 63.3

Table 3.3: Discontinuous parsing of three Germanic languages. pos is the part-
of-speech tagging accuracy, f1 is the labeled bracketing F1-score, ex is
the exact match score. Results marked with * use gold pos tags; those
marked with † do not discount the root node and punctuation. nb:
Kallmeyer and Maier (2013) and Evang and Kallmeyer (2011) use a
different test set and length restriction. ‘vanCraBod2013’ refers to van
Cranenburgh and Bod (2013), and ‘FeMa2015’ to Fernández-González
and Martins (2015).

phrase function
Language, treebank labels tags combined

German, Tiger 78.2 93.5 68.1
English, wsj 87.0 86.3 82.5
Dutch, Lassy 76.6 92.8 70.0

Table 3.4: Evaluation of function tags on sentences ď 40 words, test sets.
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with k “ 5000 yielding the best score among the handful of values tested.
Figure 3.14 shows the average time spent in each stage using the latter model
on wsj. The average time to parse a sentence (ď 40 words) for this grammar
is 7.7 seconds. Efficiency could be improved significantly by improving the
pcfg parser using better chart representations such as packed parse forests and
bitvectors (Schmid, 2004).

Model k=50 k=5000
F1% F1%

dop reduction: Disco-dop 74.3 73.5
Double-dop: Disco-2dop 76.3 77.7

Table 3.5: Comparing F-scores for the dop reduction (implicit fragments) with
Double-dop (explicit fragments) on the Negra development set with
different amounts of pruning (higher k means less pruning); gold pos

tags.
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Figure 3.14: Average time spent in each stage for sentences by length; disco-
2dop, wsj dev. set.

3.6.4 Effects of pruning

The effects of pruning can be further investigated by comparing different levels
of pruning. We first parse the sentences in the Negra development set that are
up to 30 words long with a plcfrs treebank grammar, with k “ 10, 000 and
without pruning. Out of 897 sentences, the Viterbi derivation is pruned on only
14 occasions, while the pruned version is about 300 times faster.

Table 3.6 shows results for different levels of pruning on sentences of all
lengths. For sentences of all lengths it is not feasible to parse with the unpruned
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plcfrs. However, we can compare the items in the parse forest after pruning
and the best derivation to the gold tree from the treebank. From the various
measures, it can be concluded that the pruning has a large effect on speed and
the number of items in the resulting parse forest, while having only a small
effect on the quality of the parse (forest).

(pcfg) k=100 k=1,000 k=5,000 k=10,000

cpu time (seconds) 2.461 0.128 0.193 0.444 0.739
Number of items in chart 69,570.5 207.6 282.7 378.2 436.5
Percentage of gold
standard items in chart 94.7 94.2 97.2 98.1 98.4

F1 score 69.3 69.8 69.9 69.9 69.8

Table 3.6: Results for different levels of pruning; mean over 1000 sentences.

3.6.5 Without lcfrs

Table 3.3 shows that the Disco-2dop and Split-2dop techniques have comparable
performance, demonstrating that the complexity of lcfrs parsing can be avoided.
Table 3.7 shows the performance in each step of the coarse-to-fine pipelines,
with and without lcfrs. Surprisingly, the use of a formalism that explicitly
models discontinuity as an operation does not give any improvement over a
simpler model in which discontinuities are only modeled probabilistically by
encoding them into labels and fragments. This demonstrates that given the
use of tree fragments, discontinuous rewriting through lcfrs comes at a high
computational cost without a clear benefit over cfg.

Pipeline F1% EX %

Split-pcfg (no lcfrs, no tsg) 65.8 28.0
Split-pcfg ñ plcfrs (no tsg) 65.9 28.6
Split-pcfg ñ plcfrs ñ 2dop 77.7 41.5
Split-pcfg ñ Split-2dop (no lcfrs) 78.1 42.0

Table 3.7: Parsing discontinuous constituents is possible without lcfrs (Negra
dev. set, gold pos tags; results are for final stage).

3.6.6 The role of probabilities

From the results it is clear that a probabilistic tree-substitution grammar is able
to provide much better results than a simple treebank grammar. However, it
is not obvious whether the improvement is specifically due to the more fine-
grained statistics (i.e., frequencies of more specific events), or generally because
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of the use of larger chunks. A serendipitous discovery during development of
the parser provides insight into this: during an experiment, the frequencies
of fragments were accidentally permuted and assigned to different fragments,
but the resulting decrease in performance was surprisingly low, from 77.7 to
74.1 F1—suggesting that most of the improvement over the 65.9 F1 score of the
plcfrs treebank grammar comes from memorizing larger chunks, as opposed to
statistical reckoning.

3.6.7 Previous work

Earlier work on recovering empty categories and their antecedents in the Penn
treebank (Johnson, 2002b; Levy and Manning, 2004; Gabbard et al., 2006;
Schmid, 2006; Cai et al., 2011) has recovered non-local dependencies by pro-
ducing the traces and co-indexation as in the original annotation. If the results
include both traces and antecedents (which holds for all but the last work cited),
the conversion to discontinuous constituents of Evang and Kallmeyer (2011)
could be applied to obtain a discontinuous F-score. Since this would require
access to the original parser output, we have not pursued this.

As explained in Section 3.5.5, it is not possible to directly compare the results
to existing parsers that do not produce discontinuous constituents. However,
the F-measures do give a rough measure, since the majority of constituents are
not discontinuous.

For English, there is a result with 2dop by Sangati and Zuidema (2011)
with an F1 score of 87.9. This difference can be attributed to the absence of
discontinuous bracketings, as well as their use of the Maximum Constituents
Parse instead of the Most Probable Parse; the former optimizes the F-measure
instead of the exact match score. Shindo et al. (2012) achieve an F1 score of
92.9% with a Bayesian tsg that uses symbol refinement through latent variables
(i.e., automatic state splitting).

For German, the best results without discontinuity and no length restriction
are F1 scores of 84.2 for Negra (Petrov, 2010) and 76.8 for Tiger (Fraser et al.
2013; note that this result employs a different train-dev-test split than the one
in this work).

3.7 Summary

In this chapter we have shown how to parse with discontinuous tree-substitution
grammars and presented a practical implementation. We employ a fragment
extraction method that finds recurring structures in treebanks efficiently, and
supports discontinuous treebanks. This enables a data-oriented parsing imple-
mentation that employs a compact, efficient, and accurate model for discontinu-
ous parsing in a generative model that improves upon previous results for this
task.
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Surprisingly, it turns out that the formal power of lcfrs is not necessary to
describe discontinuity, since equivalent results can be obtained with a proba-
bilistic tree-substitution grammar in which non-local relations are encoded in
the non-terminal labels. In other words, it is feasible to produce discontinuous
constituents without invoking mild context-sensitivity.

We have presented parsing results on three languages. Compared to previous
work on statistical parsing, our models are linguistically richer. In addition
to discontinuous constituents, our models also reproduce function tags from
the treebank. While there have been previous results on reproducing non-
local relations or function tags, in this chapter we reproduced both, using
models derived straightforwardly from treebanks, while exploiting ready-made
treebank transformations for improved performance.
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4 Predictive Modeling Background

In which we introduce machine learning methodology.

Natural language processing (nlp) made a lot of progress
when we started extracting grammatical knowledge
from data, rather than asking experts to write it down
for us. We should do the same for stylistic knowledge.
The experts do provide great insights into what kinds of
patterns might be relevant to grammar or style. . . but
their informed hypotheses about what to look for are
not a substitute for actual looking.
— Eisner (2015); emphasis in original

This chapter introduces several background topics related to statistics and
machine learning, in particular as applied to text. We first reflect on
the differences between statistics and machine learning, and consider

pitfalls in statistical inference. The last section provides exposition on aspects
of machine learning relevant to this thesis.

4.1 Methodological considerations

Statistics can be divided in several branches, depending on the kind of answers
that are sought. Descriptive statistics summarizes data from a sample, e.g.,
mean, median, and standard deviation. Inferential statistics draws conclusions
from a sample about a population, based on assumptions and hypotheses. We
focus on inferential statistics here since it is more difficult to get right.

4.1.1 Explanation versus prediction

A useful distinction to draw within inferential statistics is between explanation
and prediction (Breiman, 2001; Shmueli, 2010). Explanation seeks to confirm
causal theoretical models; typical examples include statistical hypothesis testing
based on Student’s t-test, χ2 tests, and regression models. The aim of predictive
models is to learn from data and achieve good generalization performance as
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measured on new, unseen data. In an explanatory model the theory is specific
and specified in advance, while a predictive model is data oriented; although
specific aspects of the data are selected through feature engineering, no claim
about the distribution of these features is made in advance.

Explanatory modeling is common in the social sciences such as psychology,
sociology, and econometrics. Predictive modeling is less common in the sci-
ences, but it is central to computational linguistics, natural language processing,
bioinformatics, and other fields that employ machine learning or forecasting.

In predictive modeling it is crucial to report results on out-of-sample tests
(using held-out data or cross-validation). Neither the feature selection nor the
training of the model should in any way be based on the out-of-sample data
used for evaluation. In contrast with explanatory models, there is no spelled
out theory describing the relation between the observations and target values
(also known as independent and dependent variables). Therefore, more data is
useful to deal with data sparsity, allowing more interactions to be uncovered
from the data. In contrast, explanatory models require a sample of sufficient
size, but more data would only increase the chances of finding a significant
association with small effect size, which is likely to be a false positive. Aside
from the sample sizes, there is also a difference in the dimensionality, i.e., the
number of features or independent variables. Predictive models can exploit
or select from a large set of features, while explanatory models tend to use a
smaller, predefined set of variables derived from a theoretical model.

This thesis will employ correlations and predictive models. The nature of
the problem arguably makes predictive models more suitable. The set of textual
features that determine literariness cannot be enumerated, and it does not seem
feasible to define a causal model relating such features to literary ratings.

4.1.2 Simpson’s paradox

Simpson’s paradox is, properly speaking, neither Simpson’s nor a true paradox.
The phenomenon was first described by Yule (1903) and popularized by Simpson
(1951); it concerns the surprising phenomenon that the association between two
variables in a data set may be reversed when subsets of the data are analyzed. The
phenomenon is a specific instance of the Omitted-Variable bias. An illustration
is shown in Figure 4.1. It is important to be aware of this paradox because it
can lead to incorrect conclusions being drawn about correlation and causality.
Whenever a correlation is obtained, the effect of subsets should be considered.

A famous case occurred in 1973 at the University of California-Berkeley
(Bickel et al., 1975). The university was sued for gender discrimination; 44%
of male applicants had been accepted, compared to only 35% of female appli-
cants. However, if the rate of acceptance was considered by department, female
applicants actually had a small but significant advantage. Concretely, women
tended to apply to departments that had more competition. There were more
female applicants for the humanities department, and more male applicants to
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Figure 4.1: An illustration of Simpson’s paradox. The blue and red groups both
show a positive correlation, while on aggregate, there is a negative
correlated (dashed line).

the science department. Furthermore, the humanities department had fewer
requirements but also fewer available slots, while the science department had
specific requirements but was more likely to accept someone that met them.

What this example reveals is that overlooking an important variable (here
the choice of department and its characteristics), and specifically considering
data in aggregate, may result in the opposite conclusion compared to the one
which should be drawn.

4.2 Machine learning from text

Since much of the rest of this thesis is based on machine learning, we now
provide some background. Machine learning techniques include predictive
modeling. Applying machine learning methods to text is also known as text
mining or text analytics. The document-level tasks are:

information retrieval: find relevant documents,
supervised models: label documents with some predefined set of labels (text

categorization, classification), or predict a continuous value (regression),
unsupervised models: automatically induce groupings of documents without

predefined criteria (clustering), or summarize the features of documents
(dimensionality reduction).

Because of the nature of the task and data at our disposal, we will focus on
supervised models.

A central notion in text mining is that of the vector space model, a mathe-
matical abstraction over texts. Given a set of documents and a set of numeric
features extracted from them, each document can be represented by a feature
vector. This feature vector can be interpreted as the coordinate of the document
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in a high-dimensional space. Documents with similar features will be close to
each other in this space.

A particularly simple but successful instance of this is the bag-of-words
(BoW) model. In the BoW-model the features consists of word counts from the
corpus. Note that a bag (also known as a multiset, an unordered set in which
each item is associated with a count) abstracts over the original data by throwing
away all information on order and consecutively occurring items. The only
information that remains are pairs of (word, count) in each document.

Variants replace the word feature with n-grams (n consecutively occurring
words) or other linguistic structures than can be counted. In any case it should
be noted that the vector space model results in a high-dimensional feature
space. It turns out that, in practice, a vector space model of text contains few
irrelevant features, while the document vector of a given text may contain
many zeros for features it does not contain. A machine learning model of text
is therefore learning a “dense” concept (almost all features are relevant for
predicting the target) from sparse inputs (each text contains a different subset
of features) (Joachims, 1998, p. 139).

Making predictions from data requires a model. Two important classes of
predictive models can be distinguished:

Lazy, memory-based: Store instances, and compare instances at test time to
make a prediction. For example the nearest neighbor method looks for
the most similar instances and derives its prediction from them. Notably,
these models are not trained.

Trained models: Fit a model to training data, while aiming to generalize over
the data.

Perennial problems with supervised models are overfitting and underfitting.
Overfitting occurs when irrelevant particularities of the data such as noise are
incorporated in the model, resulting in a model that is successful at predicting
the training data, but less so at generalizing over new data. Underfitting is the
converse, where useful patterns in the data are ignored, and cannot be applied
to new data.

Memory-based models are interesting in that they can base their predictions
on arbitrary aspects decided at test time. On the other hand, the model does not
learn generalizations that can be inspected, only particular predictions can be
inspected. Nearest neighbor methods are prone to overfitting and do not handle
high dimensional problems well.

4.2.1 Linear models

One particularly useful and general class of trained models are Linear Models.
A linear model assumes that predictions are made from a linear combination of
feature values and respective feature weights:

ŷw,X “ w0 ` w1X1 ` ... ` wpXp
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Here ŷ is the predicted value given weights w and feature values X. Features
cannot interact—they make independent contributions to the final prediction.
Some classification problems are not linearly separable and thus can never be
learned in such a model no matter the amount of data; the xor function is a
prototypical case.

This may seem like a severe limitation. The trade off is that these restrictions
make it possible to learn from a large number of features, and to do so effi-
ciently. Linear separability is not an issue in practice: “Most text categorization
problems are linearly separable” (Joachims, 1998, p. 140). This is due to the
high dimensionality. Given p dimensions, the number of data points that can be
separated with a linear classifier is p ` 1 (Hastie et al., 2009, p. 238); a similar
result applies for continuous values as well. Moreover, since the model is simple,
it is also easy to interpret. Each feature receives a weight which denotes its
contribution to the final prediction. Features with both a high weight and high
frequency in the data are thus the most important.

Let us briefly consider non-linear models. Non-linear models are strictly
more powerful than linear models, since they can model linear patterns as well
as particular kinds of non-linear patterns. For certain problems, e.g., when
the number of features is small (p ! n), or when the underlying problem is
non-linear (e.g., vision), non-linear models tend to be superior. However, the
downside of the power of non-linear models is their tendency to overfit if model
complexity is not controlled.

For any reasonable machine learning model, theoretical guarantees can be
made that as the data grows to infinity, the difference between train and test
error becomes arbitrarily small. This means that the choice of model comes
down to more practical concerns: speed of convergence, ability to handle noise,
robustness to outliers, generalization from limited training data, handling of
different types and number of features, and number of parameters that need to
be tuned. Taking these concerns into account, as well as some experimentation,
leads us to opt for linear models in this thesis. Experiments with non-linear
models did not yield improvements, and the simplicity of linear models provides
a clear advantage.

A popular kind of linear model are linear Support Vector Machines (svm).
svm can be used for classification and regression (predicting a discrete or a
continuous target variable, respectively); it is a method of learning that is robust
against outliers and overfitting through the use of regularization. This contrast
with the standard method for linear regression used in applied statistics, namely
Ordinary Least Squares (ols). ols has the property of being underdetermined
when the number of features is larger than the number of samples (p ą n);
regularization overcomes this (Hastie et al., 2009, ch. 18).

4.2.2 Challenges

Shalizi (2012) identifies three increasingly difficult challenges in solving regres-
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sion problems:

1. Low prediction error
2. Consistent estimates: approximate true feature weights
3. Feature selection

The first is the criterion for good predictions; it is directly estimated by cross-
validation, and therefore relatively easy to optimize. The second and third
are interesting objectives if we are after more than just predictions and aim
to converge on the ‘true’ model, where true refers to the parameters beyond
the data set. This is the aforementioned opposition between prediction and
explanation. This thesis will focus only on the first goal. First since it is practical
to estimate and evaluate. Second because it does not seem feasible to formulate
a potential ‘true’ set of features and weights for a text mining problem, there are
simply too many potential factors. Note that this does not mean feature weights
and selection will not concern us, but that when they do, we are considering
them with respect to a given data set (within-sample), without knowing whether
they would be representative out-of-sample.

Lastly, it should be noted that fitting the model is often not the hard part of
machine learning. Given a well-defined problem such as document or image
classification, many models can be fitted and tuned, and there will always be
some improvement that can be obtained by tweaking (subject to diminishing
returns). Another issue is the data: more is typically better (although represen-
tative and high quality data is even more important), and it needs to be cleaned
and preprocessed properly. Still, this is a practical though not necessarily hard
problem. The fundamental, non-technical challenges are to identify and define
the (right) problem, and to measure the success of its solutions.

An illustration is the case of the leopard print sofa (Khurshudov, 2015).
Convolutional networks have reached impressive accuracy scores in image
recognition—they have even been claimed to surpass human performance, for
example in distinguishing leopards, jaguars, and cheetahs. However, when
presented with a picture of a sofa with a leopard print, the model is fooled and
classifies it as a leopard. This illustrates two problems. The first is how to ensure
that the model has been evaluated properly; it is not feasible to include every
kind of anomalous object in the test set. The second is that it shows that the
model is not learning the right thing; in this case, the larger structural leopard
features, instead of just the local skin texture.

4.2.3 Explicit, sparse versus implicit, dense representations

In this thesis we work with explicit, sparse representations. Sparse representa-
tions, such as the aforementioned BoW-features, are high dimensional where
each dimension is an independently measured, predefined feature. The sparsity
refers to the fact that only a small number of features may receive a non-zero
value in a document, e.g., specialist vocabulary will occur only in certain docu-
ments.
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The opposite of such representations are implicit, dense features. Distributed
word embeddings (e.g., word2vec, Mikolov et al. 2013; GloVe, Pennington et al.
2014) are a popular instance, inspired by so-called ‘deep learning’ techniques
for neural networks. In a model with sparse features, ‘blue’ and ‘red’ would be
two separate features, represented in different parts (dimensions) of the feature
vector. With dense features, each word would be represented by its own vector,
and ‘red’ and ‘blue’ would have similar vectors (where similar can be defined
in terms of a distance metric) reflecting their semantic similarity and tendency
to occur in similar contexts. A prototypical example of what can be done with
word embeddings is solving word analogies, for example ‘king - man + woman
= queen.’ This would not be impressive if the model were trained on specific
knowledge, but in fact this is learned purely from raw text.

Using dense features is outside of the scope of this thesis. The motivation to
focus on sparse features is that they are well suited to the amount of text (401
novels), and sparse linear models are easier to interpret. Both word2vec and
GloVe are trained on billions of words; the word2vec extension for document
classification (doc2vec; Le and Mikolov, 2014), is trained on 100k instances in
the experiments presented. There are no off-the-shelf trained models available
for Dutch such as for English. Nevertheless, it is an interesting project for future
work to apply word embeddings trained on a suitably large reference corpus to
the analysis of literature.

4.2.4 Evaluation metrics

As noted before, supervised models consist mainly of classification and regres-
sions problems. For classification, the accuracy metric is the most straightfor-
ward; i.e., the percentage of correctly predicted items. For regression the task
of evaluation is more involved, since it is not useful to only consider items that
were predicted exactly, we rather want to express how close the predictions are
to being correct. We will use the following metrics:

Root Mean Squared (rms) error: The mean distance of the predictions from
the true values (residuals); has the same scale as the target values; i.e.,
in our case the error will range from 0–7. Given an arbitrary novel, this
metric expresses how far the model’s prediction is expected to be from the
true value.

R2
, also known as the coefficient of determination. When used on out-of-sample

predictions, as in our case, this metric expresses how well the predictions
of the model generalize to new data points. The value is based on the ratio
of the mean squared error of the predictions divided by the mean squared
error of a baseline model which always predicts the mean of the target
value:

R2 “ 1 ´
MSEpytrue, ypredq

MSEpytrue,meanpytrueqq
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Figure 4.2: An illustration ofR2, the coefficient of determination. The coefficient
of determination is one minus the ratio of the area of the blue squares
on the left (the predictions) versus the area of the red squares on the
right (the baseline). (Figure by Orzetto, CC BY-SA 3.0, via Wikimedia
Commons).

See the illustration in Figure 4.2. Note that the result may be negative,
since the predictions can be arbitrarily bad compared to the baseline,
and despite the name, R2 is not necessarily the square of any particular
quantity. Since this metric can be interpreted as expressing the percentage
of variation explained, we report it as a percentage, with 100 % being a
perfect score.

Kendall τ , a rank correlation. Expresses the similarity between the predictions
and the target value in terms of ranking, while ignoring the magnitude
of differences. The result is a correlation ranging from -1 to 1, with 1
representing a perfect ranking. This metric is useful to consider because by
considering only ranks, any noise that might be present in the differences
between items is ignored.

http://creativecommons.org/licenses/by-sa/3.0
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5 Literary Investigations

In which we introduce the experimental setup of an empirical, computational study
of literary language.

Shakespeare, we say, was one of a group of English
dramatists working around 1600, and also one of the
great poets of the world. The first part of this is a state-
ment of fact, the second a value-judgment so generally
accepted as to pass for a statement of fact. But it is not a
statement of fact. It remains a value-judgment, and not
a shred of systematic criticism can ever be attached to it.
— Northrop Frye (1957, p. 21), Anatomy of Criticism

Literature consists of written or spoken language that is distinguished
in some way. It is usually divided into poetry and prose, fiction and
non-fiction, and major genres such as drama, lyric, short story, and novel.

This thesis will focus on prose fiction, and novels in particular.
This chapter considers possible definitions of literature, and presents the

project to investigate the relation of literary appreciation and textual aspects
empirically. The next sections serve to introduce the task of text analysis by
providing an overview of style and stylometric aspects, and an introduction to
Dutch syntax.

5.1 Definitions of literature

Literature has proven to be difficult to define. In broad strokes, three approaches
can be distinguished:1

The value-judgment definition, or the Belles-lettres tradition, states that what
counts as literary is a value judgment (Eagleton, 2008, p. 9), principally of
aesthetic quality. This does not mean that literature is synonymous with

1 This is only a brief overview; for a more systematic treatment, cf. Eagleton (2008, p. 1–14). Some of
the references and structure of this section is based on the Wikipedia article on literature.
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goodwriting, but that it is the kind of writing that is valued. This definition
does imply that in principle any text may come to be viewed as literature,
and vice versa, any text which is currently viewed as highly literary (e.g.,
Shakespeare), may lose that status; i.e., it implies that literature is variable,
and not an inherent quality of a work (Eagleton, 2008, p. 9).

The formalist definition holds that literature is distinguished by its form,
through a property called literariness:

The sum of special linguistic and formal properties that dis-
tinguish literary texts from non-literary texts, according to the
theories of Russian Formalism (Baldick, 2008)

Specifically, foregrounding and defamiliarization distinguishes poetic lan-
guage from standard language (Mukarovsky, 1964), i.e., the way language
draws attention to itself, and the effect of ‘making language strange,’ re-
spectively. Foregrounding and defamiliarization seem to work best for
poetry. On closer inspection, two issues arise: non-standard language
can also occur in everyday, non-literary situations such as advertising;
and vice versa, a literary novel may consist entirely of everyday situations,
described in everyday language.

The social definition states that literature is a matter of prestige decided by
the social elite, i.e., publishers and critics (Bourdieu, 1996). Taken to its
extreme, this definition predicts that any text could be seen as literary, pro-
vided the right social cues exist (compare with the so-called readymades
in art), regardless of the content or style of the work in question. Needless
to say, this goes against our intuitions. It is, however, the theory that is
currently most in vogue among literary scholars in the Netherlands. Ad-
herents believe that social factors explain literary status to a large degree,
or sometimes even that it is the sole determining factor.

It is clear that literature presents a demarcation problem: none of these
definitions is satisfactory. There is a parallel with the demarcation problem
in science. Just as with science, it is not necessary to solve this problem to
participate in the production and appreciation of literature. Moreover, it is
unlikely that writers and readers will look to literary theorists to adjudicate
the boundaries of the literary, despite the apparent normative character of the
demarcation problem. It is rather the opposite, a theory of what is literary must
adequately describe the value-judgments of readers and writers.

As an alternative to a criterial definition with necessary and sufficient prop-
erties, a prototype definition can also be attempted. Meyer (1997, p. 4) suggests
that prototypical (Western) literary works:

• are written texts2

2 Note that there are traditions of oral literature for which this property is not prototypical.
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• are marked by careful use of language, including features such as creative
metaphors, well-turned phrases, elegant syntax, rhyme, alliteration, meter

• are in a literary genre (poetry, prose fiction, or drama)
• are read aesthetically
• are intended by the author to be read aesthetically
• contain many weak implicatures (are deliberately somewhat open in inter-
pretation)

Since this is a prototype definition, each of these properties allows for exceptions,
and may be present to different degrees, and there is no minimum number of
properties that must be met. Analogously, a prototype definition of a bird would
include flying as a salient property—even though there are clear exceptions (e.g.,
chickens, penguins, kiwis) which precludes its use in a taxonomic definition. The
combination of properties does make an instance more or less of a prototypical
example of a concept.

Another avenue is to contrast literary novels with popular novels; it may
give insight to consider what kinds of things a literary novel is not. In concrete
terms it is often said that novels may be divided into character-driven and plot-
driven (e.g., Towey, 2000, p. 137). This often coincides with literary and popular
novels, respectively. Where, for example, a popular novel such as a suspense
novel may revolve around a murder case and its resolution, a literary novel will
often focus on the thoughts and emotional states of its protagonists. This has
prompted research that attempts to show that reading literary fiction improves
empathy (Bal and Veltkamp, 2013; Kidd and Castano, 2013).

A further opposition is that between the importance of plot versus writing
style: the literary novel may primarily be appreciated for the aesthetic or orig-
inality of its style, as opposed to the entertainment value of its plot. As the
formalists would say, literary language draws attention to itself by deviating
from a norm, relative to the expectations of the context (Eagleton, 2008, p. 2–5).
Suspense novels are often fast paced both in terms of plot and writing style,
and are consequently easy and quick to read (a “page turner”). Literary novels
may be valued for being thought provoking and containing more depth; Miall
(2006) extend the Formalist definition of literature with the condition that a
literary work has a transformative effect on the reader. Instead of spelling out
all plot details and character motivations, a literary novel leaves more to the
imagination (related to the dictum show, don’t tell), and may be more demanding
of the reader; this relates to the implicatures cited by Meyer (1997).

Unfortunately some of these aspects are rather difficult to operationalize,
since they hinge on latent variables such as plot, pace, and emotion, and how
these interact with the reader. This thesis will focus on stylistic aspects that can
be measured computationally from the text.
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5.1.1 Historical emergence of the concept of literature

The modern, Western notion of literature as a mark of distinction for the most
valuable fine writing emerged in the late eighteenth century, as Heumakers
(2015) argues. This is when, according to Heumakers, the ‘aesthetic revolution’
occurred; before then the question whether a text had enough aesthetic value
to be called literature was simply not considered nor would it have been under-
stood. The concept of art and literature that developed within Romanticism is
arguably influential to this day.3

The central idea is that literature is autonomous, i.e., not in the service of
moral, political, or religious goals. The concept of autonomy in aesthetics
was introduced in Kant’s Kritik der Urteilskraft (critique of judgment). Kant
(1790, §40) introduces the notion of a sensus communis (literally common or
communal sense) to explain that taste judgments in aesthetics are subjective,
but cast with the expectation that others ought to agree with them, and thus
having the potential of being valid (normativity). Autonomy, Kant argues, is a
pre-condition for such taste judgments.

Before the emergence of autonomous aesthetics, a work of art primarily
had an instrumental function to teach through entertainment what is true
and good, with beauty in a subordinate role. Since the aesthetic revolution,
literature is characterized by originality (creativity), being about more than
mere entertainment, not being bound by any genre in terms of style and topics,
and social criticism.

5.2 The Project: The Riddle of Literary Quality

The goal of the Riddle of Literary Quality4 is to investigate the concept of lit-
erature empirically, specifically in the form of its textual correlates. There has
been little empirical work on literature, while theoretical work tends towards
invoking social and cultural factors to explain what comprises literature. The
project aims to address this by testing the hypothesis that textual factors are
involved, and to estimate the degree to which they influence and explain per-
ceptions of literary value. Although the name of the project refers to ‘literary
quality,’ this notion is problematic since it suggests an essentialistic concept.
What we will investigate is more aptly described as the conventions that give
rise to the spectrum of literary and non-literary works. For the purposes of the
experiments we make use empirical data on how literary the novels are, namely
survey ratings (reader judgments). We then look for the reflection of literary
conventions in textual characteristics (various stylistic and topical features), by
relating survey and texts.

3 The Dutch word for a novel, roman, is derived from the same root as Romanticism, although the
former predates the latter.
4 Cf. http://literaryquality.huygens.knaw.nl/

http://literaryquality.huygens.knaw.nl/
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5.2.1 The corpus of novels

The corpus consists of 401 recent Dutch novels, whose first Dutch edition was
published 2007–2012. Both translated and originally Dutch novels are included
(249 and 152, respectively). The corpus contains 210 novels by women writers,
and 190 by men. The novels are selected by their popularity in the period
2010–2012. The criteria were being either best selling (382 novels), most often
lent from public libraries (19 novels, not counting 189 novels that were already
included due to being best selling). While the aim was to restrict the corpus to
novel-length fiction texts published 2007–2012, several issues were discovered
after the corpus had been finalized:

• Some older novels have been accidentally included; e.g., Noort, De Eetclub,
2004.

• Five short-story collections have been included; e.g., King, Full dark, no
stars.

• Five non-fiction texts (not counting novels with autobiographical elements)
have been included; e.g., Mak, Reizen zonder John.

See Section A.2 for the full list of novels in the corpus.
Each novel has a publisher assigned code, the so-called nur

5 code. These
codes reflect broad prose genre distinctions and are used by book sellers to
organize book shops. Note that in general, the nur code is only mentioned in
the fine print of the front matter, so the reader is usually not aware of it directly,
but rather indirectly through the book’s placement among other books. In some
cases publishers choose to mention the genre explicitly on the cover; this is the
case with literary thrillers, for example. Table 5.1 shows the nur codes in the
corpus, and the number of novels for each code.

Some nur codes are questionable. For example, Fifty Shades of Grey by
E.L. James is listed as 302, (translated) literary novel, when it clearly is not (it
is actually the lowest rated book in the survey, see below). The author Esther
Verhoef has four novels in the corpus listed as 305 literary thriller, and one as
301 literary novel. This does not necessarily reflect a true difference in genre.
Although it does happen that writers consciously attempt a switch to a different
genre, publishers can also decide on their own to change the genre code strictly
for marketing purposes.

The case of the literary thriller is interesting. Its code, 305, reflects that it
is clustered with other literary novels (301, 302), and not with other thrillers
or suspense novels (330, 331, 332). Again, this does not necessarily reflect
the actual perceptions of readers, which is an empirical matter, but it is an
interesting case of the publisher’s influence on the literary market, which might
also influence perceptions of literary merit.

Taking into account some of these questionable classifications, and the fact
that some of the more fine-grained categories are not useful given the number

5 nur is an acronym for Nederlandstalige Uniforme Rubriekscode; roughly, ‘uniform categorization of
Dutch language [novels].’
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code description novels

305 literary thriller 99
302 translated literary novel 93
301 literary novel 78
332 thriller 58
331 detective 10
343 romance 10
330 general suspense 9
340 general popular fiction 4
344 regional and family novels 4
342 historical novel (popular) 2
312 popular fiction pockets 1
284 fiction for ages 13-15 1
334 fantasy 1

Table 5.1: A breakdown of the nur classifications in the corpus.

of novels, we can construct a simplified categorization of four coarser categories:
Fiction (148), Suspense (186), Romantic (41), Other (26). nb: All novels are
fiction; Suspense and Romantic are genre-novels while Fiction are non-genre
novels; we avoid using the term literary novels here because that is a judgment
that should be based on the reader opinions. Lastly, Other is a category for
novels that do not fit into the previous three categories, but are not numerous
enough to form their own category (e.g., science fiction, fantasy, etc), or for texts
that turned out to be short story collections or non-fiction.

Two aspects of the corpus selection stand out: selecting by popularity, and
selecting contemporary novels. The choice to select the novels by popularity
means that it is easier to obtain a large number of judgments from the general
public, and it removes a source of bias that would be introduced if the selection
was made with subjective criteria (either our own selection, or by critics or a
jury). It also means that the corps contains both non-literary and literary novels,
which is necessary to be able to learn the difference.

However, popularity selects for a certain kind of work with broad appeal,
and this may well exclude the most literary novels.6 Additionally, the best
selling novels may also be the novels for which the publisher’s influence and
marketing is the strongest, for two reasons: as bestsellers they are ipso facto the
best marketed novels, and the publisher may have allocated resources based on
the previous success of an author or a type of novel. When a particular literary
(writing) style gains currency through such publisher influence, the publisher is
a confounding factor. That is, our experiments may find an association between

6 On a related note, The Shawshank Redemption has been the top rated movie on imdb for years. How
many people would actually believe that this movie represents the pinnacle of a century of cinema?
It rather seems to be the kind of movie that is easy to agree on.
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writing style and literary appreciation, but the question remains how much both
were influenced by the publisher, and how much the influences overlap.

The choice to select recent novels removes diachronic factors from the re-
search. It also increases the chances that the opinions by readers are their own,
as opposed to a settled consensus influenced by literary critics and awards.
While this can never be excluded, the influence would be greater for a celebrated
literary classic.

Literary classics would be interesting to study, as they represent the kind of
writing that is celebrated for centuries—the literary canon. This corpus cannot
help in uncovering what differentiates literary classics from more pedestrian
literary novels. The appreciation of literary classics is historically variable and
institutional factors would form much more of a confounding variable in a
survey on literary classics because the literary status of an established classic
has been sedimented over a long time; furthermore, it is more tempting to give
socially acceptable answers about the sort of books that ‘everyone wants to have
read but no one wants to read.’

We therefore focus on literary evaluations of contemporary, popular novels.

5.2.2 The reader survey

The reader survey was held online, from March until September 2013 (Jautze
et al., 2016b).7 Participation was open to anyone and participants were recruited
from the general population by advertising on social media and mailing lists.
Roughly 14,000 people took the survey; about 138,000 ratings were collected.
The main part of the survey was to obtain ratings of the degree to which novels
are perceived to be literary and good. Given the list of 401 novels, participants
were asked which novels they had read, and for those novels, Likert scale items
were presented to give ratings on how literary and how good each novel was. No
definition was given for either of the two dimensions, in order not to influence
the intuitive judgments of participants. The notion of literature is therefore
a pre-theoretical one, reflecting the views of the participants with minimal
direction.

It may not be entirely obvious to consider literary and good as separate
aspects of a novel; for example, if literature is a matter of aesthetics, or more
generally of highly-valued writing, literary and good might seem to coincide,
but as argued before, they should be distinguished. It is useful to consider them
as separate axes because in this way we may collect data on novels that are
appreciated but recognized as non-literary, such as a popular thriller, while con-
versely allowing for novels recognized as literary (e.g., because of a distinctive
style or subject matter) but otherwise disappointing.

The Likert scale (pronounced “lick-ert”) is a tool for the self-reporting of
subjective variables. This scale is widely used in social science research, and is

7 Cf. http://www.hetnationalelezersonderzoek.nl

http://www.hetnationalelezersonderzoek.nl
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also the way in which the ratings for the Riddle of Literary Quality survey were
collected. Therefore, it is worth taking a closer look at.

A Likert scale offers a fixed number of discrete response, for example,
strongly disagree, disagree, neutral, agree, and strongly agree. Strictly speaking,
these have to be treated as ordinal categories: it is only known how these cate-
gories are ordered, not what the distance between each is, or whether there is
a reference point (such as absolute zero with temperature and lengths). In the
Riddle survey, the following 7-point scale was used for the literary ratings:

Definitely
not literary Not literary

Tending
towards

non-literary
Bordering
literary and
non-literary

Somewhat
literary Literary Highly

literary

1: Absoluut
niet literair

2: Niet
literair

3: Eerder
niet literair

4: Op de
grens van
literair en
niet-literair

5: Enigszins
literair 6: Literair 7: In hoge

mate literair

Respondents also had the option to choose ‘don’t know’; these ratings are not
used for the results in this thesis. It can be argued that, under certain conditions,
it is reasonable to consider the Likert scale as an interval scale, which justifies
taking its mean and applying other parametric methods. These conditions are
that the scale is symmetric, that it contains a sufficient number of choices, that
a sufficient number of responses are viewed in aggregate, and lastly that the
underlying concept is continuous. We will work with these assumptions in this
thesis, so as to be able to work with the means of responses per book.

The ratings were collected purely based on the title and author of each novel,
and not, for example, based on a sample of the writing in the novel. On the
one hand this is a limitation, as the ratings will at best reflect the subjects’
association or recollection of the writing style or other aspects of the novel
involved, and the survey ratings cannot help in pinpointing what aspect of the
novel was appealing. On the other hand it ensures that the hypothesis that the
text influences the judgments of the novel is not assumed out of hand without
being tested. In particular, it makes it possible to gauge to success of explaining
literary ratings from textual features, without prompting the survey participants
to consider any of these factors. However, note again that it is ultimately not
possible to distinguish textual and social or cultural factors, since they may
overlap. For example, textual factors may have influenced a critic who is in turn
influential. The goal of the experiment will therefore be to estimate the degree
to which literary ratings can be predicted from text.

Another point to note is that the survey seeks out the opinions of non-
experts.8 Other empirical literary research such as Louwerse et al. (2008) em-
ploys literary judgments by authors or critics. Both perspectives are interesting

8 There may be literary experts such as critics and other professionals part of literary production
among the survey participants, but given the large number of participants, the overwhelming
majority has to consist of non-experts.
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to study. The non-expert readers likely differ from experts in how they judge
literary works; this can only be properly investigated by conducting a controlled
study on the two groups. Apart from being non-experts, it should be noted
that the survey respondents were predominantly highly educated (see below for
some demographic figures), and by self-selecting for the survey, tend to be avid
readers; any literary-sociological conclusions will therefore be most relevant to
this cohort.

Turning to the general public in essence boils down to assuming that litera-
ture is a democratic concept, defined by consensus, as opposed to by specialists.
Putnam (1975, p. 144) introduces the notion of a linguistic division of labor:

We could hardly use such words as “elm” and “aluminum” if no one
possessed a way of recognizing elm trees and aluminum metal; but
not everyone to whom the distinction is important has to be able to
make the distinction.

Putnam (1975, p. 146) goes on to hypothesize that:

Every linguistic community possesses at least some terms whose
associated “criteria” are known only to a subset of speakers who
acquire the terms, and whose use by other speakers depends upon
a structured cooperation between them and the speakers in the
relevant subsets.

Is “literature” one of those terms? If it is, a survey of the general public would
be a roundabout way of getting at the actual criteria—perhaps even fruitless, if
the general public employs fundamentally different criteria or heuristics.

Some of the respondents specifically commented that they had no notion of
how literary a novel is, and therefore could not give a rating; one respondent
explicitly invokes the explanation that they expect society to judge the novel
as literary. On the other hand, many comments do cite specific criteria such as
writing style, plot structure, and character development.

As long as we clearly identify the questions that the survey can answer, it
has empirical value. The survey outcomes should not be taken to reflect the
literary value of the novels, or even an approximation of that. By analogy, the
goal of a political poll is not to determine who is the best candidate, regardless
of the definition of that term, but simply to estimate the opinions of a particular
population.

Figure 5.1 shows the mean literary ratings for the corpus, including the
95 % confidence intervals based on a t-distribution. The confidence interval
indicates how accurate the estimation procedure is; note that it cannot predict
how close the estimate is to the true value. A 95% confidence interval gives a
range of values such that if the experiment were to be replicated many times,
at least 95% of the time its result would be within this range; i.e., the smaller
the confidence interval, the more reliable the result. The novels are ordered by
literary ratings, with the most literary novels on the right. Consider the width of
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Figure 5.1: Mean literary ratings per novel, with 95% confidence intervals.
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pearsonr = 0.6; p = 6.9e-41

Figure 5.2: A scatter plot of the literary and quality ratings.

the intervals; i.e., given an interval ra, bs, the width is b ´ a. Overall, the width
ranges from 0.08 (816 ratings) to 2.3 (10 ratings). If only novels with at least 50
ratings are considered, the largest confidence interval is 0.9. Of the remaining
novels, 91% has a confidence interval width smaller than 0.5. In practical terms
a width of 0.5means that for a novel with a mean rating of 3, its interval ranges
from 2.75 to 3.25.

Interestingly, the highly literary novels on the right of Figure 5.1 appear
to have smaller confidence intervals, indicating that there is more consensus
for these novels. This makes intuitive sense in that other novels are either
borderline cases, or are simply not literary which makes it harder to decide on
an appropriate rating.

The scatter plot in Figure 5.2 shows that there is a significant correlation be-
tween the literary and quality ratings (r “ 0.6, p “ 7.3 ˆ 10´40). The histograms
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Figure 5.3: Histogram of the age distribution of the survey participants.

on the sides also visualize the distributions of these two variables. Another
salient (and significant) correlation is between the number of literary ratings for
a book and its mean literary rating (r “ 0.61, p “ 2.5 ˆ 10´42).

Let’s consider some basic demographics of the survey participants. 71.8%
were women, 27.5%were men, and 0.72% gave no answer. The age distribution
is shown in Figure 5.3; the age distribution is bimodal, with a large peak around
60, and a smaller peak around 25. The education level is shown in Table 5.2. The
majority of participants is highly educated with a college or university diploma.

5.3 Literary stylistics and stylometry

This section reviews methods and previous work in particular applications of
text analysis. The common denominator among most of the methods in this
section is a focus on style.

There are many possible definitions of style (Berenike Herrmann et al., 2015).
A narrow definition of style holds that it consists of largely unconscious choices
by the author, on matters that contrast with content aspects. In this thesis we
will use a broader (and vaguer) definition:

Style is a property of texts constituted by an ensemble of formal
features which can be observed quantitatively or qualitatively.
— Berenike Herrmann et al. (2015, p. 44)

5.3.1 Empirical work on literature

The concept of literary quality is rarely treated directly by literary scholars.
An exception is the volume van Peer (2008) which collects various articles that



5.3 Literary stylistics and stylometry 101

answer translation count

Geen onderwijs / basisonderwijs No education / pri-
mary school

68

lbo / vbo / vmbo kader of beroeps /
mbo 1

Vocational training 180

mavo / ulo / mulo / vmbo (theo-
retisch/gemengd)

Vocational training
(theoretical/mixed)

664

havo of vwo / hbs / mms High school 1652
mbo 2, 3, 4 of mbo oude structuur Community college 891
hbo College 4995
wo / postdoctoraal onderwijs Graduate school 4586
geen opgave no answer 247

Table 5.2: Education level of survey participants, with approximate American
equivalents.

address literary quality, discussing canon formation, stylistic aspects, and con-
ceptual issues in literary evaluation. As for empirical work on literary quality
and its possible textual factors, Richards (1929) is a well-known study on the in-
terpretation of poetry; it concludes that the participants generally did not agree
on their interpretation or assessment of the 13 poems, even praising obscure
poets and finding fault with famous poets. However, Martindale and Dailey
(1995) report opposite findings on the same poems by using a questionnaire and
quantitative analysis instead of the essay approach of Richards (1929). Miall
and Kuiken (1999) present a study in the formalist tradition, based on reader
reports of short stories and poems. In addition to the traditional model of
foregrounding and defamiliarization, they introduce a third process consisting
of the “modification of [the reader’s] personal meanings,” i.e., the evocative
and transformative qualities of the text. These three processes together are
claimed to define literariness. The volume Miall (2006) presents an overview of
empirical work on literature from the perspective of the reader.

There has also been empirical work that employs computational models.
Martindale (1990) presents a sweeping theory of laws about art and its change
over time, including results on literature. Chief among these laws is the desire
for novelty and a less well-defined concept of “primordial content.” Louwerse
(2004) studies idiolect and sociolect within texts, across authors, and across
genres by measuring semantic variation through Latent Semantic Analysis. The
method and claims (chiefly, literature is a deviation from the norm) are interest-
ing, but it is ultimately doubtful whether the conclusions are warranted by the
small amount of data (16 novels). Louwerse et al. (2008) present results with
computational models that discriminate literary texts from non-literary texts
using Latent Semantic Analysis and bigrams. The corpus is larger (119 novels),
but the binary classification task they consider is made artificially easy because
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the non-literary texts are from obviously different genres such as newswire
and sci-fi instead of less-literary novels; they attain a classification accuracy of
87 %. Jockers (2013) presents results with statistical and computational models,
a so-called distant reading,9 applied to a large number of novels, addressing
questions on genre and change over time. Underwood (2015) and Underwood
and Sellers (2015) present a chronological study of poetic distinction using a
predictive model based on word frequencies (bag-of-words). The research ques-
tion centers on how literary standards change over time, with predictive results
on distinguishing poetry that was reviewed in prestigious journals from other
poetry. Another development is the workshop Computational Linguistics for
Literature, held since 2012 at acl conferences (Elson et al., 2012, 2013; Feldman
et al., 2014, 2015), which welcomes applications of nlp techniques to literary
questions.

5.3.2 General quality and popularity

Some previous work has specifically looked at identifying quality and predicting
popularity of texts.

Bergsma et al. (2012) focus on scientific articles in the field of nlp. They
consider the tasks of predicting whether an article was written by a native
speaker, what the gender of the author is, and whether the article was published
in a workshop or in the main conference. They also consider syntactic features,
including tree fragments. However, in contrast to the work in this thesis, their
tree fragments are from a predefined set of fragments extracted from a reference
corpus. We extract fragments from the training data, which may result in more
specific fragments.

Louis and Nenkova (2013) investigate science journalism and model what
makes articles interesting and well written. The model is based on various
readability, stylometry, and content measures, which are shown to complement
each other.

Ashok et al. (2013) work with a corpus of nineteenth century novels from
project Gutenberg and predict their download counts, as a proxy for the success
of the novels. They try various kinds of features, include simple syntactic
features such as pos tags and grammar productions, which achieve accuracy
scores between 70 and 80%.

5.3.3 Authorship attribution

One of the earliest applications of quantitative analysis of texts was to establish
authorship. The attribution of the Federalist papers by Mosteller and Wallace
(1964) is a seminal work. Mosteller andWallace (1964) were incidentally also the

9 Distant reading is a term due to Moretti 2005, which contrasts with close reading. Instead of
interpreting and discussing select passages at length, distant reading addresses complementary
questions using large-scale statistical analysis of digitized texts.
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first to introduce Bayesian methods in nlp. Earlier work on authorship attribu-
tion by Markov (1913, 1916, as cited in Khmelev and Tweedie 2001) introduced
the notion of a Markov chain, a fundamental technique for language models in
nlp and other fields modeling sequential processes, where the probability of an
event is conditioned on the previous n events.

However, a critique that can be leveled at authorship attribution studies is
that a common, rigorous scientific methodology is typically not applied (Chaski,
1997, 2001). In computational linguistics it is normal to benchmark new work
on common data sets and to participate in shared tasks. Authorship attribution
work is often evaluated on data sets that were collected by the author and not
made available. Moreover, there is typically a small, closed set of potential
authors or distractors, making the task artificially easy. This makes it difficult
to compare different methods and feature sets against each other, because each
data set has different characteristics. Fortunately, the recent development of
shared tasks in the pan workshops10 appears to address these concerns.

5.3.4 Readability

Readability measures estimate how difficult a text is for certain kinds of read-
ers. A common application is the selection of material suitable for children in
particular grades. Early methods (e.g., Flesch reading ease, Flesch, 1948) were
designed to be computed by hand and in effect consist of a linear regression on
variables such as sentence and word lengths. More recent methods compare
texts to reference corpora (Collins-Thompson and Callan, 2004; Schwarm and
Ostendorf, 2005) and consider more fine-grained linguistic variables (Graesser
et al., 2004); the latter has inspired a Dutch version (Pander Maat et al., 2014).

Readability has relevance for literary stylistics because highly literary novels
may be more complex and thus less readable than other texts, while conversely
genre novels might be more readable, in order to reach a larger audience, or
perhaps as a necessary condition for being a page turner.

5.4 Dutch syntax and its annotation

Since the corpus of novels we will study is Dutch (whether translated or original),
and we are particularly interested in syntactic aspects, this section provides
some background on the Dutch language. This section is not meant to be
comprehensive, but only to give some context for interpreting the syntactic
examples and findings that will be presented later.

Dutch is a Germanic language. One interesting property is that it has two
word orders: verb second in main declarative clauses and verb final in embedded
clauses. The latter is considered to be the primary order, and therefore Dutch
is argued to be a subject-object-verb (sov) language (Koster, 1975), despite the
fact that main clauses are typically subject-verb-object (svo) like English. The

10 Cf. http://pan.webis.de/

http://pan.webis.de/
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verb-second (V2) property means that in a main declarative clause, the finite
verb must appear in second position; this entails that the order is more strict
than svo. English is not a V2 language, which makes it an exception among
Germanic languages. Consider the following examples:

(1) a. Hij
He

zag
saw

gisteren
yesterday

deze
this

fiets
bicycle

b. Deze
This

fiets
bicycle

zag
saw

hij
he

gisteren
yesterday

c. Gisteren
Yesterday

zag
saw

hij
he

deze
this

fiets
bicycle

d. *Deze
This

fiets
bicycle

hij
he

zag
saw

gisteren.
yesterday.

e. *Gisteren
Yesterday

hij
he

zag
saw

deze
this

fiets.
bicycle.

The finite verb is emphasized. We see that various constituents can be placed
in the initial position, as long as the finite verb ends up in the second position
(a–c); when two elements precede the verb (d–e), the Dutch sentence becomes
ungrammatical, which is not the case for English.

Another property is that Dutch allows long verb clusters, for example in
cross-serial dependencies described in Section 1.4. Any non-finite verbs appear
in clause-final position, in embedded clauses this includes the finite verb as well.
The latter gives rise to two possible orders for embedded clauses in Dutch (not
allowed in German or English):

(2) a. . . . omdat
. . . because

ik
I

heb
have

gewerkt
worked

‘red order’: auxiliary, past participle.

b. . . . omdat
*. . . because

ik
I

gewerkt
worked

heb
have

‘green order’: past participle, auxiliary.

Interestingly, there is regional variation in the preference for these orders, and
additionally, an association with speech versus writing.

In sum, in terms of word-order freedom Dutch and German are somewhere
between English (rigid) and Warlpiri (exceptionally free, non-configurational;
Hale 1983). Similarly, Dutch has a richer derivational morphology than English,
allowing the formation of new words using compounding, which form a single
word written without spaces.11

11 Interestingly, there is a tendency to add spaces to compounds where Dutch morphology would
prescribe none; since this is perceived to be due to the influence of English, this has been called de
Engelse ziekte (literally the English disease, a term normally denoting rickets). A particular instance
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The Dutch treebanks follow the same annotation style as the German tree-
banks, starting with Negra (Skut et al., 1997). This means that discontinuous
constituents are possible, and nodes have a function tag in addition to a syntactic
category. Terminals have morphological features in addition to a pos category.
For the Dutch annotations, we can distinguish two kinds of discontinuous
constituents:

1. inherent: similar to other languages, phenomena such as extraposition
and relative clauses give rise to inherently non-local relations.

2. incidental: particular features of Dutch and the chosen style of annotation
give rise discontinuity that arguably does not raise the complexity of the
sentence the way inherent discontinuity does.

The following are examples of incidental discontinuity, with the discontinu-
ous parts emphasized.

The word ‘er’: ‘er’ is a versatile function word. It can be used as both pronoun
and adverb. When used as part of a separable preposition, it often gives rise to
discontinuity.

(3) Ik
I

geloof
believe

er
it

niet
not

meer
longer

in.
in.

‘I don’t believe in it anymore.’

The word ‘te’ (to): When ‘te’ is used to introduce an infinitival phrase, ‘te’ causes
a discontinuity if the infinitival phrase has any arguments or modifiers that
precede ‘te.’

(4) Je
You

hoeft
have

niet
not

zo
so

hard
loudly

te
to

praten.
talk

‘You don’t have to talk so loudly.’

Participle phrases: when a clause has an auxiliary verb and a participle, the
participle is put in a separate participle phrase, including its modifiers and
arguments. Due to the verb-final nature of embedded clauses, this will cause
the auxiliary verb to interrupt the participle verb and its arguments/modifiers.

(5) Vandaag
Today

heb
have

ik
I

hard
hard

gewerkt.
worked.

‘Today I have worked hard.’

Verb clusters: similar to the cases above, whenever there are two or more verbs,
each verb may have arguments or modifiers in a non-adjacent position.

(6) Ik
I

ging
went

weg
away

omdat
because

hij
he

mij
me

anders
otherwise

gezien
seen

zou
would

hebben.
have.

that generated some mild controversy was the new logo of the Rijksmuseum (national museum),
which was rendered with a half space between Rijks and museum (Sanders, 2013), presumably as a
compromise.



106 Literary Investigations

number of sentences: 100
longest sentence: 41
gold brackets (disc.): 669 (35)
cand. brackets (disc.): 662 (32)
labeled recall: 91.93
labeled precision: 92.90
labeled F-measure: 92.41
exact match: 88.00
function tags: 98.26
pos accuracy: 99.41
coverage: 100.00

Table 5.3: Evaluation results for manually evaluated parse trees from novels.

‘I left because otherwise he would have seen me.’

5.4.1 Syntactic parsing of Dutch novels

Although we have developed a statistical parser for Dutch in the preceding
chapters, we will use the Alpino parser (Bouma et al., 2001) to parse our data
set of novels. The motivation for this is that Alpino, being a handwritten broad-
coverage parser, will provide better parses than our statistical parser, which has
not been trained on novels but on texts of a specific domain. However, we will
continue to make use of tree fragments and the extraction method for them.

In order to estimate the quality of the parse trees produced by Alpino for
the particular task of parsing novels, we took a random sample of 100 sentences
from the corpus of 401 novels, and manually evaluated and corrected each
constituent. The evaluation is given in Table 5.3. The results are very good,
indicating that there is no particular cause for concern with regards to parse
quality. The errors we found relate to pp-attachments (which is arguably a
semantic rather than syntactic task) and the clause structure of long sentences.

For comparison, the sentences have also been parsed with the Disco-2dop
model presented in this thesis. As could be expected, the performance is much
poorer (an F1-score of 72.8). There are two reasons why this is not a represen-
tative comparison. First, this model is derived solely from the training data,
which is very different from the words and constructions in the novels, while
Alpino has been hand-tuned for decades on language from various sources.
Second, it should be noted that this comparison inherently favors Alpino, since
the hand-corrected reference parses were generated by Alpino.
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6 Modeling Literary Language

In which we establish a baseline for modeling literary ratings using simple textual
features, cliché expressions, and topic modeling.

Je l’ai toujours dit et senti,
la véritable jouissance ne se décrit point.
I have always said and felt
true enjoyment cannot be described.

— Jean-Jacques Rousseau (1889, p. 78), Les Confessions

One equation can’t possibly capture the rich complexity
of six hundred fifty years of British poetry. Five or six
are probably needed.

— Martindale (1990, p. 117), The clockwork muse: The
predictability of artistic change

As a preamble to a full predictive model, this chapter explores several
explanatory variables of literariness and language. Our ambitions are
more modest than those of Martindale (1990), since we will be content

with correlations that partially explain the data.

6.1 Modeling literariness with basic textual features

Before looking at more complex features and models we first construct a simpler
model to gauge how difficult the task of predicting literary ratings from texts is.

We consider a chunk of 1000 sentences of each novel, to control for length
effects. To avoid the particularities of the start of the novels, we look at sentences
1000–2000. We leave out 18 novels with less than 2000 sentences.

An often heard writing advice is to minimize the number of adverbs and
adjectives. Since they are grammatically optional, they may be viewed as un-
necessary; leaving the reader to intuit the specifics of the situation may be
preferable. Liberman (2015a) responds to an instance of such writing advice
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Literary Quality

% adverbs -0.18* -0.24*
% adjectives -0.02 -0.17*
% verbs -0.35* -0.09
% nouns 0.29* 0.20*

Table 6.1: Correlation coefficients for pos tags with survey ratings. * indicates a
significant result with p ă 0.001.

% Adj %Adv %Noun %Verb

Liberman (2015a), English texts:
‘8 novels by admired authors’ 6.46 7.54 20.34 20.19
Brown, Da Vinci code 6.9 5.7 28.3 19.8
bad writing samples 10.47 5.39 28.40 14.40

Riddle corpus, Dutch:
383 novels 3.98 5.30 17.90 20.50
- Fiction 4.02 5.16 18.58 19.92
- Suspense 3.92 5.14 17.82 20.90
- Romantic 4.13 5.98 16.56 21.33

Table 6.2: Comparison of results on mean pos tag proportions.

by measuring their occurrences in various samples of writing, demonstrating
that good writing does not contain less adverbs and adjectives, vis à vis bad
writing (the texts were samples of literature and purple prose, respectively, and
included non-fiction as well).1 We can repeat this experiment on our corpus,
with the added benefit of being able to directly correlate the results with survey
ratings. It should be noted that the survey ratings and corpus we use provide a
different contrast from the good and bad writing that Liberman (2015a) uses,
since all of the novels in our corpus were highly successful and professionally
edited. Furthermore, our corpus is larger, with 383 instead of 18 texts.

Table 6.1 lists the correlations. Surprisingly, we do find correlations, and the
results are the opposite of Liberman (2015a), to the extent that the experiments
are comparable. See Table 6.2 for a comparison of pos tag proportions with the
results of Liberman (2015a). Some of the difference is due to different annotation
practices for English and Dutch pos tags, but it stands out that the Dutch pos

tags are much more consistent across genres, as compared to the two samples
that Liberman (2015a) reports. But it is not obvious that this can be attributed
to the good-bad contrast one way or the other. The small sample size and large
difference in genre and domain in the data set of Liberman (2015a) could well
be drowning out any markers of good and bad writing.

1 I am grateful to Stella Frank for bringing this blog post to my attention.
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Except for adjectives versus literary ratings, and verbs versus quality, the
correlations we find are significant, and point in the direction predicted by the
writing advice of avoiding adverbs and adjectives. However, the correlations are
relatively weak. Incidentally, the phrasal equivalents of adverbs and adjectives,
ap and advp respectively, yield weak, non-significant correlations.

Nouns and verbs do have relatively strong correlations. However, this may
be explained to an extent by the mean sentence length, which will be reported
shortly. Namely, a regular sentence requires a main verb, so when the sentences
are shorter, a larger proportion of words consists of main verbs; conversely,
longer sentences leave more room for nouns and other parts of speech.

For now we conclude that the notion that adverbs and adjectives are a
predictor of non-literary or bad writing cannot be rejected. Obviously any piece
of good writing can be ruined by a generous helping of gratuitous adverbs
and adjectives, but the strength of the correlation suggests that the majority of
adverbs and adjectives do not detract from the quality of writing. The advice
of avoiding them needs qualification; which adjectives or adverbs should be
avoided in what situation and context? The answer will almost surely not fit in
a writing advice slogan.

There are many more features beyond pos tags that could be considered;
e.g., Pander Maat et al. (2014) has a rather comprehensive list, used in the
context of readability assessment of Dutch; inspired by a similar system for
English (Graesser et al., 2004). Somewhat arbitrarily, we will consider the
following set of easily-extracted features.

Words per sentence i.e., mean sentence length. Despite the name, we count
all tokens as words.

Common vocabulary the percentage of tokens that are part of the 3000most
common words in a large reference corpus. We use Sonar 500 (Oostdijk
et al., 2013), a 500million word corpus composed of various domains. The
use of an external corpus should give a more reliable indicator of complex
vocabulary than proxies such as word length or type-token ratio which are
not defined relative to general language use.

Direct speech the percentage of sentences with direct speech punctuation.
Modifying pps the percentage of prepositional phrases with the mod function.

This label indicates an adverbial modifier, which are grammatically op-
tional elements (in the same way as adverbs and adjectives).

Average dependency length the distance (in words) between head words and
their dependents (arguments or modifiers). Longer dependencies are
claimed to be more difficult to process (Gibson, 2000). We follow the
definition of Liu (2008): punctuation is ignored, as well as dependencies
on the root node; the distance of a dependency between words with index
a and b is |a ´ b|; the total of all dependency lengths in a text is summed
before computing the mean.

Compression ratio the number of bytes when the text is compressed divided by
the uncompressed size. This expresses, in a technical sense, how repetitive
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Literature Quality

Words per sentence 0.40* 0.25*
Common vocabulary -0.31* -0.17*
Modifying pps 0.45* 0.23*
Direct speech -0.38* -0.03
Avg. dependency length 0.38* 0.24*
Compression ratio 0.32* 0.05

Table 6.3: Correlation coefficients for basic textual features and survey ratings. *
indicates a significant result with p ă 0.001.

a text is. We use the bzip2 compression scheme; this performed best (lowest
compression ratios) compared to the two other evaluated algorithms, gzip
and lzma (all applied with highest compression settings). For this feature
we use the first 100k bytes of each text, instead of 1000 sentences, since
this feature works not on the level of sentences but on bytes.

Most of the traditional readability measures (e.g., Flesch reading ease) are
based on sentence length and a measure of word length or complexity; we
therefore include such variables (the latter in the form of common vocabulary).
Note that the above features are not independent of each other. Longer sentences
will tend to contain more modifier constituents. While more direct speech tends
to lower the mean sentence length because dialogue often contains shorter
sentences. When the results are correlated with the survey outcomes, the results
in Table 6.3 obtain; i.e., literary texts have longer sentences, less common words,
are less repetitive, have more optional pps, and more direct speech.

The modifying ppsillustrate an instance of the Simpson’s paradox: if all in-
stances of the modifier function tag are counted, a positive correlation obtains,
but as shown before, adverbs, which are also modifiers, show a negative cor-
relation. Further investigation of the mod tag confirms this. While pp and rel

(relative clause) have a significant positive correlation, the other phrasal and pos

tags with which mod occurs, ap, advp, cp and adjectives, show a very slight or
almost no correlation with literary ratings.

When these features are normalized and combined into an Ordinary Least
Squares model of the literary ratings with 5-fold cross-validation,2 we obtain
the prediction performance in Table 6.4. Each line shows the effect of adding
another feature to the model. Note that the negative R2 in the first line means
that this feature by itself performs worse than the baseline of predicting the
mean rating. The results are not very impressive. The rest of this thesis will show
how much improvement can be obtained from more refined textual features.

2 A regression analysis as used in applied statistics is commonly evaluated using within-sample
metrics, which leads to substantially higher scores. However, because of the focus on predictive
modeling in this thesis, we strictly report out-of-sample results.



6.1 Modeling literariness with basic textual features 111

rms error R2 Kendall tau

% adjectives, adverbs 1.001 -0.5 0.098
+ % nouns 0.971 5.4 0.160
+ % verbs 0.912 16.5 0.264
+ words per sentence 0.886 21.2 0.290
+ Common vocabulary 0.886 21.2 0.287
+ Modifying pps 0.858 26.1 0.333
+ Direct speech 0.844 28.6 0.339
+ Avg. dependency length 0.838 29.6 0.345
+ Compression ratio 0.835 30.0 0.348

Table 6.4: Linear regression with 5-fold cross-validation on the baseline features.
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6.2 Cliché expressions in literary and genre novels

An often heard argument among literary critics is that the cliché is one of the
most prominent characteristics of “low brow” literature. Clichés can concern the
story line, the characters or the style of writing. We focus on clichéd expressions,
stock phrases which form a type of multi-word expressions. We present a corpus
study in which we examine to what extent clichéd expressions can be attested in
a corpus of various kinds of fiction.

We define cliché expressions as follows:

Definition 13. A cliché expression is a fixed, conventionalized yet compositional
multi-word expression which has become overused to the point of losing its
original meaning or effect.

Let’s unpack the four important terms in this definition:

fixed: the expression in the form that is recognized cannot be changed, or only
to a limited degree by filling in specified open slots.

conventionalized: i.e., the phrase is recognized by many speakers as a unit,
instead of being put together word for word.

compositional: the meaning is the sum of its parts following the regular pro-
cess in the language; this is in contrast to syntactically anomalous phrases
such as “by and large”, or semantically non-compositional figurative ex-
pressions such as “kick the bucket”.

overused: this aspect is subjective and therefore harder to pin down. Many
other multi-word expressions are accepted as a normal part of the lexicon,
while cliché expressions are marked as informal, tired, unoriginal, etc.
Furthermore, “A cliché is a kind of ersatz novelty or creativity that is, ipso
facto, unwelcome or deprecated by the reader” (Cook and Hirst, 2013,
emphasis in original). The term overused might suggest that there is
some range of acceptable frequency for items, but this limit seems hard to
determine; the cliché-hood of an expression rests on a contingent, cultural
judgment.

The combination of conventionalized and compositional is interesting. While
these expressions are semantically regular, we know that the speaker did not
choose any part of the expression separately, but only the expression as a whole.

We use a data set of 6,641 Dutch cliché expressions provided to us.3 We
determine the frequencies of the clichés in the corpus of 401 novels and relate
them to the survey results. The aim is to see whether the prevalence of clichèd
expressions offers insights into literary evaluations.

As reference corpora we will also look at Lassy Small and cgn. Lassy Small
consists mainly of news paper and Wikipedia text. cgn is a corpus of spoken
language.

3We are grateful to Wouter van Wingerden and Pepijn Hendriks for providing us with their data set
of clichés. This data set is the source for their published collection of clichés (van Wingerden and
Hendriks, 2015).
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This work can be compared with Cook and Hirst (2013), who also measure
to what extent texts are cliched. However, they use a method based on n-gram
frequencies from a reference corpus, which does not require an explicit list of
cliché expressions. This means that their method can only estimate the amount
of cliché expressions, but not inspect the expressions themselves or analyze the
number of types and counts for each expression.

6.2.1 Preprocessing

We tokenize both the cliches and the novels. We convert the cliches into regular
expressions. A handful are removed because they are too generic and generate
too many matches. The cliches contain several kinds of notation which we
translate using regular expression operators:

(1) a. Optional elements:
(Kijk,) dat bedoel ik nou.
(Look,) that’s what I mean.

b. Open slots:
Geen [bier] meer voor jou!
No more [beer] for you!

c. Variables:
Y, zoals X dan zou zeggen.
Y, as X would say.

d. Alternatives:
Daar zit een boek/artikel in!
That’s material for a book/paper!

Some aspects cannot be translated precisely. When the alternatives span
multiple words, the scope was not specified, so these have been edited manually.
For lack of more specific criteria, we allow any phrase of 1 to 3 words in open
slots. Lastly, some clichés involve mini-dialogues; since we match on a per-
sentence basis in the novels, these clichés will never found.

After translation we remove duplicates. The resulting list of 5,771 patterns
are counted across the whole corpus. We use Google’s RE2 library to match the
patterns efficiently using Deterministic Finite-State Automata. The result is a
document-pattern matrix with occurrence counts.

Some examples with high frequency:

Dat dacht ik al \. 125
Is dat alles \? \S+ 124
Nergens voor nodig \. 114
Waar of niet \? 112
Wat kan ik voor je doen \? 102
Waarom denk je dat \? 101
Komt allemaal goed \. 84
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Figure 6.1: A violin plot of the number of clichés by genre.

6.2.2 Results

For purposes of analysis, we sum the counts for all clichés in each document,
and compute the correlation with the target value. See Figure 6.2 and 6.3 for the
results. For both the literary ratings and quality there is a significant correlation,
which is stronger than the correlations obtained with the baseline features of
the previous section. The plots show that most novels with a high number of
clichés are non-literary; the highly literary novel De Buurman (the neighbor) by
Voskuil is the strongest exception to this. On the other hand, novels with few
clichés may or may not be literary. In other words, clichés are most useful as a
negative marker of literariness. For example, 50 shades of Grey, the least literary
novel, has relatively few cliché expressions for novels with a similar rating, and
falls below the regression line. Two novels do not have any matches at all.

To compare the rate of clichés across genres and domains, Table 6.5 shows
an overview aggregated across the main genres in the corpus and two reference
corpora. Especially the Romantic genre contains a large number of clichés,
and judging by the type-token ratio, it contains the most repetition of cliché
expressions (a ratio of 1 indicates that each type of cliché expression occurs only
once; the lower the ratio, the more repetition). The violin plot in Figure 6.1
illustrates the genre differences.

The reference corpora contain a much lower rate of clichés, which is probably
attributable to their domain and either lack of informal dialogue (Lassy Small),
or transcription of disfluencies preventing matches (cgn).
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Figure 6.2: Correlation of the number of clichés with literary ratings.

texts sentences

matches
@ 10,000

sen-
tences

@ 10,000
sen-

tences,
freq > 1

type-
token
ratio

Novels 369 9882.41 23.22 5.06 0.9
- Fiction 137 8611.09 18.11 3.01 0.94
- Suspense 177 10519.9 23.35 5.39 0.88
- Other 17 10733.2 23.84 6.36 0.89
- Romantic 38 11116 36.72 8.92 0.87
Lassy Small 1 52157 0.38 0 1
cgn 1 70277 9.25 4.41 0.63

Table 6.5: Overview of cliché occurrences. The rows with novels show the mean.
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6.3 Literariness and genre in a topic model

Topic models are an unsupervised technique for text analysis. A topic model
aims to automatically discover topics in a collection of documents. We apply to
our corpus of novels Latent Dirichlet Allocation to investigate several literary
questions.

Instead of examining topics on a macro-scale in a geographical or histor-
ical interpretation (Jockers and Mimno, 2013; Riddell, 2014), we take a new
perspective: whether novels have a dominant topic in their topic distributions
(mono-topicality), and whether certain topics may express an explicit or implicit
genre in the corpus. We hypothesize that there is a relationship between these
aspects of the topic distributions and perceptions of literary quality. We then
interpret the model by taking a closer look at the topics in a selection of the
novels.

6.3.1 Latent Dirichlet allocation

Latent Dirichlet Allocation (lda, Blei et al., 2003) is a topic model that au-
tomatically induces topics from a corpus of documents. lda is based on the
BoW-assumption. lda assumes that documents were generated from a mixture
of a small number of topics, where a “topic” is a distribution over words;4 the
‘latent’ in the name refers to revealing this hidden structure. ‘Dirichlet’ refers
to a distribution that generates other distributions. Given a number of topics,
lda produces two kinds of distributions for the data: word distributions for
each topic, and topic distributions for each document. These two distributions
interact because lda prefers to associate each document with few topics, while
at same time allocating the majority of weight in each topic to a small number
of words. The result is that frequently co-occurring words tend to receive a high
probability in one particular topic, while similar documents will have a high
probability for topics describing their similarities.

6.3.2 Experimental setup

We preprocess the 401 novels of the Riddle of Literary Quality by lemmatizing 5

the words, removing punctuation, function words and names, and splitting the
remaining text in chunks of 1000 tokens. We use Mallet (McCallum, 2002) to
create a topic model with 50 topics. Figure 6.4 shows an overview of the topics
with their proportion across the corpus.

We have attempted to identify topics for novels with high literary ratings,
and topics specific for suspense and romantic novels. According to Jockers and
Mimno (2013), the topics can be used to identify literary themes. They use the
terms “theme” and “topic” as “proxies for [...] a type of literary content that is
semantically unified and recurs with some degree of frequency or regularity

4 Note that this notion of topic is unrelated to more usual notions such as discourse or narrative topic.
5We use the lemmas that are part of the output of the Alpino parser.
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Figure 6.4: Overview of topics, sorted by proportion of the corpus.
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throughout and across a corpus” (p. 751). We found that three topics are specific
to a single author (for instance t3), and about a third seem genre specific. By
inspecting the most important words for each topic we found that most topics
(genre related or not) indeed cohere with certain themes (cf. Figure 6.4). This
suggests that the choice for 50 topics is neither too small nor too high.

6.3.3 Quantitative analysis

We aim to gain insight into the distribution of topics in relation to the literary
ratings of the novels (predicting literary ratings is not the goal for now). In
order to interpret the topic distributions, we introduce the concept of mono-
topicality.6 A mono-topical novel contains little diversity in topic distribution,
which means that one or two topics are dominant throughout the novel. A novel
which shows more variation in topics has a more even distribution of topics, i.e.,
such a novel has a larger topic diversity. Figure 6.5 shows an example of both
cases.

The x-axis shows the distribution of topics, sorted from least to most preva-
lent. In John Grisham’s The Appeal, topic 5 (“lawsuits”) has a proportion of
47.8 % of all 50 topics. This novel is more mono-topical than the Franzen’s
Corrections, which has a more balanced distribution of topic proportions.

We hypothesize that the less mono-topical a novel is, the higher the literary
ratings by readers will be. And indeed, Figure 6.6 shows that there is a statis-
tically significant correlation between the diversity of topics of a book and its
literary ratings. Books with a single, highly prominent topic, such as Grisham’s,
tend to be seen as less literary.

6.3.4 Interpretation

There are several possible explanations for the correlation. Genre novels could
have a tendency to single out certain topics, as they deal with more ‘typical’
or genre-specific subject matter than do general novels. If this were the case,
we would simply be finding that genre novels are considered to be less literary
than general novels, and this would tell us little about literary quality in a more
general sense. General novels in the other hand, deal with all sorts of subjects
and themes, across and beyond ‘genre’ subjects, and therefore a topic model
may not be able to single out thematic groups of words common to these novels,
and thus may not find one single prominent topic. A third explanation could
be that highly literary novels do deal with specific themes and subjects which
are also part of genre novels, but that these are described in wordings that are
more implicit or subtle, and therefore do not come up as single, clear topics. If
this were the case, that would bring us closer to an explanation of what topics
have to do with literary quality. These explanations are not mutually exclusive

6 Algee-Hewitt et al. (2015) independently introduced a similar concept under the same name.
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Figure 6.5: Distribution of 15 prominent topics in two novels with high (top)
and low (bottom) mono-topicality.
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Figure 6.6: Correlation between share of the most prominent topic per book and
mean literary ratings.

and we will explore the topic model here to examine the value of the second and
third explanation.

The topic that shows the highest correlation (r “ 0.49) with literary ap-
preciation is topic 29; cf. Figure 6.7. This topic is most prominent in fifteen
originally Dutch general novels. The twenty words in topic 29 with the highest
weights are begin, music, play, occasion, first, the first, sing, only, year, one, stay,
sometimes, even, new, own, always, high, exact(ly), bike, appear. They show
little coherence, making it hard to interpret their context, although ‘music and
performance’ appears to be part of it. To find out more about the novels in which
this topic is prominent, we consult a Dutch website maintained by librarians
called Literatuurplein, which provides information on the themes and content of
Dutch novels.

Most of these novels show similarities in themes, such as family relationships.
In ten of the novels the protagonist has an artistic profession: a couple of writers,
a painter and a stand-up comedian. None of them has a musical or acting career,
despite the ‘music and performance’ words; and vice versa, none of the twenty
most prominent words concern writing. All in all, at first glance topic 29 seems
not to address the themes and content of the novels, whereas most other topics
in the model do concern specific themes (cf. Figure 6.4).

For instance, topic 2 and 11 address family relations, topic 12 and 41 are
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Figure 6.7: Correlation between topic 29 proportion and mean literary ratings.

about writing novels, and topic 6 and 33 concern health issues. These topics
are present, but as smaller topics. This shows that the second explanation, of
the general novels not sharing themes, is not valid. It could be an indication
though that the highly literary novels indeed use a more subtle way of describing
themes similar to other novels in our corpus, our third explanation. As a final
note, in topic 29 there are proportionally more adverbs than in the other topics
mentioned, which contain more nouns. Perhaps this shows that style is a more
shared element in literary novels than the choice of words. In other words,
this brief analysis shows that there is merit to our third explanation. This will
therefore become a new hypothesis for further research.

6.3.5 Topic weights over chunks: Plot lines

Since the topic model was constructed over 1000 word chunks, it is possible
to inspect the prominence of topics across a novel. Especially topics related to
events are suited to this, such as murders, police investigations, and telephone
calls.

For a given topic, we plot its weights with text time (as opposed to story
time) on the x-axis. This axis could be normalized so that all novels start at the
same point and end at the same point. The y-axis shows the prominence of the
topic in a specific chunk in each novel, relative to the other possible topics. We
apply a rolling mean of 10 chunks to smooth the plot. Figure 6.8 show such a



6.3 Literariness and genre in a topic model 123

0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Plot lines of t39: weapons

Adler-Olsen_VrouwInKooi

Carre_OnsSoortVerrader

Janssen_TiendeVrouw

Kepler_Hypnose

Mosby_5050Moorden

Tex_Wachtwoord

Figure 6.8: Plot line of topic 39 (weapons) in 6 novels.

rms error R2

Baseline features (ols) 0.84 30.0
Topics (svm) 0.69 50.27

Table 6.6: Regression results with topic model weights.

plot, for the topic on weapons in 6 thrillers.

6.3.6 Topics as features for prediction

In the next chapter we will use bigrams and tree fragments as features to predict
the ratings of novels in the survey. These models rely on thousands of features.
As a preview, here we report an experiment on a predictive model using just
topic weights. The topic model is, like the bigrams, also based on a bag-of-words
model, but reduces the word-dimensions to topic-dimensions. We can represent
each document as a feature vector with its 50 topic weights.

On the one hand this a dramatic reduction in information in terms of the
number of variables. On the other, the topics capture relationships between
words that cannot be capture by a linear bag-of-words model. As a concrete
example, in a linear BoW-model, synonyms have independently trained feature
weights, while they can share a topic in a topic model.

A methodological remark that should be made is that the topic model is
based on all text, including the texts that are used as test set in each of the 5
cross-validation folds. However, the target values (literary ratings) are not seen
during training, therefore this is still an out-of-sample test with respect to the
values that are being predicted. Table 6.6 and Figure 6.9 show the results of the
regression experiment. In this experiment we used the same chunks as for the
topic model. Each novel is therefore predicted and evaluated multiple times.
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6.3.7 Summary

We have explored a topic model of contemporary novels in relation to genre and
literariness, and shown that topic diversity correlates with literary ratings. Most
topics express a clear theme or genre. However, topic 29, the most literary topic,
does not. It rather appears to be associated with a particular Dutch literary
writing style.
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7 Predictive Models of Literature

In which we model authorship and what makes texts literary by exploiting an ensemble
of lexical and syntactic patterns in a predictive model.

This chapter is about learning to predict aspects of literature, authorship
and literariness. We explore both simple textual features, word n-grams,
as well as richer, syntactic features, namely tree fragments, which form

the building blocks of the Tree-Substitution Grammars as used in the previous
part on parsing.

7.1 Authorship attribution with tree fragments

We present a method of authorship attribution and stylometry that exploits
hierarchical information in phrase-structures. Contrary to much previous work
in stylometry, we focus on content words rather than function words. Texts are
parsed to obtain phrase-structures, and compared with texts to be analyzed. An
efficient tree kernel method identifies common tree fragments among data of
known authors and unknown texts. These fragments are then used to identify
authors and characterize their styles. Our experiments show that the struc-
tural information from fragments provides complementary information to the
baseline trigram model.

7.1.1 Introduction

The task of authorship attribution (for an overview cf. Stamatatos, 2009) is
typically performed with superficial features of texts such as sentence length,
word frequencies, and use of punctuation & vocabulary. While such methods
attain high accuracy scores (e.g., Grieve, 2007), the models make purely statisti-
cal decisions that are difficult to interpret. To overcome this we could turn to
higher-level patterns of texts, such as their syntactic structure.

Syntactic stylometry was first attempted by Baayen et al. (1996), who looked
at the distribution of frequencies of grammar productions.1 More recently,
Raghavan et al. (2010) identified authors by deriving a probabilistic grammar

1 A grammar production is a rewrite rule that generates a constituent.
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Figure 7.1: A phrase-structure tree produced by the Stanford parser.

for each author and picking the author grammar that can parse the unidentified
text with the highest probability. There is also work that looks at syntax on a
more shallow level, such as Hirst and Feiguina (2007), who work with partial
parses; Wiersma et al. (2011) looked at n-grams of part-of-speech (pos) tags, and
Menon and Choi (2011) focused on particular word frequencies such as those of
‘stop words,’ attaining accuracy scores well above 90 % even in cross-domain
tasks.

In this section we also aim to perform syntactic stylometry, but we ana-
lyze syntactic parse trees directly, instead of summarizing the data as a set of
grammar productions or a probability measure. The unit of comparison is tree
fragments. Our hypothesis is that the use of fragments can provide a more
interpretable model compared to one that uses fine-grained surface features
such as word tokens.

7.1.2 Method

We investigate a corpus consisting of a selection of novels from a handful of
authors. The corpus was selected to contain works from different time periods
from authors with a putatively distinctive style. In order to analyze the syntactic
structure of the corpus we use hierarchical phrase-structures, which divide
sentences into a series of constituents that are represented in a tree-structure;
cf. Figure 7.1 for an example. We analyze phrase-structures using the notion
of tree fragments (referred to as subset trees by Collins and Duffy, 2002). This
notion is taken from the framework of Data-Oriented Parsing (Scha, 1990),
which hypothesizes that language production and comprehension exploits an
inventory of fragments from previous language experience that are used as
building blocks for novel sentences. In our case we can surmise that literary
authors might make use of a specific inventory in writing their works, which
characterizes their style. Fragments can be characterized as follows:

Definition 14. A fragment f of a tree T is a connected subset of nodes from T ,
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Figure 7.2: A phrase-structure fragment from the tree in Figure 7.1.

with |f | ě 2, such that each node of f has either all or none of the children of
the corresponding node in T .

When a node of a fragment has no children, it is called a frontier node; in a
parsing algorithm such nodes function as substitution sites where the fragment
can be combined with other fragments. Cf. Figure 7.2 for an example of a
fragment. An important consideration is that fragments can be of arbitrary size.
The notion of fragments captures anything from a single context-free production
such as

(1) S Ñ NP VP

. . . to complete stock phrases such as

(2) Come with me if you want to live.

In other words, instead of making assumptions about grain size, we let the data
decide. This is in contrast to n-grammodels where n is an a priori defined sliding
window size, which must be kept low because of data-sparsity considerations.

To obtain phrase-structures of the corpus we employ the Stanford parser
(Klein and Manning, 2003), which is a treebank parser trained on the Wall Street
journal (wsj) section of the Penn treebank (Marcus et al., 1993). This unlexi-
calized parser attains an accuracy of 85.7% on the wsj benchmark (|w| ď 100).
Performance is probably much worse when parsing text from a different domain,
such as literature; for example dialogue and questions are not well represented
in the news domain on which the parser is trained. Despite these issues we
expect that useful information can be extracted from the latent hierarchical
structure that is revealed in parse trees, specifically in how patterns in this
structure recur across different texts.

We preprocess all texts manually to strip away dedications, epigraphs, pref-
aces, tables of contents, and other such material. We also verified that no
occurrences of the author names remained.2 Sentence and word-level tokeniza-
tion is done by the Stanford parser. Finally, the parser assigns the most likely
parse tree for each sentence in the corpus. No further training is performed; as
our method is memory-based, all computation is done during classification.

2 Exception: War and Peace contains a character with the same name as its author. However, since
this occurs in only one of the works, it cannot affect the results.
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In the testing phase the author texts from the training sections are compared
with the parse trees of texts to be identified. To do this we modified the fragment
extraction algorithm of Sangati et al. (2010) to identify the common fragments
among two different sets of parse trees.3 This is a tree kernel method (Collins
and Duffy, 2002) which uses dynamic programming to efficiently extract the
maximal fragments that two trees have in common. We use the variant reported
by Moschitti (2006b) which runs in average linear time in the number of nodes
in the trees.

To identify the author of an unknown text we collect the fragments which it
has in common with each known author. In order to avoid biases due to different
sizes of each author corpus, we use the first 15,000 sentences from each training
section. From these results all fragments which were found in more than one
author corpus are removed. The remaining fragments which are unique to each
author are used to compute a similarity score.

We have explored different variations of similarity scores, such as the number
of nodes, the average number of nodes, or the fragment frequencies. A simple
method which appears to work well is to count the total number of content
words.4 Given the parse trees of a known author A and those of an unknown
author B, with their unique common fragments denoted as A [ B, the resulting
similarity is defined as:

fpA,Bq “
ÿ

xPA[B

content_wordspxq

However, while the number of sentences in the training sets has been fixed, they
still diverge in the average number of words per sentence, which is reflected in
the number of nodes per tree as well. This causes a bias because statistically,
there is a higher chance that some fragment in a larger tree will match with
another. Therefore we also normalize for the average number of nodes. The
author can now be guessed as:

argmax
APAuthors

fpA,Bq

1{|A|
ř

tPA |t|

Note that working with content words does not mean that the model reduces
to an n-gram model, because fragments can be discontiguous; e.g., “he said
X but Y .” Furthermore the fragments contain hierarchical structure while
n-grams do not. To verify this contention, we also evaluate our model with
trigrams instead of fragments. For this we use trigrams of word & part-of-speech
pairs, with words stemmed using Porter’s algorithm. With trigrams we simply
count the number of trigrams that one text shares with another. Raghavan
et al. (2010) have observed that the lexical information in n-grams and the

3 The code used in the experiments is available at http://github.com/andreasvc/authident.
4 Content words consist of nouns, verbs, adjectives, and adverbs. They are identified by the part-of-
speech tags that are part of the parse trees.

http://github.com/andreasvc/authident
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structural information from a pcfg perform a complementary role, achieving
the highest performance when both are combined. We therefore also evaluate
with a combination of the two.

Author Works
(sentences) (year of first publication)

Conrad, Joseph
(25,889)

Heart of Darkness (1899), Lord Jim (1900), Nostromo
(1904), The Secret Agent (1907)

Hemingway,
Ernest
(40,818)

A Farewell To Arms (1929), For Whom the Bell Tolls
(1940), The Garden of Eden (1986), The Sun Also
Rises (1926)

Huxley, Aldous
(23,954)

Ape and Essence (1948), Brave New World (1932),
Brave New World Revisited (1958), Crome Yellow
(1921), Island (1962), The Doors of Perception (1954),
The Gioconda Smile (1922)

Salinger, J.D.
(26,006)

Franny & Zooey (1961), Nine Stories (1953),
The Catcher in the Rye (1951), Short stories
(1940–1965)

Tolstoy, Leo
(66,237)

Anna Karenina (1877); transl. Constance Garnett,
Resurrection (1899); transl. Louise Maude, The
Kreutzer Sonata and Other Stories (1889); transl.
Benjamin R. Tucker, War and Peace (1869); transl.
Aylmer Maude & Louise Maude

Table 7.1: Texts in the authorship attribution corpus. Note that the works by Tol-
stoy are English translations from project Gutenberg; the translations
are contemporaneous with the works of Conrad.

20 sentences trigrams fragments combined 100 sentences trigrams fragments combined

Conrad 83.00 87.00 94.00 Conrad 100.00 100.00 100.00
Hemingway 77.00 52.00 81.00 Hemingway 100.00 100.00 100.00
Huxley 86.32 75.79 86.32 Huxley 89.47 78.95 89.47
Salinger 93.00 86.00 94.00 Salinger 100.00 100.00 100.00
Tolstoy 77.00 80.00 90.00 Tolstoy 95.00 100.00 100.00
average: 83.23 76.16 89.09 average: 96.97 95.96 97.98

Table 7.2: Accuracy in % for authorship attribution with test texts of 20 or 100
sentences.

7.1.3 Evaluation & discussion

Our data consist of a collection of novels from five authors. See Table 7.1 for a
specification. We perform cross-validation on 4 works per author. We evaluate
on two different test sizes: 20 and 100 sentences. We test with a total of 500
sentences per work, which gives 25 and 5 data points per work given these sizes.
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Conrad 94 1 2 3
Hemingway 3 81 11 5
Huxley 5 2 82 1 5
Salinger 1 2 3 94
Tolstoy 8 2 90

Table 7.3: Confusion matrix for attribution of 20-sentence chunks with trigrams
and fragments combined. The rows are the true authors, the columns
the predictions of the model.

As training sets only the works that are not tested on are presented to the model.
The training sets consist of 15,000 sentences taken from the remaining works.
Evaluating the model on these test sets took about half an hour on a machine
with 16 cores, employing less than 100 mb of memory per process. The similarity
functions were explored on a development set, the results reported here are
from a separate test set.

The authorship attribution results are in Table 7.2. It is interesting to note
that even with three different translators, the work of Tolstoy can be successfully
identified; i.e., the style of the author is modeled, not the translator’s.

Gamon (2004) also classifies chunks of 20 sentences, but note that in his
methodology data for training and testing includes sentences from the same
work. Recognizing the same work is easier because of recurring topics and
character names.

Grieve (2007) uses opinion columns of 500–2,000 words, which amounts to
25–100 sentences, assuming an average sentence length of 20 words. Most of
the individual algorithms in Grieve (2007) score much lower than our method,
when classifying among 5 possible authors like we do, while the accuracy scores
are similar when many algorithms are combined into an ensemble. Although the
corpus of Grieve is carefully controlled to contain comparable texts written for
the same audience, our task is not necessarily easier, because large differences
within the works of an author can make classifying that author more challenging.

Table 7.3 shows a confusion matrix when working with 20 sentences. It is
striking that the errors are relatively asymmetric: if A is often confused with
B, it does not imply that B is often confused with A. This appears to indicate
that the similarity metric has a bias towards certain categories which could be
removed with a more principled model.

Here are some examples of sentence-level and productive fragments that
were found:

(3) Conrad: [PP [IN ] [NP [NP [DT ] [NN sort ] ] [PP [IN of ] [NP [JJ ] [NN ] ] ] ] ]
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(4) Hemingway: [VP [VB have ] [NP [DT a ] [NN drink ] ] ]

(5) Salinger: [NP [DT a ] [NN ] [CC or ] [NN something ] ]

(6) Salinger: [ROOT [S [NP [PRP I ] ] [VP [VBP mean ] [SBAR ] ] [. . ] ] ]

(7) Tolstoy: [ROOT [SINV [“ “ ] [S ] [, , ] [” ” ] [VP [VBD said ] ] [NP ] [, , ] [S [VP
[VBG shrugging ] [NP [PRP$ his ] [NNS shoulders ] ] ] ] [. . ] ] ]

It is likely that more sophisticated statistics, for example methods used for col-
location detection, or general machine learning methods to select features such
as support vector machines would allow to select only the most characteristic
fragments.

On the task of attributing the disputed and co-authored Federalist papers,
the fragment model attributes 14 out of 15 papers to Madison (in line with
the commonly held view); the 19th paper is (incorrectly) attributed to Jay. To
counter the imbalance in training data lengths, we normalized on the number
of nodes in the fragments common to training & test texts.

7.1.4 Discussion

We conclude from the above that deep syntactic features show potential for sty-
lometric tasks. Our method of syntactic stylometry is conceptually simple—we
do not resort to sophisticated statistical inference or an ensemble of algorithms—
and takes sentence-level hierarchical phenomena into account. Contrary to
much previous work in stylometry, we included content words rather than just
function words. The experiments show that lexical and syntactic features per-
form particularly well when combined. Having demonstrated the feasibility of
analyzing literary syntax through parse tree fragments, it becomes possible to
apply these techniques to address other literary questions. Another direction is
to avoid manually defining the similarity function, and instead employ a more
sophisticated machine learning algorithm, such as support vector machines.

7.2 Predicting literariness from a bag-of-bigrams model

We will consider the task of predicting the literary and quality ratings of the
contemporary Dutch novels in the corpus. In this pilot study, we will work
with a subset of the novels and consider two kinds of word bigram features,
content and style bigrams. The use of support vector machines is explored with
classification and regression tasks.

7.2.1 Survey data and novels

The data set used for this pilot study contains a selection of 146 books from the
401 included in the survey; see Table 7.4 and 7.5. Both translated and original
(Dutch) novels are included. The data set contains three genres, as indicated by
the publisher: literary novels, literary thrillers and thrillers. There are no Dutch
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Original Translated

Thrillers 0 31
Literary thrillers 26 29
Literary fiction 27 33

Table 7.4: The number of books in each category. These categories were assigned
by the publishers.
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literariness
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40
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Figure 7.3: A histogram of the mean literary ratings.

thrillers in the corpus. Note that these labels are ones that the publishers have
assigned to the novels. We will not be using these labels in our experiments—
save for one where we interpret genre differences—we base ourselves on reader
judgments. In other words: when we talk about highly literary texts, they (in
theory) could be part of any of these genres, as long as readers judged them to
be highly literary.

7.2.2 Experimental setup

Three aspects of a machine learning model can be distinguished: the target of its
predictions, the features which predictions are based on, and the kind of model
and predictions it produces.

Machine learning tasks

We consider two tasks:

1. Literary ratings
2. Bad/good (general quality)

The target of the classification model is a binary classification whether a
book is within the 25% judged to be the most literary, or good. Figure 7.3 shows
a histogram of the literary judgments. This cutoff divides the two peaks in the
histogram, while ensuring that the number of literary novels is not too small.
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Original Translated

literature Bernlef, Dis, Dorrestein,
Durlacher, Enquist, Galen,
Giphart, Hart, Heijden, Japin,
Kluun, Koch, Kroonenberg,
Launspach, Moor, Mortier,
Rosenboom, Scholten, Siebelink,
Verhulst, Winter.

Auel, Avallone, Baldacci, Binet, Blum,
Cronin, Donoghue, Evans, Fragoso,
George, Gilbert, Giordano, Harbach,
Hill, Hodgkinson, Hosseini, Irving,
James, Krauss, Lewinsky, Mastras,
McCoy, Pick, Picoult, Rosnay, Ruiz
Zafón, Sansom, Yalom.

literary
thrillers

Appel, Dijkzeul, Janssen, Noort,
Pauw, Terlouw, Verhoef, Vermeer,
Visser, Vlugt

Coben, Forbes, French, Gudenkauf,
Hannah, Haynes, Kepler, Koryta,
Lackberg, Larsson, Läckberg, Nesbo,
Patterson, Robotham, Rosenfeldt,
Slaughter, Stevens, Trussoni, Watson.

thrillers Baldacci, Clancy, Cussler, Forsyth,
Gerritsen, Hannah, Hoag, Lapidus,
McFadyen, McNab, Patterson, Roberts,
Rose.

Table 7.5: Authors in the data set.

A more difficult task is to try to predict the average rating for literariness of
each book. This not only involves the large differences between thrillers and
literary novels, but also smaller differences within these genres.

Textual features

The features used to train the classifier are based on a bag-of-words model with
relative frequencies. Instead of single words we use word bigrams. Bigrams
are occurrences of two consecutive words observed in the texts. The bigrams
are restricted to those that occur in between 60 % and 90 % of texts used in
the model, to avoid the sparsity of rare bigrams on the one hand, and the most
frequent function bigrams on the other. No limit is placed on the total number
of bigram features. We consider two feature sets:

content bigrams: Content words contribute meaning to a sentence and are
thus topic related; they consist of nouns, verbs, adjectives, and adverbs.
Content bigrams are extracted from the original tokenized text, without
further preprocessing.

style bigrams: Style bigrams consist of function words, punctuation, and part-
of-speech tags of content words (similar to Bergsma et al. 2012). In contrast
with content words, function words determine the structure of sentences
(determiners, conjunctions, prepositions) or express relationships (pro-
nouns, demonstratives). Function words are identified by a selection
of part-of-speech tags and a stop word list. Function words are repre-
sented with lemmas, e.g., auxiliary verbs appear in uninflected form. Lem-
mas and part-of-speech tags were automatically assigned by the Alpino
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Figure 7.4: Non-negative matrix factorization based on style bigrams (literary
novels are the blue triangles).

parser (Bouma et al., 2001).

Models

All machine learning experiments are performed with scikit-learn (Pedregosa
et al., 2011). The classifier is a linear Support Vector Machine (svm) with
regularization tuned on the training set. The cross-validation is 10-fold and
stratified (each fold has a distribution of the target class that is similar to that of
the whole data set).

For regression the same setup of texts and features is used as for the classifi-
cation experiments, but the machine learning model is a linear Support Vector
Regression model.

7.2.3 Results

Before we train machine learning models, we consider a dimensionality reduc-
tion of the data. Figure 7.4 shows a non-negative matrix factorization of the
style bigrams. In other words, this is a visualization of a decomposition of the
bigram counts, without taking into account whether novels are literary or not
(i.e., an unsupervised model). Notice that most of the non-literary novels (red)
cluster together in one corner, while the literary books (blue) show more vari-
ation. When content bigrams are used, a similar cluster of non-literary books
emerges, but interestingly, this cluster only consists of translated works. With
style bigrams this does not occur.
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Features Literary Bad/good

Content bigrams 90.4 63.7
Style bigrams 89.0 63.0

Table 7.6: Accuracy (percentage correct) of classifying literary and good novels
using bigrams.

This result seems to suggest that non-literary books are easier to recognize
than literary books, since the literary novels show more variation. However,
note that this decomposition present just one way to summarize and visualize
the data. The classification model, when trained specifically to recognize literary
and non-literary texts, can still identify particular discriminating features.

Classification

Table 7.6 shows the evaluation of the classification models. The content bigrams
perform better than the style bigrams. The top-ranked bigram features of the
model for literary classification are shown in Table 7.8.

If we look only at the top 20 bigrams that are most predictive of literary texts
according to our model and plot how often they occur in each genre as specified
by the publishers, we see that these bigrams occur significantly more often in
literary texts; cf. the plot in Figure 7.6. This indicates that there are features
specific to literary texts, despite the variance among literary texts shown in
Figure 7.4.

Features Literary Bad/Good

Content bigrams 61.3 (0.65) 33.5 (0.49)
Style bigrams 57.0 (0.67) 22.2 (0.52)

Table 7.7: Evaluation of the regression models; R2 scores (percentage of varia-
tion explained), root mean squared error in parentheses (1–7).

When trained on the bad/good dimension, the classification accuracy is
around 60%, compared to around 90% for literariness, regardless of whether
the features are about content or style bigrams. This means that the bad/good
judgments are more difficult to predict from these textual features. This is not
due to the variance in the survey responses themselves. If literariness were a
more clearly defined concept for the survey participants than general quality,
we would expect there to be less consensus and thus more variance on the
latter dimension. But this is not what we find; in fact the mean of the standard
deviations of the bad/good responses is lower than for the literariness responses
(1.08 vs. 1.33). Rather, it is likely that the bad/good dimension depends on
higher-level, plot-related characteristics, or text-extrinsic social factors.
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Figure 7.5: Scatter plot of predicted literary judgments using content bigrams
(above) and style bigrams (below).
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Figure 7.6: A bar plot of the number of occurrences of the top 20most impor-
tant literary features (cf. Table 7.8) across the genres given by the
publisher (error bars show 95% confidence interval).

The regression results cannot be evaluated with a simple ‘percentage correct’
accuracy metric, because it is not feasible to predict a continuous variable exactly.
Instead we report the coefficient of determination (R2). This metric captures
the percentage of variation in the data that the model explains by contrasting
the errors of the model predictions with those of the null model which always
predicts the mean of the data. R2 can be contrasted with the root mean squared
error, also known as the standard error of the estimate, or the norm of residuals,
which measures how close the predictions are to the target on average. In
contrast with R2, this metric has the same scale as the original data, and lower
values are better.

The regression scores are shown in Table 7.7. Predicting the bad/good scores
is again more difficult. The regression results for literariness predictions are
visualized in Figure 7.5. Each data point represents a single book. The x-axes
show the literariness ratings from survey participants, while the y-axes show the
predictions from the model. The diagonal line shows what the perfect prediction
would be, and the further the data points (novels) are from this line, the greater
the error. On the sides of the graphs the histograms show the distribution of
the literariness scores. Notice that the model based on content bigrams mirrors
the bimodal nature of the literariness ratings, while the histogram of predicted
literariness scores based on style bigrams shows only a single peak.

Figure 7.7 shows the same regression results with the publisher-assigned
genres highlighted. The graph shows that predicting the literariness of thrillers
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Figure 7.7: Scatter plot of predicted literary judgments using content bigrams,
with data points distinguished by the publisher-assigned genre.

is more difficult than predicting the literariness of the more literary rated novels.
Most thrillers have ratings between 3.4 and 4.3, while the model predicts a wider
range of ratings between 3.3 and 5.0; i.e., the model predicts more variation
than actually occurs. For the literary novels both the predicted and actual
judgments show a wide range between 4.5 and 6.5. The actual judgments of the
literary novels are about 0.5 points higher than the predictions. However, there
are novels at both ends of this range for which the ratings are well predicted.
Judging by the dispersion of actual and predicted ratings of the literary novels
compared to the thrillers, the model accounts for more of the variance within
the ratings of literary novels.

It should be noted that while in theory 100 % is the perfect score, the
practical ceiling is much lower due to the fact that the model is trying to predict
an average rating—and because part of the variation in literariness will only
be explainable with richer features, text-extrinsic sociological influences, or
random variation.
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weight literary features, content weight non-literary features, content

12.1 de oorlog the war -6.1 de moeder the mother
8.1 het bos the forest -5.1 keek op looked up
8.1 de winter the winter -4.9 mijn hoofd my head
6.6 de dokter the doctor -4.9 haar moeder her mother
5.8 zo veel so much -4.7 mijn ogen my eyes
4.8 nog altijd yet still -4.7 ze keek she looked
4.5 de meisjes the girls -4.5 mobiele telefoon mobile telephone
4.3 zijn vader his father -4.2 de moord the murder
4.0 mijn dochter my daughter -4.0 even later a while later
3.9 het boek the book -3.8 nu toe (until) now
3.8 de trein the train -3.5 zag ze she saw
3.7 hij hem he him -3.4 ik voel I feel
3.7 naar mij at me -3.3 mijn man my husband
3.5 zegt dat says that -3.2 tot haar to her
3.5 het land the land -3.2 het gebouw the building
3.5 een sigaret a cigarette -3.2 liep naar walked to
3.4 haar vader her father -3.1 we weten we know
3.4 een boek a book -3.1 enige wat only thing
3.2 de winkel the shop -3.1 en dus and so
3.1 elke keer each time -3.0 in godsnaam in god’s name

weight literary features, style weight non-literary features, style

21.8 ! WW ! VERB , -13.8 nu toe until now
20.5 u , you (formal) , -13.4 en dus and so
18.0 haar haar her her -13.4 achter me behind me
16.5 SPEC : NAME : -13.2 terwijl ik while I
15.4 worden ik become I -13.1 tot nu until now

Table 7.8: The top 20 most important content bigrams and top 5 most impor-
tant style bigrams of literary (left), and non-literary texts (right),
respectively.

7.2.4 Interpretation

As the experiments show, there are textual elements that allow a machine
learningmodel to distinguish between works that are perceived as highly literary
as opposed to less literary ones—at least for this data set and survey. We now
take a closer look at the features and predictions of the literary classification
task to interpret its success.

Content

When we look at the forty bigrams that perform best and worst for the literary
novels (cf. Table 7.8), we can identify a few tendencies.

The book, a book, a letter, and to write are also part of the most important
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features, as well as the bar, a cigarette, and the store. This suggests a certain
pre-digital situatedness, as well as a reflection on the writing process. Inter-
estingly enough, in contrast to the book and letter that are most discriminating,
negative indicators contain words related to modern technology: mobile phone
and the computer. Inspection of the novels shows that the literary novels are
not necessarily set in the pre-digital age, but that they have fewer markers of
recent technology. This might be tied to the adage in literary writing that good
writing should be ‘timeless’—which in practice means that at the very least a
novel should not be too obvious in relating its settings to the current day. It
could also show a hint of nostalgia, perhaps connected to a romantic image of
the writer.

In the negative features, we find another time-related tendency. The first is
indications of time—little after, and in Dutch ‘tot nu’ and ‘nu toe’, which are part
of the phrase ‘tot nu toe’ (so far or up until now), minutes after and ten minutes;
another indicator that awareness of time, albeit in a different sense, is not part
of the ‘literary’ discourse. Indicators of location are the building, the garage/car
park, and the location, showing a different type of setting than the one described
above. We also see indicators of homicide: the murder, and the investigation.
Some markers of colloquial speech are also found in the negative markers: for
god’s sake and thank you, which aligns with a finding of Jautze et al. (2013), where
indicators of colloquial language were found in low-brow literature.

It is possible to argue, that genre is a more important factor in this clas-
sification than literary style. However, we state that this is not particular to
this research, and in fact unavoidable. The discussion of how tight genre and
literariness are connected, has been held for a long time in literary theory and
will probably continue for years to come. Although it is not impossible for so
called ‘genre novels’ to gain literary status (cf. Margaret Atwood’s sci-fi(-like)
work for instance—although she objects to such a classification; Hoby 2013),
it is the case that certain topics and genres are considered to be less literary
than others. The fact that the literary novels are apparently not recognized by
proxy, but on an internal coherence (cf. Section 7.2.3), does make an interesting
case for the literary novel to be a genre on its own. Computational research
into genre differences has proven that there are certain markers that allow for a
computer to make an automated distinction between them, but it also shows
that interpretation is often complex (Moretti, 2005; Allison et al., 2011; Jautze
et al., 2013). Topic modeling might give some more insight into our findings.

Style

A stronger case against genre determining the classification is the success of the
function words in the task. Function words are not directly related to themes
or topics, but reflect writing style in a more general sense. Still, the results do
not rule out the existence of particular conventions of writing style in genres,
but in this case the distinction between literariness and genre becomes more
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subtle. Function words are hard to interpret manually, but we do see in the
top 20 (Table 7.8 shows the top 5) that the most discriminating features of
less literary texts contain more question marks (and thus questions), and more
numerals (tw)—which can possibly be linked to the discriminative qualities
of time-indications in the content words. Some features in the less-literary set
appear to showmore colloquial language again, such as ik mezelf (‘I myself’), door
naar (‘through/on to’; an example can be found in the sentence ‘Heleen liep door
naar de keuken.’, which translates to ‘Heleen walked on to the kitchen’, a sound
grammatical construction in Dutch, but perhaps not a very aesthetically pleasing
one). A future close reading of the original texts will give more information on
this intuition.

In future work, more kinds of features should be applied to the classifica-
tion of literature to get more insight. Many aspects could be studied, such as
readability, syntax, semantics, discourse relations, and topic coherence. Given a
larger data set, the factors genre and translation/original can be controlled for.

The general question which needs to be answered is whether a literary
interpretation of a computational model is even possible. The material to work
with (the features), consist of concise sets of words or even part-of-speech tags,
which are not easy to interpret manually; and they paint only a small part
of the picture. The workings of the machine learning model remain largely
hidden to the interpreter. This is an instance of the more general problem of
the interpretability of results in computational humanities (Bod, 2013). In the
specific case of literature, we can observe that readers of literature follow a
similar pattern: literature can be recognized and appreciated, but it is hard to
explain what makes texts literary, let alone to compose a highly literary work.

Good and bad predictions

In Figure 7.7, we can see both outliers and novels that are well predicted by the
regression model. Here we discuss a few and suggest why the model does or
does not account for their perceived literariness.

Emma Donoghue - Room A literary novel that is rated as highly literary (5.5),
but with a lower prediction (3.8). This may be because this novel is written
from the perspective of a child, with a correspondingly limited vocabulary.

Elizabeth Gilbert - Eat, Pray Love A novel with a low literariness rating (3.5),
but a high prediction (5.2) by the model. This novel may be rated lower
due to the perception that it is a novel for women, dealing with new age
themes, giving it a more specific audience than the other novels in the data
set.

Charles Lewinsky - Melnitz A novel that is both rated (5.7) and predicted
(5.7) as highly literary. This novel chronicles the history of a Jewish family
including the events of the second world war. This subject, and the plain
writing style makes it stand out from the other novels.
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Erwin Mortier - While the Gods Were Sleeping The most highly rated (6.6)
literary novel in the data set, with a high prediction (5.7). A striking feature
of this novel is that it consists of short paragraphs and short, often single
line sentences. It features a lot of metaphors, analogies, and generally a
poetic writing style. This novel also deals with war, but the writing style
contrasts with Lewinsky, which may explain why the model’s prediction is
not as close for this novel.

7.2.5 Related work

Previous work on classification of literature has focused on authorship attribu-
tion (e.g., Hoover, 2003; van Cranenburgh, 2012c) and popularity (Ashok et al.,
2013). The model of Ashok et al. (2013) classifies novels from Project Gutenberg
as being successful or not using stylometric features, where success is based on
their download counts. Since many of the most downloaded novels are classics,
their results indirectly relate to literariness. However, in our data set all texts are
among the most popular books in a fixed time span (cf. Section 7.2.1), whereas
the less successful novels in their data set differ much more in popularity from
the successful novels. To the best of our knowledge, our work is the first to
directly predict the literariness of texts in a computational model.

There is also work on the classification of the quality of non-fiction texts.
Bergsma et al. (2012) work on scientific articles with a similar approach to ours,
but including syntactic features in addition to bag-of-words features. Louis and
Nenkova (2013) present results on science journalism by modeling what makes
articles interesting and well-written.

Salganik et al. (2006) present an experimental study on the popularity of
music. They created an artificial “music market” to study the relationship
between quality and success of music, with or without social influence as a factor.
They found that social influence increases the unpredictability of popularity in
relation to quality. A similar effect likely plays a role in the reader judgments of
the survey.

7.2.6 Summary

Our experiments have shown that literary novels share significant commonali-
ties, as evidenced by the performance of machine learning models. It is still a
challenge to understand what these literary commonalities consist of, since a
large number of word features interact in our models. General quality is harder
to predict than literariness.

Features related to genre (e.g., the war in literary novels and the homicide in
thrillers) indicate that genre is a possible confounding factor in the classification,
but we find evidence against the notion that the results are solely due to genre.
One aspect that stood out in our analysis of content features, which is not
necessarily restricted to genre (or which might indicate that the literary novel
is a genre in and of itself), is that setting of space and time rank high among
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the discriminating features. This might be indicative of a ‘timeless quality’
that is expected of highly literary works (where words as book and letter are
discriminative)—as opposed to more contemporary settings in less literary
novels (computer and mobile phone). Further study is needed to get more insight
into these themes and to what extent these are related to genre differences or a
literary writing style.

The good performance of style features shows the importance of writing style
and indicates that the classification is not purely based on topics and themes.
Although genres may also have particular writing styles and thus associated
style features, the fact that good results are obtained with two complementary
feature sets suggests that the relation between literariness and text features is
robust.

Finally, the regression on content and function words shows that the model
accounts for more than just genre distinctions. The predictions within genres
are good enough to show that it is possible to distinguish highly literary works
from less literary works. This is a result that merits further investigation.
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7.3 Mining literary tree fragments

Text mining and stylometry is typically based on simple, frequent textual fea-
tures extracted from surface forms such as word or character n-grams, as in the
previous section. An alternative to such simple features is to extract features
from syntactic parse trees. A very flexible approach is to consider tree fragments:
arbitrarily-sized connected subgraphs of parse trees (Swanson and Charniak,
2012; Bergsma et al., 2012). Post and Bergsma (2013) provide an overview of
previous work on using tree fragments as predictive features. These fragments
are flexible in that they can capture both stylistic (syntactic) and topical (lexical)
aspects, and can be both general (small), or specific (large).

We can distinguish implicit and explicit fragment models. In an implicit
fragment model, tree fragments are not represented individually, and it is not
possible to inspect the weight a fragment contributes to making predictions
with the model. However, through the use of a kernel, the contribution of all
fragments (under a given definition) can be computed. This method is known
under the rubric of tree kernels (Moschitti, 2006b). Explicit fragments are
trained on a predefined matrix of document-fragment counts. With explicit
fragments, it is necessary to define the set of fragments. Previous work has
used tree-substitution grammars extracted from newswire treebanks (Post and
Bergsma, 2013), or extracted fragments at test time from the training corpus in
a memory-based setup (this chapter, Section 7.1).

Here we consider the challenge of selecting and extracting relevant tree
fragments from the corpus itself, at training time, so as to get more specific and
interpretable features. Since we will select features at training time, they need to
generalize to unseen documents without knowing anything about the documents
in the test set. The approach is similar to Swanson and Charniak (2013), in
that we aim to discover the most predictive fragments using a relevancy metric.
There are two main differences. First, instead of sampling fragments from a
Bayesian mixture model, we use the method of recurring fragment extraction.
Second, instead of ranking fragments on relevancy with respect to a discrete
set of classes using entropy-based measures, we use a continuous target value,
namely literary ratings of novels, and use the Pearson correlation coefficient as
metric.

7.3.1 The task: predicting literary ratings

We consider the regression problem of predicting the literary ratings of 401
novels, on a scale of 1 to 7. The task we consider is to predict the mean rating for
each novel. We exclude novels that have been rated by less than 50 participants;
16 novels are excluded through this constraint.

Since we want to extract relevant features from the texts themselves and the
number of novels is relatively small, it is important to apply cross-validation,
so as to exploit the data to the fullest extent while still maintaining an out-of-
sample approach. The tree fragments can be highly specific to particular novels,
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Figure 7.8: A kernel density estimation plot of literary ratings of the 5-fold
division of the corpus.

therefore feature selection should be part of the cross-validation; i.e., we aim to
select features that are representative across multiple training folds. We divide
the corpus in 5 folds, with the following constraints:

• Novels by the same author must be assigned to the same fold.
• Each fold should have a distribution of literary ratings that is similar to
the overall distribution (stratification).

• Each fold should be roughly the same size.

Each fold contains around 80 novels. Figure 7.8 visualizes the distribution
of literary ratings in the folds using a kernel density estimation (i.e., similar to a
histogram but continuous). The shape illustrates the bimodal distribution of the
literary ratings: a large number of novels have a rating of 4, with a smaller peak
of literary novels at 6. The plot shows a very similar shape for the 5 folds, which
ensures that each fold holds a representative sample of the target distribution.

7.3.2 Motivation for rich syntactic features

The bigrams performed rather well in the previous section, so why do we need or
want syntax? More generally, it has been observed that simple n-gram features
often exhibit superior performance in various tasks:

A variety of “discouraging results” in the text categorization liter-
ature have shown that simple bag-of-words (BoW) representations
usually perform better than “more sophisticated” ones (e.g. using
syntax)
— Bergsma et al. (2012)

Still, there are at least four reasons why n-grams are limited and investigating
syntactic features is worthwhile:

1. Phrases longer than n tokens, phrases with gaps and open slots. Such
phrases include multi-word expressions. Consider:

(8) a. in light of
b. so there’s that
c. Get np off the ground
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Notice that none of the bigrams in the above signal that there is a multi-
word expression, only the expression as a whole identifies it as a fixed
expression. The open slot np stands for a constituent of any length.

2. Non-lexical information, e.g., function tags. Consider these simple noun
phrases:

(9) a. NP-SBJ Ñ DT NN
The apple is a deciduous tree.

b. NP-OBJ Ñ DT NN
John eats an apple.

Even though this is one of the most common grammar productions, the
distinction in grammatical function is a strong predictor; cf. Figure 7.9.
The y-axis shows the proportion of simple subject/object nps, divided
by the total number of simple nps. The difference may be explained by
the observation that in everyday language, it is more common to have an
animate subject (e.g., proper noun or pronoun), as opposed to a determiner-
noun np which is more likely be inanimate, as in the examples of (9).

3. Larger syntactic units or constructions. Consider the following sentence:

(10) Langzaam besefte hij dat hij zijn broers niet had moeten laten
ophangen, dat zijn daad veel vijandigheid in het land zou
veroorzaken, dat God hem daarvoor hard zou straffen. (Abdolah-
Koning)
‘Slowly he realized that he should not have had his brothers
executed, that his act would cause much animosity in his country,
that God would punish him harshly for it.’

This sentence contains three that-clauses, that are all an argument to
the same verb (besefte, realized). To capture and generalize this stylistic
device requires an abstract, syntactic feature containing just the three ‘that’
instances and their supporting structure.

4. discontinuities, non-local dependencies. Certain syntactic phenomena
can neither be described by n-grams, nor by the traditional syntactic
representations. These have been the topic of part I of this thesis.

7.3.3 Preprocessing

We parse the 401 novels with the Alpino parser (Bouma et al., 2001). We
preprocess the trees in the same manner as was applied for the Disco-dop tree-
substitution grammar in the previous part. Namely, the trees include discontin-
uous constituents, non-terminal labels consist of both syntactic categories and
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Figure 7.9: Simple noun phrases as subject (left) versus object (right).

function tags, selected morphological features, and constituents are binarized
head-outward with a markovization of h “ 1, v “ 1.

For a fragment to be attested in a pair of parse trees, its labels need to
match exactly, including the aforementioned categories, tags, and features. The
binarization implies that fragments may contain partial constituents; i.e., a
contiguous sequence of children from an n-ary constituent.

Cf. Figure 7.10 for an example parse tree; for brevity, this tree is rendered
without binarization. The non-terminal labels consist of a syntactic category
(shown in red), followed by a dash and a function tag (green). Some labels
contain percolated morphological features, prefixed by a colon. The part-of-
speech tags additionally have morphological features (black) in square brackets.

To remove length effects, and potential particularities of the start of novels,
we consider sentence numbers 1000–2000 of each novel. There are 18 novels
with less than 2000 sentences; these are excluded. Together with the constraint
of at least 50 ratings, this brings the total number of novels we will consider at
369.

7.3.4 Alternative feature selection methods

Before outlining our approach, we first consider some alternatives. A few meth-
ods based on Support Vector Machines (svm) can be used for feature selection.
The standard svm formulation uses L2 (quadratic) regularization; this produces
dense models in which all features are used. The formula for fitting an epsilon-
insensitive support vector regression model is as follows:

min
w

1

2
wTw ` C

n
ÿ

i“1

pmaxp0, |yi ´ wTXi| ´ εqq

where X are the training vectors, y are the target values, and n is the number
of samples. Two parameters C and ε control the amount of regularization. The
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Figure 7.10: A parse tree from Franzen, The Corrections. Translation: “You
could feel it: something terrible was about to happen.”

result is w, the feature weights (coefficients). L1-regularized linear models
produce sparse models, in which only a subset of features receives nonzero
weights. For example, fitting a Lasso model optimizes the following objective
function (p is the number of features, and t a regularization parameter):

min
w0,w

#

1

n

n
ÿ

i“1

pyi ´ w0 ´ XT
i nq2

+

subject to
p

ÿ

j“1

|wj | ď t

Recursive feature elimination iteratively trains models while keeping only
the features with the highest weights from the previous step. Since this method
requires repeated model fitting, it is not feasible when the feature set gets large
enough. For example, from the 40k trees of the Penn treebank, about 1million
recurring fragments are extracted, which is not feasible to train an svm on;
we aim for a selection procedure to reduce the potential fragments to tens of
thousands of features.

Another approach is to integrate the parse trees with the model as is done
in tree-kernel support vector machines. A Tree-kernel svm (Collins and Duffy,
2002; Moschitti, 2006b) defines a predictive model based on parse tree similarity.
Instead of specifying a pre-defined feature vector for each instance, the classifier
works with parse trees directly. The similarity of parse trees is based on the
implicitly defined set of tree fragments that they share. This means that feature
engineering is automated, although the features cannot be directly inspected,
nor is it possible to control which features are included or excluded.5 Pighin and
Moschitti (2010) present a procedure which extracts the most important features
from such a model. However, their algorithm assumes that each instance is a

5 It is possible to change the definition of tree fragments, e.g., subtrees, subset trees, or partial trees;
however, it is not possible to select an arbitrary subset.
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Figure 7.11: Cross-validated fragment extraction.

single sentence, rather than a document. Therefore it is not directly applicable
to the problem in this chapter. Moreover, Post and Bergsma (2013) report that
tree-kernel methods are computationally expensive (prohibitively so, given
enough training data), and explicit fragment models achieve better performance
in a fraction of training time.

7.3.5 Fragment mining

We present an approach based on heuristics using simple statistics. The general
idea is based on Yu and Liu (2004), and also followed by Swanson and Charniak
(2013). The procedure is divided in two parts. Fragment extraction:

1. Given texts divided in folds F1 . . . Fn, each Ci is the set of parse trees ob-
tained from parsing all texts in Fi. Extract the largest common fragments
of the parse trees in all pairs of folds xCi, Cjy with i ă j. A common
fragment f of parse trees t1, t2 is a connected subgraph of both t1 and t2.
The result is a set of initial candidates that occur in at least two different
novels.

2. Count occurrences of all fragments in all novels.

Fragment selection is done separately for each test fold. Given test fold n,
we consider the fragments found in training folds t1..5u z n; e.g., test fold 1
gives training folds 2–5. Given a set of fragments from training folds, selection
proceeds as follows:

1. Zero count threshold: remove fragments that occur in less than 5 % of
novels (too specific); frequency threshold: remove fragments that occur
less than 50 times across the corpus (too rare). The purpose of this step is
to filter out fragments for which there is too little information to reliably
determine a correlation with the literary ratings.
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recurring fragments 3,193,952
after threshold: occurs in ą 5% of texts 375,514
after threshold: freq ą 50 98,286
relevance threshold: correlated s.t. p ă 0.05 30,044
redundancy threshold: |r| ă 0.5 7,642

Table 7.9: The number of fragments in folds 2–5 after each step.

fully lexicalized 1,321
syntactic (no lexical items) 2,283
mixed 4,038

discontinuous 684
discontinuous substitution site 396

total 7,642

Table 7.10: Breakdown of fragment types selected in the first fold.

2. Relevance threshold: select fragments by considering the correlation of
their counts with the literary ratings of the novels. Apply a simple linear
regression based on the Pearson correlation coefficient6, and use an F-
test to filter out fragments whose p-value7 ą 0.05. The F-test determines
significance based on the number of data points N , and the correlation r;
the effective threshold is around |r| ą 0.11.

3. Redundancy removal: greedily select most relevant fragment and remove
other fragments that are too similar to it. Similarity is measured by comput-
ing the correlation coefficient between the feature vectors of two fragments,
with a cutoff of |r| ą 0.5.

Preliminary experiments where this step was not applied indicated that it
does improve performance.

Table 7.9 lists the number of fragments in folds 2–5 after each of these steps.

6 Note that the Pearson correlation coefficient assumes a linear relationship, but on the other hand it
offers an interpretable effect size. Other relevancy metrics are based on Mutual Information (e.g.,
Torkkola, 2003; Kraskov et al., 2004) and repeated sampling of features and instances (e.g., Parti-
tion Retention; Chernoff et al. 2009, and Stability Selection; Meinshausen and Bühlmann 2010).
Evaluating such measures is left for future work.
7 If we were actually testing hypotheses we would need to apply Bonferroni correction to avoid the
Family-Wise Error due to multiple comparisons; however, since the regression here is only a means
to an end, we leave the p-values uncorrected.



7.3 Mining literary tree fragments 153

NP-obj1

. . . N-hd

. . .

LET

,

. . .

ROOT

LET

’

SMAIN

NP-su

. . .

SMAIN

. . .

LET

.

PP-mod

VZ-hd

. . .

NP-obj1

LID-det

een

N-hd

. . .

1 2 3 4 5 6 7

mean literary rating

0

20

40

60

80

100

120

fr
a
g
m

e
n
t 

co
u
n
t

r=0.526

1 2 3 4 5 6 7

mean literary rating

0

2

4

6

8

10

12

fr
a
g
m

e
n
t 

co
u
n
t

r=-0.417

1 2 3 4 5 6 7

mean literary rating

0

10

20

30

40

50

60

fr
a
g
m

e
n
t 

co
u
n
t

r= 0.4

Figure 7.12: Three fragments whose frequencies in the first fold have a high
correlation with the literary ratings. From left to right; Blue: com-
plex np with comma; Green: quoted speech. Red: Adjunct pp with
indefinite article.

7.3.6 Qualitative analysis of selected fragments

Figure 7.12 shows three highly ranked fragments according to the correlation
based metric, extracted from the first fold. Note the different scales on the
y-axis.

Let’s consider some more of the purely syntactic fragments, with example
sentences.

1.

SMAIN

WW[pv]-hd

. . .

ADJ[vrij]-mod

. . .

r “ ´0.435; verb with modifier; max freq=35; sum freq=4117
Rufus keek stoïcijns voor zich uit. (Vermeer-Apres-ski:1105)
Rufus looked ahead stoically.

2.

PP-mod

VZ[init]-hd

. . .

CONJ-obj1

-obj1

. . .

NP-obj1

. . .

r “ 0.412; PP with conjunction; max freq=5; sum freq=206
Ik verwarmde hem tegen mijn hart, mijn mond. (Durlacher-Held:1611)
I warmed him against my heart, my mouth.
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3.

PP-mod

VZ[init]-hd

. . .

NP-obj1

LID-det

. . .

N-hd

. . .

PP-mod

VZ[init]-hd

. . .

NP-obj1

N-hd

. . .

r “ 0.352; nested chain of PP, NP, PP, NP; max freq=8; sum freq=520
’Eén fles maar?’ vroeg de auteur van Het streven naar geluk, terwijl hij zijn
nek strekte naar het etiket. (Houellebecq-KaartEnGebied:1508)
‘Just one bottle?’ asked the author of The striving for happiness, while he
stretched his neck towards the label.

The first fragment captures the pattern that is advised against with the slogan
show, don’t tell. The verb-adverb pattern spells out that something is said or done
in a certain way, instead of leaving it up to the context to suggest. The second
and third fragments are correlated with higher literary ratings and represent
arguably more complex syntactic structures, through conjunction and nesting.

Most of the fully lexicalized fragments consist of 1 or 2 words, with 18
fragments of 3 words. Finding larger lexicalized fragments such as multi-
word expressions would require lifting the frequency thresholds, or obtaining
candidate expressions from an external corpus or list, as was done in Section 6.2.
The 3-word fragments are all fixed multi-word expressions, here is the top 4:

• r= 0.195: voor het eerst (first time)
• r= 0.175: bij wijze van (by way of)
• r=-0.156: achter de rug (over with)
• r= 0.156: in de lucht (in the air)

The following shows some of the discontinuous fragments. Note that not
all of these fragments show a crossing branch; those fragments would show a
crossing branch once they are part of a complete tree. Each fragment is followed
by an example sentence from the novel where the fragment is most common
(including my translations). The discontinuous parts are emphasized.

1.

CP-mod

VZ[init]-
cmp
. . .

TI-body

INF-body

INF-body

. . .

INF-body

. . .

VZ[init]-cmp

te

r “ 0.355; complementized to-infinitive clause
’Bent u niet bang om te worden afgebrand door u met mij te associëren?’
(Houellebecq-KaartEnGebied:1280)
‘Are you not afraid to be burned by associating with me?’
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2.

REL-mod

VNW[pron]-
rhd
dat

SSUB-body

INF-vc

INF-vc
. . .

INF-vc
. . .

WW[pv]-hd

. . .

r “ 0.301; relative clause with interrupted infinitive clause
Jacob dacht vooral aan Adriana en zijn bezoek, dat nu een andere lading
zou krijgen. (Smit-Vloed:1900)
Jacob mainly thought about Adriana and his visit, which would now be
seen in a different light.

3.

SMAIN-dp

WW[pv]-hd

. . .

INF-vc

INF-vc

INF-vc
. . .

INF-vc
. . .

WW[inf,vrij]-hd

. . .

r “ 0.297; auxiliary and two infinitives
Nou ja het is mijn eigen schuld, ik had eerder op uw mails moeten reageren.’
(Houellebecq-KaartEnGebied:1326)
Well it is my own fault, I should have replied to your mails sooner.

4.

SMAIN-dp

WW[pv]-hd

. . .

PP-ld

NP-obj1

VNW-hd

er

VZ[fin]-hd

. . .

r “ 0.294; ‘er’ + postposition
Ze gingen van boord, Diederik zette er gelijk de pas in. (Rosenboom-
ZoeteMond:1931)
They disembarked, Diederik immediately started walking rapidly.

5.

DU

LET
. . .

SMAIN-nucl

SMAIN-nucl
. . .

SMAIN-nucl
. . .

LET
. . .

LET
. . .

SV1-tag
. . .

r “ 0.273; direct speech with medial tag sentence
‘Juffrouw Aibagawa,’ verklaart Ogawa, ‘is vroedvrouw.
(Mitchell-NietVerhoordeGebeden:1569)
‘Miss Aibagawa,’ declablue Ogawa, ‘is a midwife.

6.

NP-su

LID-det
. . .

N-hd
. . .

REL-mod
. . .

r “ 0.271; subject NP with relative clause
Estelle liet zich theatraal vallen : ‘Waar blijft de arts eigenlijk die ik had
ontboden?’ (Peetz-Dinsdagvrouwen:1459)
Estelle let herself fall theatrically: ‘So where is that doctor that I had sent
for?’
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Figure 7.13: Breakdown by fragment size (number of non-terminals).

It is striking that in most of the examples, the discontinuity is not present
in the English translation; nor, perhaps, in the original language. Regardless of
this, the discontinuity need not be inherent for it to be a discriminating feature—
the fragments are still indicative of higher complexity because of verb clusters
and relative clauses. Moreover, it turns out that the majority of discontinuous
fragments has a positive correlation with the literary ratings.

7.3.7 Quantitative analysis of selected fragments

Table 7.10 shows a breakdown of fragment types in the first fold. Figure 7.13
shows a breakdown by fragment size (defined as number of non-terminals),
distinguishing fragments that are positively versus negatively correlated with
the literary ratings.

Note that 1 and 3 are special cases corresponding to lexical and binary gram-
mar productions, respectively. The fragments with 2, 4, and 6 non-terminals
are not as common because an even number implies the presence of unary
nodes. Except for fragments of size 1, the frontier of fragments can consist
of either substitution sites or terminals (since we distinguish only the num-
ber of non-terminals). On the one hand smaller fragments corresponding to
one or two grammar productions are most common, and are predominantly
positively correlated with the literary ratings. On the other hand there is a
significant negative correlation between fragment size and literary ratings cor-
relation (r “ ´0.2, p “ 3.3 ˆ 10´73); i.e., larger fragments tend to be negatively
correlated with the literary ratings.

It is striking that the number of positively correlated fragments is larger than
the number of negatively correlate fragments. There are less literary novels in
the corpus, so theymight be expected to contribute proportionally less fragments
compared to the less literary novels. Additionally, from the breakdown by size
it is clear that there are more positively correlated fragments because of a large
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number of small fragments of size 3 and 5; however, combinatorially, the number
of possible fragment types grows exponentially with size (and this is reflected
in the initial set of recurring fragments), so larger fragment types would be
expected to be more numerous. In effect, the selected negatively correlated
fragments ignore this distribution by being relatively uniform with respect to
size, while the literary fragments actually show the reverse distribution.

To investigate this, Figure 7.14 shows the distribution of fragments at the
various steps of the fragment selection process. The plots on the left show that
the peak in small positively correlated fragments is introduced when adding
the frequency ą 50 threshold, and becomes more pronounced when fragments
are selected by correlation. In the last step (redundancy removal) the negatively
correlated fragments also become relatively uniformly distributed with respect
to size. The plots on the right show a histogram with respect to correlation.
The curve for negatively correlated fragments is mirrored (i.e., the absolute
value of the correlation coefficient is shown) to highlight the asymmetry in the
distribution.

What could explain the peak of positively correlated, small fragments? At
first sight, the following seems plausible:

Hypothesis 1: There is a larger number of types of positively correlated frag-
ments, with a smaller set of more frequent negatively correlated fragments.

However, when the fragments with 3 non-terminals are histogrammed in
terms of frequency, the positively correlated fragments are more numerous
across all frequencies (cf. Figure 7.15). The following is an alternative hypothe-
sis:

Hypothesis 2: Literary language invokes a larger set of syntactic constructions
when compared to the language of non-literary novels, and therefore more
variety is observed in the fragments that are correlated with literature.

This is supported by the tree fragments discussed up to now. In order to
investigate the peak of small fragments, we inspect the 40 fragments of size 3
with the highest correlations. These fragments contain indicators of unusual or
more complex sentence structure:

• du, dp: discourse phenomena for which no specific relation could be
detected (e.g., discourse relations beyond the sentence level).

• npsin appositive relation, e.g., ‘John the artist.’
• a complex NP, e.g., containing punctuation, or npsand nps.
• an NP containing an adjective used nominally or an infinitive verb.

On the other hand, most non-literary fragments are top-level productions con-
taining root or clause-level labels, for example to introduce direct speech.

Another way of analyzing the selected fragments is by frequency. When we
consider the total frequencies of selected fragments across the corpus, there is a
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Figure 7.14: Left: Breakdown by fragment size (number of non-terminals); right:
histogram by correlation. Each row corresponds to an additional
step in the fragment selection.
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Figure 7.15: A histogram of the frequencies of fragments with 3 non-terminals.
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Figure 7.16: Breakdown by fragment frequency.
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Figure 7.17: Breakdown by category of fragment root (top 15 labels).

range of 50 to 107,270. Figure 7.16 shows a histogram of the total frequencies.
The histogram has been truncated at a frequency of 5000, to highlight the shape
for the lower frequencies. The bulk of fragments have a low frequency (before
fragment selection 2 is by far the dominant frequency), but the tail is very
long. Except for the fact that there is a larger number of positively correlated
fragments, the histograms have a very similar shape.

Lastly, Figure 7.17 and 7.18 shows a breakdown by the syntactic categories
and function tags of the root node of the fragments. The positively correlated
fragments are spread over a larger variety of both syntactic categories and func-
tion tags. This means that for most labels, the number of positively correlated
fragments is higher; the exceptions are root, sv1 (a verb-initial phrase, not part
of the top 15), and the absence of a function tag (indicative of a non-terminal
directly under the root node). All of these exceptions point to a tendency for
negatively correlated fragments to represent (templates of) complete sentences.

Up to now we have been considering positively and negatively correlated
fragments. It may be tempting to think of these as literary and non-literary
fragments, but strictly speaking, this is not correct. The correlation only tells us
whether we expect the literary ratings to increase or decrease as a function of
the frequency of a given fragment. The strength of the correlation does not tell
us about scale or slope, i.e., whether the fragment is useful to predict a broad
difference between literary and less literary novels, or a difference on a smaller
scale such as between low brow and middle brow novels in terms of literary
ratings.

To investigate this, we divide the set of novels into three categories: non-
literary (mean rating ă 4), literary (rating ą 5), and middle brow (the rest).
Figure 7.19 shows a histogram of the fragments with respect to the correlations
to each of these subsets. The middle and literary subsets show a very similar
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Figure 7.18: Breakdown by function tag of fragment root (top 15 labels).
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R2 Kendall τ rms error

Fragments 55.5 (2.5) 0.511 (0.023) 0.668 (0.17)
Bigrams 56.5 (2.6) 0.532 (0.026) 0.66 (0.174)
Combined 57.4 (2.7) 0.532 (0.033) 0.654 (0.173)
Interpolated 58.0 (2.4) 0.538 (0.025) 0.649 (0.165)

Table 7.11: Regression evaluation of predicting literary ratings with fragments
and bigrams. Each score is the mean over 5-fold cross validation,
with the standard error in parentheses.

distribution. The non-literary subset is markedly different, show a higher peak
for fragments with no correlation, and relatively less negatively correlated
fragments compared to the other subsets. This means that there is a subset of
fragments which is indifferent to the literary ratings of non-literary novels; these
fragments therefore correlate specifically with differences in literary ratings in
the range 4–7.

7.3.8 Regression results

We perform 5-fold cross-validation with linear support vector regression. Fea-
ture counts are transformed to tf-idf weights. The model contains two hyper-
parameters: C determines the regularization, and ε is a threshold beyond which
predictions are considered good enough during training. We tune these parame-
ters on a development set and settle for C “ 100 and ε “ 0.

In order to contrast the performance of tree fragments with a simple but
strong baseline, we consider bigram features as well. Bigrams present a good
trade off in terms of informativeness (a bigram frequency is more specific than
the frequency of an individual word) and sparsity (three or more consecutive
words results in a large number of n-gram types with low frequencies). This
is supported by the results of Wang and Manning (2012), who find that in
sentiment classifications tasks, word bigrams are superior to unigrams and
trigrams.

We train separate models on both types of features. Training a single model
on the combined set of features does gives an improvement, although difference
is slight when considering the cross-validation standard error. Interpolating
the predicted values of the fragment and bigram models yields an even better
score. Cf. Table 7.11 for the scores and Figure 7.20 for a visualization of the
predictions using fragments and bigrams in a scatter plot.

Notice that the scatter plot shows that the model has a bias in that the
predictions for highly literary novels tend to be too low, and vice versa for non-
literary novels. Consider that there are always many features with both positive
and negative weights affecting the resulting prediction, so that on average,
the prediction tends toward the mean, which is a conservative default. In the
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Figure 7.22: The ten novels with the largest prediction error (using both frag-
ments and bigrams).

pathological case, when the features are completely unhelpful in predicting the
target, all predictions will simply equal the mean; in the ideal case, the features
give enough information so that the prediction error tends to zero. The bias in
Figure 7.20 is therefore an indication of the degree to which the features reflect
the target variable.

Another issue is that the corpus consists of a few prominent genres (thriller,
romantic fiction, general fiction). Figure 7.20 shows that genre is highly corre-
lated with the literary ratings. The model is therefore likely picking up on genre
markers. On the other hand, within the general fiction category, which contains
the literary novels, the model is also correctly predicting some of the higher lit-
erary ratings. It would be interesting to incorporate the genre categories directly
into the model, or to train the model on just the literary novels, especially if
more data were available.

To analyze the difference in predictions between the two feature sets, we
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consider the top 10 novels for which the predictions diverge the most; cf. Fig-
ure 7.21. The prediction using fragments is too high for 4 novels, compared to
4 with bigrams (of which one overlaps). The prediction with fragments is too
low with 3 novels, versus 6 times with bigrams (of which one overlaps). The
prediction with fragments is very close (ă 0.15) in case of Tex, Moelands, and
Slee; the bigrams have no close prediction in the ten novels.

Figure 7.22 shows a similar bar plot with the ten novels with the largest
prediction error when the predictions of the fragment and bigram models are
interpolated. Of these novels, 9 are highly literary, which are underestimated
by the model. For the other novel (Smeets-Afrekening) the literary rating is
overestimated by the model. Since this top 10 is based on the mean prediction
from both models, the error is large for both models. This does not change when
the top 10 errors using only fragments or bigrams is inspected; i.e., the hardest
novels to predict are hard with both feature types.

What could explain these errors? At first sight, there does not seem to be
an obvious commonality between the literary novels that are predicted well,
or between the ones with a large error. For example, whether the novels have
been translated or not does not explain the error. A possible explanation is that
the successfully predicted literary novels share a particular (e.g., rich) writing
style that sets them apart from other novels, while the literary novels that are
underestimated by the model do not distinguish themselves in this way by their
writing style. It is difficult to confirm this directly by inspecting the model, since
each prediction is the sum of several thousand features, and the contributions
of these features form a long tail. If we define the contribution of a feature as
the absolute value of its weight times its tf-idf value in the document, then in
case of Barnes-AlsofVoorbijIs, the top 100 features contribute only 34% of the
total prediction.

An alternative is to look at the baseline features introduced in Section 6.1. If
we take the top 4 literary novels with the largest error and contrast them with 4
literary novels which are well predicted, we get the results shown in Figure 7.23.
The most striking difference is sentence length: the underestimated literary
novels have shorter sentences. Voskuil and Franzen have a higher proportion
of direct speech (they are in fact the only literary novels in the top 10 novels
with the most direct speech). Lastly, the underestimated novels have a higher
proportion of common words (lower vocabulary richness). These observations
are compatible with the explanation suggested above, that a subset of the literary
novels share a simple, readable writing style with non-literary novels. Such a
style may be more difficult to detect than a literary style with long and complex
sentences, or rich vocabulary and phraseology, because a simple, well-crafted
sentence may not offer overt surface markers of stylization.

Figure 7.24 shows learning curves for restricting the number of novels in
the training set and for restricting the number of features that are used. In both
cases the novels or features are shuffled once, so that initial segments represent
random samples. The novels and features are sampled in 5% increments (i.e.,
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20models are trained in each case). The graphs show the cross-validated scores;
the training scores were also computed, but these are of limited utility since the
performance is unrealistically good (consistently 99%). Consider that a trivial
memory-based model can simply store all training examples and attain a 100 %
score; given this possibility, the training score is no more than a soundness check
of the learning algorithm.

The graphs show that increasing the number of novels has a large effect
on performance. The curve is steep up till 30 % of the training set, and the
performance keeps improving steadily but more slowly up till the last data point.
Since the performance is relatively flat starting from 85 %, we can conclude
that the k-fold cross-validation with k “ 5 provides an adequate estimate of the
model’s performance if it were trained on the full data set; if the model was still
gaining performance significantly with more training data, the cross-validation
score would underestimate the true prediction performance.

For the number of features the story is different. The performance at 40%
is already high with an R2 of 53.0 %, and grows more slowly from that point.
Curiously, the performance drops slightly after this point, and picks up again
at 60 % of features. This indicates that the feature selection is not optimal,
although there probably is not much to be gained from tuning with this set. It is
likely that similar performance can be attained with a much smaller feature set.

7.3.9 Predictive features

The following lists the top 10 features with the highest absolute weight in the
svm model trained on folds 1–4. Negative weights indicate fragments predictive
of less literary novels and vice versa.

1.
N-hd

boek

weight: 1.75585; corr: 0.246439; ‘book’
Ze sloeg het boek dicht. (Siebelink-LichaamVanClara:1213)
She closed the book.

2.
VZ[init]-hd

tegen

weight: 1.92342; corr: 0.244592; preposition ‘against’, ‘to’.
‘Ongure slaaf,’ zei ze tegen me. (Irving-InMens:1246)
’Loathsome slave,’ she said to me.

3.

PP-mod

VZ[init]-hd

. . .

NP-obj1

VNW[prenom]-det

zijn

N-hd
. . .

weight: 2.0763; corr: 0.340082; preposition + ’his’ + noun
In zijn wimpers hangen klonters. (Beijnum-SoortFamilie:1356)
His eye lashes contain lumps.
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4.

SMAIN

NP-su

N[eigen]-hd

. . .
SMAIN
. . .

weight: -2.1421; corr: -0.281452; name + finite verb
Jeffrey knikte weer. (Slaughter-Onaantastbaar:1197)
Jeffrey nodded again.

5.

ADJ[vrij]-
mod
echt

weight: -2.27645; corr: -0.346132; intensifier (really)
‘Dit gaat niet echt goed.’ (Mansell-DrieIsTe:1582)
‘This is not going well at all.’

6.

ROOT

LET

’ . . .

weight: -2.32608; corr: -0.391185; direct speech
‘Ja hè? (Mansell-SmaakTePakken:1706)
‘Isn’t it?

7.

SMAIN

WW[pv]-hd

. . .

ADJ[vrij]-
mod
. . .

weight: -2.39402; corr: -0.493574; verb + postverbial adjective
Ik moet plotseling weg. (Wickham-Vraagprijs:1728)
I suddenly get the urge for going.

8.

NP-su

LID-det
. . .

N-hd
. . .

weight: 2.58989; corr: 0.456933; determiner + noun subject
De sjah zweeg. (Abdolah-Koning:1183)
The sjah remained silent.

9.

CONJ

SMAIN

NP-su
. . .

SMAIN
. . .

VG[neven]-
crd
en

SMAIN
. . .

weight: -2.71746; corr: -0.363539; sentence conjunction where second
conjunct has no subject
De chauffeur lacht schaterend en trekt op. (Vlugt-LaatsteOffer:1340)
The chauffeur laughs out loud and takes off.

10.

SV1-tag

WW[pv]-hd

zei

VNW[pron]-su

. . .

weight: 3.02426; corr: 0.167564; tag question ‘he said’
’Jezus,’ zei ze. (Patterson-Partnerruil:1046)
‘My God,’ she said.
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Figure 7.25: Hexbin plot of fragment correlation versus feature weight in the
predictive model.

We can validate the feature selection by comparing the relevancy metric
(correlation) to the model weights. Figure 7.25 shows a hexbin plot (i.e., a
combination of a scatter plot and histogram) of these two variables. There is a
relatively strong and significant correlation (r=0.52) between these variables;
that is, in the majority of cases the feature weight has the same sign as the
correlation, and the magnitude of the correlation is related to the feature weight
as well.

7.3.10 Summary

As data coverage grows, some may worry that models
of syntax will be superseded by better n-gram models.
This study suggests that hierarchic syntax retains its
value even in a world of big data.

— van Schijndel and Schuler (2015, p. 1604), Hierar-
chic syntax improves reading time prediction.

We have presented a fully data-oriented approach to mining syntactic tree
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fragments for a predictive model. Although we did not use our discontinuous
parser directly for parsing literature, we did exploit its capability to extract
discontinuous fragments of arbitrary size. The fragments are not extracted from
an external data set, but mined from the training data itself, taking the target
variable into account. The data-oriented fragment mining approach comes
close to the level of accuracy of the bigram baseline model, while offering more
possibilities for inspection and interpretation.

An individual tree fragment is easier to interpret than a bigram feature, espe-
cially with larger fragments and specific syntactic labels. However, interpreting
the decisions of a model with thousands of features remains difficult, as the
predictions are the result of the interaction of each of these features.

Looking at the positively and negatively correlated tree fragments, as well
as comparing the novels that are easy and difficult to predict, supports the
hypothesis that literary language, especially the kind that the model picks up
well, tends to use a larger set of syntactic constructions than the language of
non-literary novels.

The model has certain restrictions. The fragments we have considered are
relatively frequent, which was motivated by the choice of extracting predictive
fragments from the corpus itself. With a different method or an external data
set, rarer fragments may be exploited, such as larger multi-word expressions
(as seen in Section 6.2). A more fundamental limitation is the bag-of-features
representation. Only the total number of occurrences of each feature in a text is
considered, without regard for the order and context in which those features
occur. However, overcoming this is difficult and part of the success of simpler
models is due to ignoring much of this complexity.

Still, a clear contribution of our model is that it includes rich syntactic
information such as non-local dependencies and function tags, and exploits
recurring syntactic and lexical patterns of arbitrary size. This information
allows the syntactic fragments to capture phenomena that are not captured by
Bag-of-Words models.
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Figure 7.26: Predictions using only genre as feature.

7.4 Putting it all together

The strategy of combining features can be extended further. Table 7.12 presents
results with an ensemble of both simple and computationally intensive features,
as well as three metadata variables. The features are combined into a ridge
regression model, with the same 5-fold cross-validation as in the previous
section. The results are presented incrementally, to illustrate the contribution of
each feature relative to features before it. Figure 7.27 shows a visualization of
the predictions in a scatter plot. cliches is the number of cliché expressions in
the texts (Section 6.2). topics is a set of 50 lda topic weights induced from the
corpus (Section 6.3). fragments and bigrams are the predictions from the models
of the previous section. We also include three (categorical) metadata features not
extracted from the text, but directly related to the book in question: Translated,
Author gender and Genre. Genre is the coarse genre classification Fiction,
Suspense, Romantic, Other; Genre alone is already a strong predictor, with an
R2 of 58.3 on its own. However, this score is misleading, because the predictions
are very coarse due to the discrete nature of the feature; cf. Figure 7.26. Another
striking result is that the metadata variables Author gender and Translated
increase the score, but only when they are both present.
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rms error R2

mean sent. len. 0.916 16.4
+ % direct speech sentences 0.880 22.9
+ top3000vocab 0.876 23.5
+ bzip2_ratio 0.871 24.4
+ cliches 0.839 29.9
+ topics 0.693 52.2
+ bigrams 0.647 58.2

+ % modifying pps 0.645 58.6
+ avg. dependency length 0.656 57.1
+ fragments 0.636 59.7

+ Genre 0.511 74.0
+ Translated 0.513 73.8
+ Author gender 0.490 76.1

Table 7.12: Incremental results with an ensemble of features. The divisions
indicate the grouping of features into: Lexical/General, Syntactic,
Metadata.



7.4 Putting it all together 173

1 2 3 4 5 6 7

actual reader judgments

1

2

3

4

5

6

7

p
re

d
ic

te
d
 r

e
a
d
e
r 

ju
d
g
m

e
n
ts

James
VijftigTintenGrijs

Kinsella
KenJeMe

Smeets
Afrekening

Gilbert
EtenBiddenBeminnen

Koch
Diner

Stockett
Keukenmeidenroman

Donoghue
Kamer

Franzen
Vrijheid

Barnes
AlsofVoorbijIs

Lewinsky
VerborgenGeschiedenisVan

Mortier
Godenslaap

Rosenboom
ZoeteMond

Baldacci
Rechteloos

French
BlauweMaandag

Fiction

Suspense

Romantic

Other

Figure 7.27: A scatter plot of regression predictions with respect to the actual
literary ratings, using the ensemble model.
Novels with original or translated title: Kinsella, Remember me?; James, 50 shades
of grey; Gilbert, Eat pray love; French, Blue monday; Smeets, Redemption; Koch, The
dinner; Lewinsky, Johannistag; Rosenboom, Sweet tooth; Mortier, While the gods were
sleeping; Barnes, Sense of an ending; Franzen, Freedom; Donoghue, Room; Stockett,
The help; Baldacci, Hell’s corner.
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Conclusion

To recapitulate, we have developed richer Data-Oriented Parsing models and applied
them to the modeling of literary language.

This concludes our investigation into syntax and literature. We have
shown that rich syntactic analyses can be learned from data, and are
useful in characterizing a particular kind of language, literature. A com-

mon thread in this thesis has been the use of syntactic tree fragments, and more
specifically, syntactic trees enriched with non-local and functional relations. We
have shown how to extract such fragments from large treebanks, and applied
them to establish the following.

Our efficient method for recurring fragment extraction enables applica-
tions on larger corpora. We have shown how to parse with discontinuous
tree-substitution grammars and presented a practical implementation. These
components can be combined to form a compact, efficient, and accurate data-
oriented parsing model that produces discontinuous constituents and function
tags.

Procedures for automatically inducing grammars from data can be adapted
to yield more detailed analyses. If this is done carefully, this may be done
without requiring more powerful formalisms. Specifically, we showed that
the question of finding the formalism that exactly fits the desired generative
capacity can be sidestepped. Similarly, the choice between constituency and
dependency representations is unnecessary, since the inclusion of discontinuous
constituents and function tags offers the strengths of both.

A limitation that remains is the reliance on configuration. Tree fragments
capture a particular realization of a linguistic construction, with a fixed word
order and morphological inflection. The way that the tree-substitution grammar
is induced and employed in parsing relies on exact, all-or-nothing matching of
structure and non-terminal labels. It remains a challenge to overcome this in a
data-driven fashion.

In the second part of this thesis we clearly established that literature can
be recognized from textual features, and the predictions are quite successful.
Our experiments give an estimate to what degree the text contributes to the
literary character of a text. The estimate is a lower bound: many more sophisti-
cated textual analyses may be performed, which could explain an even larger
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proportion of the variation in literary appreciation. It is impressive how much
we already managed to explain using stylistic measures and markers. While
it is not possible to assign these textual features as the cause of the ratings
from the survey participants, this result clearly rules out the notion that these
value-judgments of literary merit were arbitrary, or predominantly determined
by factors beyond the text.

Still, it is obvious that many aspects have not been taken into account. Our
focus has been on writing style, exploiting surface structure or syntactic aspects
that are still relatively close to it. This should be expanded to included effects
beyond the sentence level, and to include more fine-grained effects than the
occurrence count of features across the novels. Deeper analysis could consider
the narrative and characters of the novels, or more nuanced textual aspects such
as the implicatures and aesthetics of the language.

Much remains to be done.
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A The corpus of novels

A.1 Preprocessing the corpus

Natural Language Processing (nlp) tools require texts to be preprocessed and
cleaned to various degrees. This chapter describes the automated processing
steps to clean up and identify paragraph, sentence, and word boundaries in
texts from a collection of Dutch ebooks in various source formats.

A.1.1 Conversion to plain text

Although the texts may contain markup such as italics, bold, and underlined
text, the nlp tools only handle plain text, and this markup must be discarded.
Note that emphasis expressed using all capitals or accents is preserved.

The following shows the tools and command line options used to convert
texts to plain text. We assume a file name without extension given in the variable
$a.

epub

For the epub format we use Calibre.1 The conversion proceeds as follows:

ebook-convert $a.epub $a.txt

Note that we deliberately do not enable -heuristic-processing, since we
will fix various issues by exploiting linguistic knowledge not available to Calibre.

Word

We use antiword2 to convert files in Microsoft Word format. The antiword

utility offers to option to output text with a single paragraph per line, which
helps to avoid mistakes in paragraph identification later on:

antiword -w 0 $a.doc > $a.txt

1 Calibre 2.5.0, cf. http://calibre-ebook.com/
2 antiword 0.37, cf. http://www.winfield.demon.nl/index.html

http://calibre-ebook.com/
http://www.winfield.demon.nl/index.html
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pdf

Since pdf is a page-oriented format, this format requires the most care. Heuristic
processing is required to reconstruct paragraphs by removing line breaks and
hyphenation. Some extraneous material, such as headers and footers, can by
filtered at the outset by specifying a cropping area. Inspecting some of the pdf
files shows that they include headers and footers in a so-called ‘bleed’ area that
is trimmed from the final printed book. This area is about 30 Postscript points
on each side (roughly 1.06 cm).

For pdfwe use the pdftotext utility.3 We pass an option to preserve as much
of the original layout as possible in the output, which helps further processing.
The crop area is specified relative to the page size $width and $height:

pdftotext -layout -r 72 -x 30 -y 30 -W $[ $width - 60]
-H $[ $height - 60 ] $a.pdf $a.txt

A.1.2 Normalization of punctuation and other special characters

Unicode punctuation is collapsed into matching ASCII versions; e.g., left and
right quotes are converted to plain single or double quotes; various dashes such
as em- and en-dashes are converted to plain hyphens with added space around
them, while variants of hyphens are converted to hyphens without extra white
space. Ligatures (e.g., ‘ff’ as single character) are expanded into ASCII characters.
So-called discretionary or soft hyphens and zero width spaces are removed.

Two single quotes are replaced by one double quote; this means that the
distinction between single and double quotes is maintained, but fixes possible
OCR errors where double quotes are represented as two single quotes. Space
after sentence-ending punctuation is ensured.

Whenever the Dutch genitive contraction for des (’s) is detected, it is ensured
that it forms a separate token (e.g., ’s middags). Conversely, where the plural
marker ’s is preceded by an acronym, any white space in between is removed
(e.g., de SUV ’s).

Characters denoting scene breaks are removed. Sequences of empty lines are
reduced to a single empty line.

For dashes that are at the start of a line (such as when dashes indicate
dialogue) or preceded by a space, a space is appended, to ensure that it forms a
separate punctuation token. This does not affect dashes in conjunctions (e.g.,
linker- en rechterzijde).

A.1.3 Page numbers, running heads

The running heads (containing file names, dates, chapter name) in the corpus
have already been taken care of by cropping during the pdf conversion. Page
numbers are not in a fixed location, so cropping them would require tuning the

3 pdftotext 0.26.5, cf. http://poppler.freedesktop.org

http://poppler.freedesktop.org
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cropping parameters by hand for each file. It turns out that it is easier to remove
them by regular expressions.

Page numbers are defined as lines with only numbers and white space. If
more than 50 such numbers are detected, they are removed; this threshold
is applied to preserve chapter numbers in a file that does not contain page
numbers.

The white space around page numbers is replaced by a single new line, such
that later on it can be decided whether their surrounding lines form a paragraph
or contain a paragraph break coinciding with a page break.

A.1.4 Hyphenation

Hyphenation at the end of line can usually be removed, but not always. A
compound that needs to be hyphenated regardless may end up at the end of a
line:

Amsterdam is not the capital of North-
Holland.

ñ . . . North-Holland . . .

Moreover, since potential hyphens are sometimes marked even when not at
the end of a line, every single hyphenation character needs to be reconsidered,
not just at the end of lines. Based on previous work, a dehyphenation strategy
based on word counts with and without hyphens is used (Bauge, 2012). These
word counts could be based solely on the document being processed, but this
will include hyphenated word forms, and may not have enough coverage (the
dehyphenated form may be less frequent or may not even occur in the text).

Therefore, the dictionary is augmented with word counts based on a large
corpus. In order to avoid making the results for a text dependent on the word
counts of other texts, only the word counts of a given text and the reference
corpus are used to determine the most likely alternative for each hyphenated
token. The reference corpus is the 500 million word Sonar corpus (Oostdijk
et al., 2013); supplemented with a word list (without counts, so counts of 1
are assumed) from the Dutch OpenTaal project (version 2.10; cf. http://www.
opentaal.org/).

Hyphens bordering on digits are never removed, nor are hyphens between
pairs of vowels that form vowel clashes in Dutch. Vowel clashes consist of vowels
that form diphthongs; e.g., the hyphen in zee-egel will not be considered for
removal. When a word contains multiple hyphens, all combinations of hyphens
are considered:

Noord-Hol-
land

ñ NoordHolland, NoordHol-land,
Noord-Hol-land, Noord-Holland
(most common)

ge-wel-dig ñ geweldig (most common), ge-weldig,
gewel-dig, ge-wel-dig

http://www.opentaal.org/
http://www.opentaal.org/
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Figure A.1: Comparison of line lengths in a text with (left) and without (right)
fixed-width formatting. Plots are smoothed with rolling mean with
a window size of 20.

When none of the alternatives appear in the dictionary, the hyphens are left
as is, except when the hyphen appears at the end of the line, in which case the
default action is to remove the hyphens.

An issue is that the spacing around hyphens is not always correct; sometimes
a space is missing before or after, sometimes it should be left out. These cases
can be reduced by properly treating (i.e., removing) the aforementioned Unicode
characters indicating discretionary hyphens and zero width spaces, but problems
remain. Some examples:

remove space, keep hyphen: cia- directeur ñ cia-directeur
remove space & hyphen: verschil -lende ñ verschillende
a parenthetical:

Valmorain wist niet - want hij
had er nooit naar gevraagd
-dat in Saint-Lazare [. . . ]

ñ [. . . ] gevraagd - dat [. . . ]

On the other hand, some hyphens should appear before or after a space:

conjunctions: "linker- en rechterzijde", "CIA-observateurs en -agenten"
intensifiers: "aller- allerliefste"

Since there is considerable ambiguity in these cases, and the number of
occurrences is manageable, a list of manual corrections was compiled. These
corrections are applied before any other processing occurs.

A.1.5 Paragraphs

Paragraphs4 consist of one or more sentences and are the smallest unit of dis-
course organization in a text.

4 NB: the Dutch term for paragraph is alinea; the false friend paragraaf refers to a section.
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Weer later trok Dzjengis Khan van het oosten naar het westen,

waarbij hij het land van de Perzen vernielde zodat er niets meer

overbleef van hun oude glorie. Pas in de tijd van de Safaviden

richtte het land zich weer op. Het was slechts voor een korte pe-

15
^L

riode van glorie. Het land raakte in verval. De stammen vochten

met elkaar om de macht.

Aan het begin van de negentiende eeuw wist een van die stam-

men de heerschappij te veroveren.

Dit verhaal gaat over een koning van deze stam: prins Naser.

16
^L

2. Prins Naser

Er was eens een Perzische prins die later toen hij koning was Pa-

rijs bezocht.

Figure A.2: A text fragment spanning multiple pages from Kader Abdolah, Kon-
ing, before processing. ˆL indicates a page break. The vertical white
space before page number 16 has been abbreviated.

Weer later trok Dzjengis Khan van het oosten naar het westen ,

waarbij hij het land van de Perzen vernielde zodat er niets meer

overbleef van hun oude glorie . ê

Pas in de tijd van de Safaviden richtte het land zich weer op .

ê

Het was slechts voor een korte periode van glorie . ê

Het land raakte in verval . ê

De stammen vochten met elkaar om de macht . ê

Aan het begin van de negentiende eeuw wist een van die stammen de

heerschappij te veroveren . ê

Dit verhaal gaat over een koning van deze stam : prins Naser .

ê

2 . ê

Prins Naser ê

Er was eens een Perzische prins die later toen hij koning was

Parijs bezocht . ê

Figure A.3: The text fragment after processing. Empty lines indicate para-
graph breaks, ê indicates a sentence boundary, and spaces indicate
word/punctuation boundaries.
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In preprocessing we aim to preserve paragraphs by formatting the output to
contain one paragraph per line. For texts with a page layout that is justified or
wrapped at a fixed line length, lines will have a (relatively) fixed width. This
applies to texts converted from a page-oriented format such as pdf. In these
cases paragraphs need to be reconstructed.

We assume that paragraphs breaks are signaled in three ways:

1. Separation by one or more empty lines.

2. Given a text with fixed-width formatting, a paragraph-ending line is
shorter than typical lines.

3. Indentation may indicate a paragraph-opening line.

While empty lines can be trivially identified, the lengths of lines and inden-
tation need to be judged heuristically. We use similar thresholds as used by
Calibre, but with different methods.

A text is detected as having fixed-width formatting if 80% of lines are 100
characters or shorter.5 Due to the use of proportional fonts, the exact number
of characters in lines varies, even for justified layouts; some variance has to be
accommodated.

If fixed-width formatting is detected, the paragraph detection using method
2 and 3 is enabled and thresholds x and y are computed to detected paragraphs
based on these two criteria:

1. a paragraph ends when its length is less than x´10where x is the smallest
line length such that at least 80% of lines are ă x.

2. a new paragraph starts when it is indented by y spaces. The value for y is
the most common indentation relative indentation length (the indentation
of a line minus that of the previous line).

Figure A.1 shows the line lengths in texts with and without fixed width
formatting. The peak in the graph on the left indicates a text with fixed width
formatting, since the lengths of a majority of lines fall under a small interval.

In order to avoid spurious paragraph breaks due to indentation, it is impor-
tant that any margins are removed, so that normal lines have 0 indentation. For
example, a book may be formatted to have differently sized margins on even
and odd pages, but this extra indentation should not be counted as introducing
paragraphs. Incidentally, the pdf cropping method ensures this is the case.

Figures A.2 and A.3 show an example of paragraph detection and dehyphen-
ation.

5 Calibre employs a similar heuristic, but stores the line lengths in a histogram with predefined
buckets. By defining the buckets in advance, there is the possibility that the most common line
lengths fall into two buckets leading to a false negative.
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A.1.6 Tokenization, parsing

After considering ucto (van Gompel et al., 2012), elephant (Evang et al., 2013),
and Alpino’s6 tokenizer, the last appears to perform best on various edge cases
involving hyphenated words and quoted speech, and additionally supports
preserving paragraphs. A comparison of the word and sentence tokenization
(detected sentence boundaries are indicated by ê):

Test sentences ‘Echt waar?’ fluisterde ze in zijn hals. Hij schoot op de
JP8-brandstof toen de Surface-to-Air (sam)-missiles op hem af kwamen.
81 procent van de schoten was raak.

ucto Echt waar ? ê

’ fluisterde ze in zijn hals . ê

Hij schoot op de JP 8-brandstof toen de Surface-to-Air (sam)-missiles op
hem af kwamen . 81 procent van de schoten was raak . ê

elephant ’ Echt waar ? ’ fluisterde ze in zijn hals . ê

Hij schoot op de JP8-brandstof toen de Surface-to-Air ( sam)-missiles op
hem af kwamen . ê

81 procent van de schoten was raak . ê

Alpino ’ Echt waar ? ’ fluisterde ze in zijn hals . ê

Hij schoot op de JP8-brandstof toen de Surface-to-Air (sam)-missiles op
hem af kwamen . ê

81 procent van de schoten was raak . ê

ucto separates the sentences with quoted speech incorrectly, separates JP
and 8, and also fails to detect the sentence boundary before “81 procent.”

elephant separates the opening parenthesis of “(sam)-missiles,” which
should remain a single token.

Some issues with Alpino’s tokenizer were discovered, but they can be ame-
liorated by pre- and postprocressing. An ellipses after a period ending the
previous sentence is merged by the tokenizer, so a temporary separator is added
to prevent this. Square brackets have special meaning to the parser (to specify
syntactic structure), so they are replaced with parentheses.

Each sentence is assigned an identifier of the form n-m, where n is a para-
graph number, and m is the line number within that paragraph (both starting
from 1).

The Alpino parser is used to assign part-of-speech (pos) tags and construct
parse trees for the texts. See Figure A.4 for an example. Not shown in this visu-
alization are detailed morphological tags (e.g., definite vs. indefinite, singular vs.
plural) and grammatical function tags (e.g., subject, object) at each node, which
are also part of Alpino’s output.

6 Alpino, cf. http://www.let.rug.nl/vannoord/alp/Alpino/

http://www.let.rug.nl/vannoord/alp/Alpino/
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Figure A.4: A parse tree from Alpino of a sentence from Arthur Japin, Vaslav.

A.2 The list of novels

The full list of the 401 novels is as follows. An English title is given where
available. Each novel is listed with a coarse genre category (Fiction, Thriller,
Romantic, Other). Translated novels are indicated as such; other novels were
originally written in Dutch. Most novels (365) were included through the
bestseller list. Exceptions are indicated as follows:

boekenweekgeschenk (national book week gift, 4 novels) novels commissioned
for the national book week that are complimentary with book purchases.

Literaire Juweeltjes (literary jewels, 13 novels) a series of short novels by well
known authors in low price editions to promote reading.7

library (19 novels) the novel was added because of its popularity in public
libraries, while not appearing on the bestseller list.

Abdolah, Kader. 2011: De koning (The King), Fiction. 2011: De kraai, Fiction,
boekenweekgeschenk.

Adler-Olsen, Jussi. 2010: De fazantenmoordenaars (The Absent One: A Department Q
Novel), Suspense, translated. 2010: De noodkreet in de fles (A Conspiracy of Faith: A
Department Q Novel), Suspense, translated. 2010: De vrouw in de kooi (The Keeper of
Lost Causes), Suspense, translated. 2011: De bedrijfsterrorist, Suspense, translated.
2011: Dossier 64, Suspense, translated. 2012: Het Washingtondecreet, Suspense,
translated.

Allende, Isabel. 2010: Het eiland onder de zee (Island Beneath the Sea), Fiction,
translated. 2011: Het negende schrift van Maya (Maya’s Notebook), Fiction, translated.

Amirrezvani, Anita. 2007: Dochter van Isfahan (The Blood Of Flowers), Fiction,
translated.

7 Cf. http://nl.wikipedia.org/wiki/Literaire_Juweeltjes

http://nl.wikipedia.org/wiki/Literaire_Juweeltjes
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Ammaniti, Niccolò. 2007: Het laatste oudejaar van de mensheid, Fiction, translated. 2007:
Zo God het wil (As God Commands), Fiction, translated. 2010: Jij en ik (Me And You),
Fiction, translated. 2010: Laat het feest beginnen (Let the Games Begin), Fiction,
translated.

Appel, René. 2008: Weerzin, Suspense. 2010: Van twee kanten, Suspense.
Auel, Jean Marie. 2011: Het lied van de grotten (The Land of Painted Caves: Earth’s

Children), Fiction, translated.
Austin, Lynn. 2008: Eindelijk thuis (Until We Reach Home), Fiction, translated, library.
Avallone, Silvia. 2010: Staal, Fiction, translated.
Baantjer, Appie / Waal, Simon de. 2010: Een dief in de nacht, Suspense. 2010: Een lijk in

de kast, Suspense. 2011: Een rat in de val, Suspense. 2011: Een schot in de roos,
Suspense. 2012: Een mes in de rug, Suspense.

Bakker, Gerbrand. 2010: De omweg, Fiction.
Baldacci, David. 2007: Geniaal geheim (Simple Genius), Suspense, translated. 2008:

Niets dan de waarheid (The Whole Truth), Suspense, translated. 2008: De
rechtvaardigen (Divine Justice), Suspense, translated, library. 2009: Familieverraad
(First Family), Suspense, translated. 2009: In het geheim (True Blue), Suspense,
translated. 2010: Rechteloos (Hell’s Corner), Suspense, translated. 2010: Verlos ons
van het kwaad (Deliver Us From Evil), Suspense, translated. 2011: Die zomer (One
Summer), Fiction, translated. 2011: De provocatie (Zero Day), Suspense, translated.
2011: De zesde man (The Sixth Man), Suspense, translated. 2012: Onschuldig (The
Innocent), Suspense, translated.

Barnes, Julian. 2011: Alsof het voorbij is (The Sense of an Ending), Fiction, translated.
Barr, Emily. 2007: Klasgenoten (Out Of My Depth), Fiction, translated.
Beijnum, Kees van. 2010: Een soort familie, Fiction.
Berg, Greetje van den. 2009: Ergens achteraan, Other, library.
Bernlef, J.. 2010: Geleende levens, Fiction. 2011: De een zijn dood, Fiction.
Bezaz, Naima El. 2010: Vinexvrouwen, Fiction.
Binchy, Maeve. 2009: Hart & Ziel (Heart and Soul), Romantic, translated, library. 2011:

En toen kwam Frankie (Minding Frankie), Fiction, translated.
Binet, Laurent. 2010: HhhH (HhhH), Fiction, translated.
Blake, Sarah. 2010: De laatste brief (The Postmistress), Fiction, translated.
Blum, Jenna. 2010: Het Familieportret (Those Who Save Us), Fiction, translated. 2011:

In tweestrijd (The Stormchasers), Fiction, translated.
Boyne, John. 2011: Het winterpaleis (The House Of Special Purpose), Fiction, translated.
Brijs, Stefan. 2011: Post voor mevrouw Bromley, Fiction.
Brokken, Jan. 2010: Baltische zielen, Other; non-fiction.
Brown, Janelle. 2008: Alles wat wij wilden was alles (All We Ever Wanted Was

Everything), Fiction, translated.
Brown, Dan. 2009: Het Verloren Symbool (The Lost Symbol), Suspense, translated.
Burgers-Drost, Julia. 2008: Tussen hart en verstand, Other, library.
Bushnell, Candace. 2008: 1 Fifth Avenue (One Fifth Avenue), Romantic, translated.
Buwalda, Peter. 2010: Bonita Avenue (Bonita Avenue), Fiction.
Campert, Remco. 2007: Dagboek van een poes, Fiction.
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Carré, John le. 2010: Ons soort verrader (Our Kind Of Traitor), Suspense, translated.
Casey, Jane. 2010: Spoorloos (The Missing), Suspense, translated.
Child, Lee. 2010: 61 Uur (61 Hours), Suspense, translated. 2010: Tegenspel (Worth

Dying For), Suspense, translated. 2011: De affaire (The Affair), Suspense, translated.
Clancy, Tom. 2010: Op leven en dood (Dead or Alive), Suspense, translated. 2012: In het

vizier (Locked On), Suspense, translated.
Clancy, Tom / Telp, Peter. 2011: De ogen van de vijand (Against All Enemies), Suspense,

translated.
Cleave, Chris. 2009: Kleine Bij (The Other Hand), Fiction, translated.
Coben, Harlan. 2009: Verloren (Long Lost), Suspense, translated. 2010: Verzoeking

(Caught), Suspense, translated. 2011: Levenslijn (Live Wire), Suspense, translated.
2012: Blijf dichtbij (Stay Close), Suspense, translated.

Coelho, Paulo. 2010: De beschermengel, Fiction, translated. 2011: Aleph (Aleph), Fiction,
translated.

Collins, Suzanne. 2010: De hongerspelen (The Hunger Games), Other, translated. 2010:
Spotgaai (Mockingjay), Other, translated. 2011: Vlammen (Catching Fire), Other,
translated.

Cornwell, Patricia. 2010: Mortuarium (Port Mortuary), Suspense, translated. 2010: De
Scarpetta factor (The Scarpetta Factor), Suspense, translated. 2011: Rood waas (Red
Mist), Suspense, translated.

Cronin, Justin. 2010: De oversteek (The Passage), Fiction, translated.
Cussler, Clive / Brul, Jack Du. 2011: Dodenschip (Plague Ship), Suspense, translated.
Cussler, Clive / Cussler, Dirk. 2010: Duivelsadem (Arctic Drift), Suspense, translated.
2011: Wassende maan (Crescent Dawn), Suspense, translated.

Cussler, Clive. 2010: Medusa (Medusa), Suspense, translated.
Dewulf, Bernard. 2010: Kleine dagen, Fiction.
Dijkshoorn, Nico. 2012: Nooit ziek geweest, Fiction.
Dijkzeul, Lieneke. 2007: Koude lente, Suspense. 2010: Gouden bergen, Suspense,

Literaire Juweeltjes. 2011: Verloren zoon, Suspense.
Dis, Adriaan van. 2010: Tikkop, Fiction.
Donoghue, Emma. 2010: Kamer (Room), Fiction, translated.
Dorrestein, Renate. 2010: De leesclub, Fiction. 2011: De stiefmoeder, Fiction. 2012: De

zondagmiddagauto, Fiction, Literaire Juweeltjes.
Duenas, Maria. 2012: Het geluid van de nacht, Romantic, translated.
Durlacher, Jessica. 2010: De held, Fiction.
Eco, Umberto. 2011: Begraafplaats van Praag (The Prague Cemetery), Fiction, translated.
Eggers, Dave. 2007: Wat is de wat (What is the What), Fiction, translated.
Enquist, Anna. 2011: De verdovers, Fiction.
Enter, Stephan. 2011: Grip, Fiction.
Evans, Nicholas. 2010: De vergeving (The Brave), Fiction, translated.
Falcones, Ildefonso. 2010: De hand van Fatima, Fiction, translated.
Fallon, J.. 2007: Op de man af (Getting Rid of Matthew), Romantic, translated.
Fforde, Katie. 2010: Trouwplannen (Wedding Season), Romantic, translated, library.
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Fielding, Joy. 2009: Roerloos (Still Life), Fiction, translated.
Follett, Ken. 2010: Val der titanen (Fall of Giants), Fiction, translated.
Folsom, Allan. 2009: Dag van ontmaskering (The Hadrian Memorandum), Suspense,

translated.
Forbes, Elena. 2010: Sterf met mij (Die With Me), Suspense, translated.
Forsyth, Frederick. 2010: De cobra (The Cobra), Suspense, translated.
Fragoso, Margaux. 2011: Tijger, tijger (Tiger, tiger), Fiction, translated.
Franck, Julia. 2008: De middagvrouw, Fiction, translated.
Franzen, Jonathan. 2010: De correcties (The Corrections), Fiction, translated. 2010:

Vrijheid (Freedom), Fiction, translated.
French, Nicci. 2007: Tot het voorbij is (Until It’s Over), Suspense, translated. 2008: Wat

te doen als iemand sterft (What to Do When Someone Dies), Fiction, translated. 2009:
Medeplichtig (Complicit), Suspense, translated. 2011: Blauwe maandag (Blue Monday),
Suspense, translated. 2012: Dinsdag is voorbij (Tuesday’s Gone), Suspense, translated.

Galen, Alex van. 2012: Süskind, Fiction.
Gastel, Chantal van. 2008: Zwaar verliefd!, Romantic. 2010: Geknipt voor jou, Romantic.
George, Elizabeth. 2010: Lichaam van de dood (This Body of Death), Suspense, translated.
2012: Een duister vermoeden (Believing the Lie), Suspense, translated.

Gerrard, Nicci. 2008: Het weerzien (The Middle Place), Fiction, translated.
Gerritsen, Tess. 2007: De Mefisto Club (The Mephisto Club), Suspense, translated. 2007:

Verdwijn (Vanish), Suspense, translated. 2008: Koud hart (The Bone Garden),
Suspense, translated. 2009: Het aandenken (The Keepsake), Suspense, translated.
2010: Sneeuwval (Ice Cold), Suspense, translated. 2011: Het stille meisje (The Silent
Girl), Suspense, translated.

Gilbert, Elizabeth. 2009: Eten, bidden, beminnen (Eat, Pray, Love), Fiction, translated.
2010: Toewijding (Committed), Fiction, translated.

Giordano, Paolo. 2009: De eenzaamheid van de priemgetallen (The Solitude of Prime
Numbers), Fiction, translated.

Giphart, Ronald. 2010: IJsland, Fiction. 2011: Zeven jaar goede seks, Fiction, Literaire
Juweeltjes.

Grisham, John. 2008: De aanklacht (The Appeal), Suspense, translated. 2010: De
bekentenis (The Confession), Suspense, translated. 2010: De wettelozen (Ford County),
Suspense, translated. 2011: Het proces (The Litigators), Suspense, translated.

Groningen, Merel van. 2008: Misleid, Other.
Grunberg, Arnon. 2010: Huid en haar, Fiction. 2011-2009: Selmonosky’s droom, Fiction,

Literaire Juweeltjes. 2012: De man zonder ziekte, Fiction.
Gudenkauf, Heather. 2010: In stilte gehuld (The Weight of Silence), Suspense, translated.
Hannah, Sophie. 2007: Kleine meid (Little Face), Suspense, translated. 2009: Moederziel

(The Point of Rescue), Other, translated.
Harbach, Chad. 2011: De kunst van het veldspel (The Art of Fielding), Fiction, translated.
Hart, Maarten ’t. 2009: Verlovingstijd, Fiction.
Hayder, Mo. 2009: Huid (Skin), Suspense, translated. 2010: Diep (Gone), Suspense,

translated. 2011: Rot (Hanging Hill), Suspense, translated.
Haynes, Elizabeth. 2011: Waarheen je ook vlucht (Into the Darkest Corner), Suspense,

translated.
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Heijden, A.F.Th van der. 2011: Tonio, Fiction.
Hill, Lawrence. 2011: Het negerboek (The Book of Negroes), Fiction, translated.
Hoag, Tami. 2011: Dieper dan de doden (Deeper than the Dead), Suspense, translated.
Hodgkinson, Amanda. 2012: Britannia Road 22 (22 Britannia Road), Fiction, translated.
Hollander, Loes den. 2007: Naaktportret, Suspense, library. 2008: Broeinest, Suspense,

library. 2008: Dwaalspoor, Suspense, library. 2009: Driftleven, Suspense, library.
2010: De kat op zolder, Fiction, Literaire Juweeltjes. 2010: Krachtmeting, Suspense.
2010: Het scherventapijt, Fiction. 2010: Vluchtgedrag, Suspense. 2010: Wisselgeld,
Suspense. 2011: Glansrol, Suspense. 2011: Uitglijder, Suspense. 2011:
Zielsverwanten, Suspense. 2012: Troostkind, Suspense.

Hosseini, Khaled. 2007: Duizend schitterende zonnen (A Thousand Splendid Suns),
Fiction, translated.

Houellebecq, Michel. 2011: De kaart en het gebied, Fiction, translated.
Indriðason, Arnaldur. 2010: Onderstroom, Suspense, translated. 2011: Doodskap,

Suspense, translated.
Irving, John. 2010: De laatste nacht in Twisted River (Last Night in Twisted River),

Fiction, translated. 2012: In een mens (In One Person), Fiction, translated.
Jackson, Lisa. 2007: De zevende doodzonde (Shiver), Suspense, translated.
James, Erica. 2008: Schaduwleven (Tell it to the Skies), Romantic, translated. 2008:

Zussen voor altijd (Love and Devotion), Romantic, translated. 2009: De kleine dingen
(It’s the Little Things), Romantic, translated.

James, E.L.. 2012: Vijftig tinten donkerder (Fifty Shades Darker), Other, translated. 2012:
Vijftig tinten grijs (Fifty Shades of Grey), Other, translated. 2012: Vijftig tinten vrij
(Fifty Shades Freed), Other, translated.

Jansen, Suzanna. 2010: De pronkspiegel, Other, Literaire Juweeltjes; non-fiction.
Janssen, Roel. 2007: De tiende vrouw, Suspense.
Japin, Arthur. 2007: De overgave, Fiction. 2010: Vaslav, Fiction. 2012: Dooi, Fiction,

Literaire Juweeltjes.
Jonasson, Jonas. 2011: De 100-jarige man die uit het raam klom en verdween (The
100-Year-Old Man Who Climbed Out the Window and Disappeared), Fiction,
translated.

Kelly, Cathy. 2010: Eens in je leven (Once in a lifetime), Romantic, translated.
Kepler, Lars. 2010: Hypnose (The Hypnotist), Suspense, translated. 2011: Contract,

Suspense, translated. 2012: Getuige, Suspense, translated.
King, Stephen. 2009: Gevangen (Under the Dome), Suspense, translated. 2010:

Aardedonker, zonder sterren (Full Dark, No Stars), Suspense, translated; short stories.
2011: 22/11/63 (11/22/63), Suspense, translated. 2011: Eenmalige zonde (Blockade
Billy), Suspense, translated; short stories.

Kingsbury, Karen. 2008: Laatste dans (A Time to Dance), Fiction, translated, library.
2009: Nooit te laat (Redemption), Fiction, translated, library.

Kinsella, Sophie. 2009: Ken je me nog? (Remember me?), Romantic, translated. 2009:
Shopaholic & Baby (Shopaholic and Baby), Romantic, translated. 2009: Wat spook jij
uit? (Twenties Girl), Romantic, translated. 2010: Mini Shopaholic (Mini Shopaholic),
Romantic, translated. 2012: Mag ik je nummer even? (I’ve Got Your Number),
Romantic, translated.
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Kluun. 2010: Haantjes, Fiction.
Koch, Herman. 2009: Het diner (The Dinner), Fiction. 2011: Zomerhuis met zwembad

(Summerhouse with Swimming Pool), Fiction.
Kooten, Kees van. 2013: De verrekijker, Other, boekenweekgeschenk; non-fiction.
Koryta, Michael. 2008: Begraven (A Welcome Grave), Suspense, translated.
Krauss, Nicole. 2010: Het grote huis (Great House), Fiction, translated.
Kroonenberg, Yvonne. 2011: De familieblues, Fiction; short stories.
Kwast, Ernest van der. 2010: Mama Tandoori, Fiction.
Läckberg, Camilla. 2007: Predikant (The Preacher), Suspense, translated. 2008:

IJsprinses (Ice Princess), Suspense, translated. 2008: Steenhouwer (The Stonecutter),
Suspense, translated. 2008: Zusje (The Gallows Bird), Suspense, translated. 2009:
Oorlogskind (The Hidden Child), Suspense, translated. 2010: Sneeuwstorm en
amandelgeur (The Scent of Almonds), Suspense, translated. 2010: Zeemeermin (The
Drowning), Suspense, translated. 2011: Vuurtorenwachter (The Lost Boy), Suspense,
translated. 2012: Engeleneiland (The Angel Maker’s Wife), Suspense, translated.

Lanoye, Tom. 2009: Sprakeloos, Fiction. 2012: Heldere hemel, Fiction,
boekenweekgeschenk.

Lapidus, Jens. 2009: Snel geld (Easy Money), Suspense, translated. 2010: Bloedlink,
Suspense, translated. 2011: Val dood, Suspense, translated.

Larsson, Stieg. 2008: Gerechtigheid (The Girl Who Kicked the Hornets’ Nest), Suspense,
translated. 2008: Mannen die vrouwen haten (The Girl with the Dragon Tattoo),
Suspense, translated. 2008: De vrouw die met vuur speelde (The Girl Who Played with
Fire), Suspense, translated.

Launspach, Rik. 2009: 1953, Fiction.
Lavender, Will. 2008: Het verborgen raadsel (Obedience), Suspense, translated.
Lehane, Dennis. 2008: Gone Baby Gone (Gone, baby, gone), Suspense, translated.
Lewinsky, Charles. 2007: Het lot van de familie Meijer (Melnitz), Fiction, translated.
2010: De verborgen geschiedenis van Courtillon (Johannistag), Fiction, translated.

Lindell, Unni. 2008: Honingval, Suspense, translated.
Loo, Tessa de. 2012: De grote moeder, Fiction.
Ludlum, Robert / Mills, Kyle. 2012: Het Ares akkoord (The Ares Decision), Suspense,

translated.
Luiten, Hetty. 2009: Je blijft altijd welkom, Other, library.
Macdowell, Heather / Macdowell, Rose. 2008: Diner voor 2 (Turning Tables), Romantic,

translated.
Mak, Geert. 2012: Reizen zonder John, Other; non-fiction.
Mankell, Henning. 2007: Kennedy’s brein (Kennedy’s Brain), Suspense, translated. 2008:

De Chinees (The Man from Beijing), Suspense, translated. 2009: De Daisy Sisters
(Daisy Sisters), Fiction, translated. 2010: De gekwelde man (The Troubled Man),
Suspense, translated. 2011: De geschiedenis van een gevallen engel, Fiction, translated.

Mansell, Jill. 2008: Scherven brengen geluk (An Offer You Can’t Refuse), Romantic,
translated. 2009: Eenmaal andermaal verliefd (Rumour Has It), Romantic, translated.
2010: Versier me dan (Take a Chance on Me), Romantic, translated. 2011: Drie is te
veel (Two’s Company), Romantic, translated. 2011: De smaak te pakken (To the Moon
and Back), Romantic, translated. 2012: Vlinders voor altijd (A Walk in the Park),
Romantic, translated.
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Marlantes, Karl. 2011: Matterhorn (Matterhorn), Fiction, translated.
Mastras, George. 2009: Tranen over Kashmir (Fidali’s Way), Fiction, translated.
McCoy, Sarah. 2012: De bakkersdochter (The Baker’s Daughter), Fiction, translated.
McFadyen, Cody. 2010: Tijd om te sterven (Abandoned), Suspense, translated.
McNab, Andy. 2010: Onbreekbare eenheid (Seven Troop), Suspense, translated. 2011:

Oorlogswond (Exit Wound), Suspense, translated.
Meer, Vonne van der. 2009: Het zingen, het water, de peen, Fiction, Literaire Juweeltjes.
2011: De vrouw met de sleutel, Fiction.

Meyer, Deon. 2012: 13 uur, Suspense, translated.
Middelbeek, Mariette. 2009: Single en sexy, Romantic. 2009: Turbulentie, Romantic.
Mitchell, David. 2010: De niet verhoorde gebeden van Jacob de Zoet (The Thousand

Autumns of Jacob de Zoet), Fiction, translated.
Moelands, Kim. 2010: Weerloos, Suspense.
Montefiore, Santa. 2009: In de schaduw van het Palazzo (The Italian Matchmaker),

Romantic, translated. 2010: De affaire (The Affair), Romantic, translated. 2011: Villa
magdalena (The House by the Sea), Romantic, translated. 2012: Fairfield park (The
Summer House), Romantic, translated.

Moor, Marente de. 2010: De Nederlandse maagd, Fiction.
Moor, Margriet de. 2010: De schilder en het meisje, Fiction.
Mortier, Erwin. 2008: Godenslaap, Fiction. 2011: Gestameld liedboek, Fiction.
Mosby, Steve. 2008: 50/50Moorden (The 50/50 Killer), Suspense, translated.
Murakami, Haruki. 2007: Norwegian Wood (Norwegian Wood), Fiction, translated.
2010: 1q84 (1Q84), Fiction, translated.

Neill, Fiona. 2009: Vriendschap, liefde en andere stommiteiten (Friends, Lovers and Other
Indiscretions), Romantic, translated.

Nesbø, Jo. 2010: Het pantserhart, Suspense, translated.
Nesbo, Jo. 2008: De verlosser, Suspense, translated. 2009: De sneeuwman, Suspense,

translated. 2011: De schim, Suspense, translated.
Nesser, Håkan. 2012: De man zonder hond, Suspense, translated.
Newman, Ruth. 2008: Vleugels (Twisted Wing), Suspense, translated. 2010:

Schaduwkant (The Company of Shadows), Suspense, translated.
Noort, Saskia. 2007: Afgunst, Suspense, library. 2004: De eetclub (The Dinner Club),

Suspense. 2009: De verbouwing, Suspense. 2011: Koorts (Fever), Suspense.
Paolini, Christopher. 2011: Erfenis (Inheritance), Other, translated.
Patterson, James. 2008: De affaire (The Quickie), Suspense, translated.
Patterson, James / Ledwige, Michael. 2012: Hitte (Now you see her), Suspense,

translated.
Patterson, James / Marklund, Liza. 2010: Partnerruil (The Postcard Killers), Suspense,

translated.
Pauw, Marion. 2008: Daglicht, Suspense. 2008: Drift, Suspense. 2008: Villa Serena,

Suspense. 2009: Zondaarskind, Suspense. 2010: Jetset, Suspense.
Peetz, Monika. 2011: De dinsdagvrouwen, Fiction, translated.
Pick, Alison. 2011: Donderdagskind (Far to Go), Fiction, translated.
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Picoult, Jodi. 2008: Negentien minuten (Nineteen Minutes), Fiction, translated.
Proper, Emile / Eynden, Sabine van den. 2008: Gooische vrouwen, Romantic.
Ravelli. 2011: De Vliegenvanger, Fiction.
Rendell, Ruth. 2010: De dief - Kattenkruid! (The Thief), Suspense, translated.
Rijn, Linda van. 2010: Last Minute, Suspense. 2012: Blue Curacao, Suspense.
Roberts, Nora. 2009: Eerbetoon (Tribute), Romantic, translated, library.
Robotham, Michael. 2008: Gebroken (Shatter), Suspense, translated.
Rose, Karen. 2010: Moord voor mij (Kill For Me), Suspense, translated.
Rosenboom, Thomas. 2009: Zoete mond, Fiction. 2010: Mechanica, Fiction, Literaire

Juweeltjes.
Rosenfeldt, Hjorth. 2011: Wat verborgen is, Suspense, translated.
Rosnay, Tatiana de. 2007: Haar naam was Sarah (Sarah’s Key), Fiction, translated. 2009:

Die laatste zomer (A Secret Kept), Fiction, translated. 2010: Kwetsbaar (Moka), Fiction,
translated. 2011: Het huis waar jij van hield (The House I Loved), Fiction, translated.
2012: Het appartement, Fiction, translated.

Rowling, J.K.. 2007: Harry Potter en de Relieken van de Dood (Harry Potter and the
Deathly Hallows), Other, translated, library.

Royen, Heleen van. 2009: De mannentester, Fiction. 2012: Sabine, Fiction, Literaire
Juweeltjes.

Ruiz Zafón, Carlos. 2008: De schaduw van de wind (The Shadow of the Wind), Fiction,
translated. 2009: Het spel van de engel (The Angel’s Game), Fiction, translated. 2012:
De gevangene van de hemel (The Prisoner of Heaven), Fiction, translated.

Sambeek, Ciel van. 2008: Koninginnenrit, Fiction. 2010: Bloed zaad en tranen, Fiction.
Sansom, Christopher John. 2007: Winter in Madrid (Winter in Madrid), Suspense,

translated.
Scholten, Jaap. 2010: Kameraad Baron, Fiction.
Sedaris, David. 2010: Van je familie moet je het hebben, Fiction, translated; short stories.
Shah, Hannah. 2009: De dochter van de iman (The Imam’s Daughter), Fiction, translated.
Siebelink, Jan. 2010: Het lichaam van Clara, Fiction. 2011: Oscar, Fiction.
Slaughter, Karin. 2007: Onaantastbaar (Skin Privilege), Suspense, translated. 2008:

Versplinterd (Fractured), Suspense, translated. 2009: Genesis (Genesis ), Suspense,
translated. 2010: Ongezien (The Unremarkable Heart), Suspense, translated. 2010:
Verbroken (Broken), Suspense, translated. 2011: Gevallen (Fallen), Suspense,
translated. 2012: Genadeloos (Criminal), Suspense, translated.

Slee, Carry. 2009: Bangkok Boy, Other. 2010: Fatale liefde, Other.
Smeets, Mart. 2010: De afrekening, Fiction. 2011: Een koud kunstje, Fiction, Literaire

Juweeltjes; short stories.
Smit, Susan. 2010: Vloed, Fiction.
Smith, Wilbur. 2011: Op volle zee (Those in Peril), Suspense, translated.
Spijker, Rita. 2007: Tussen zussen, Fiction.
Springer, F.. 2010: Quadriga, Fiction.
Steel, Danielle. 2010: De weg van het hart (Matters of the Heart), Romantic, translated.
2011: Door dik en dun (Big Girl), Romantic, translated.

Stevens, Chevy. 2010: Vermist (Still Missing), Suspense, translated.
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Stockett, Kathryn. 2010: Een keukenmeidenroman (The Help), Fiction, translated.
Sundstøl, Vidar. 2010: Land van dromen, Suspense, translated.
Terlouw, Jan / Terlouw, Sanne. 2011: Hellehonden, Suspense.
Tex, Charles den. 2009: Spijt, Suspense. 2010: Wachtwoord, Suspense.
Theorin, Johan. 2008: Schemeruur, Suspense, translated.
Thomése, P.F.. 2010: De weldoener, Fiction.
Treur, Franca. 2009: Dorsvloer vol confetti, Fiction.
Trussoni, Danielle. 2010: Het uur van de engelen (Angelology), Suspense, translated.
Verhoef, Esther. 2007: Close-up, Suspense. 2008: Alles te verliezen, Suspense. 2009:

Erken mij, Suspense, library. 2010: Déjà vu, Suspense. 2012: Tegenlicht, Fiction.
Verhulst, Dimitri. 2010: De laatste liefde van mijn moeder, Fiction.
Vermeer, Suzanne. 2007: De vlucht, Suspense. 2008: Zomertijd, Suspense. 2009:

Après-ski, Suspense. 2009: Cruise, Suspense. 2010: De suite, Suspense. 2011: Bella
Italia, Suspense. 2011: Zwarte piste, Suspense. 2012: Bon Bini beach, Suspense. 2012:
Noorderlicht, Suspense.

Visser, Judith. 2008: Stuk, Suspense.
Vlugt, Simone van der. 2007: Het laatste offer, Suspense. 2008: Blauw water, Suspense.
2009: Herfstlied, Suspense. 2009: Jacoba, Dochter van Holland, Fiction. 2010: Op
klaarlichte dag, Suspense. 2011: In mijn dromen, Suspense. 2012: Rode sneeuw in
december, Other.

Voskuijl, Anouschka. 2011: Dorp, Suspense.
Voskuil, J.J.. 2012: De buurman, Fiction.
Vuijsje, Robert. 2008: Alleen maar nette mensen, Fiction. 2012: Alleen maar foute mensen,

Fiction, Literaire Juweeltjes.
Wageningen, Gerda van. 2008: In de schemering, Other, library.
Watson, S.J.. 2011: Voor ik ga slapen (Before I Go to Sleep), Suspense, translated.
Weiner, Jennifer. 2009: Sommige meisjes (Certain Girls), Romantic, translated.
Weisberger, Lauren. 2008: Chanel Chic (Chanel Chic), Romantic, translated. 2010:

Champagne in Chateau Marmont (Last Night At Chateau Marmont), Romantic,
translated.

Wickham, Madeleine. 2009: Zoete tranen (The Gatecrasher), Romantic, translated.
2010: De cocktailclub (Cocktails for Three), Romantic, translated. 2011: Het
zwemfeestje (Swimming Pool Sunday), Romantic, translated. 2012: De vraagprijs (A
Desirable Residence), Romantic, translated.

Wieringa, Tommy. 2009: Caesarion, Fiction. 2011: Portret van een heer, Other, Literaire
Juweeltjes; non-fiction.

Winter, Leon de. 2008: Recht op terugkeer, Fiction. 2012: VSV of daden van
onbaatzuchtigheid, Fiction.

Wisse, Clemens. 2009: De jonge boerin van Madezicht, Other, library.
Worthy, James. 2011: James Worthy, Fiction.
Yalom, Irvin D.. 2012: Het raadsel spinoza (The Spinoza Problem), Fiction, translated.
Zwaan, Josha. 2010: Parnassia, Fiction.
Zwagerman, Joost. 2010: Duel, Fiction, boekenweekgeschenk.
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Glossary of acronyms

Parse tree labels

The following describes the set of labels used in the syntactic annotation of the
Dutch treebank Lassy. Based on van Noord et al. (2011); my translations.

Phrasal Label Description

AP adjectival phrase
ADVP adverbial phrase
AHI ‘aan het . . . ’ infinitival clause (continuous aspect)
CONJ conjunctive clause
CP complementizer phrase with subordinating conjunction
DETP determiner phrase
DU discourse unit
INF bare infinitive clause
NP noun phrase
OTI ‘om te . . . ’ infinitival, reduced relative clause
PPART perfect/passive participle
PP prepositional phrase
PPRES present participle
REL relative clause
SMAIN declarative clause (verb second)
SSUB subordinating clause (verb final)
SVAN clause prefixed by ‘van’ (quotative)
SV1 verb-initial clause (yes/no-question, imperative)
TI infinitival clause prefixed by ‘te’ (to)
WHREL relative clause with wh-antecedent
WHSUB wh-constituent: subordinate clause
WHQ wh-constituent: main clause
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Function Tag Description

APP appositive
BODY body (of complementizer phrase)
CMP complementizer
CNJ conjunct
CRD coordinating conjunction
DET determiner
DLINK discourse link
DP discourse part
HD head
HDF final element of circumposition
LD locative or directional complement
ME measure (duration, weight, . . . ) complement
MOD adverbial modifier
MWP part of multi-word unit
NUCL sentence nucleus
OBCOMP comparative complement
OBJ1 direct object
OBJ2 secondary object
PC verbal complement prefixed by preposition
POBJ1 dummy direct object
PREDC predicative complement
PREDM predication of state during action
RHD head of relative clause
SAT satellite, initial or final
SE compulsory reflexive object
SU subject
SUP dummy subject
SVP separable verb part
TAG interjections, reduced question/imperative,

direct speech introduction
VC verbal complement
WHD head of question
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The following describes the DCOI tag set, taken from van Eynde (2005).
The tags consist of a coarse POS tag, listed below, and a set of fine-grained
morphological features that combine with them. We list only the selection of
morphological features that is used in this work.

POS Tag Description

let punctuation
spec part of proper noun
bw adverb
vg conjunction
lid determiner
vnw pronoun
tw cardinal
ww verb
adj adjective
n noun
tsw interjection
vz preposition

Morphological
Feature

Description

eigen proper noun
pron, det personal/reflexive, possessive pronoun
init, fin pre- vs postposition
neven, onder coordinating, subordinating conjunction
prenom, nom,
vrij

prenominal, nominal, or free standing

pv, inf finite, infinite verb
vd, od past, present participle
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Other acronyms

Acronym Expanded version

2dop Double-dop, dop based on recurring fragments; Sec-
tion 3.4

bow Bag-of-Words; Section 4.2
cfg Context-Free Grammar; Section 1.2
dop Data-Oriented Parsing; Section 1.3
dop1 All-fragments dop with rfe

dtsg Discontinuous tsg; Section 3.2.2
ewe Equal Weights Estimate; Section 1.3.2
lcfrs Linear Context-Free Rewriting Systems; Section 3.2.1
lda Latent Dirichlet Allocation; Section 6.3
mpd Most Probable Derivation; Section 1.3.1
mpp Most Probable Parse; Section 1.3.1
nlp Natural Language Processing
nur Nederlandstalige Uniforme Rubriekscode (roughly, ‘uni-

form categorization of Dutch language [novels].’); Sec-
tion 5.2.1

ols Ordinary Least Squares; Section 4.2
R2 Coefficient of Determination; Section 4.2.4
rfe Relative Frequency Estimate; Section 1.3.2
rms Root Mean Square error; Section 4.2.4
pdtsg Probabilistic dtsg; Section 3.2.2
plcfrs Probabilistic Linear Context-Free Rewriting Systems;

Section 3.2.1
ptb Penn Treebank
ptsg Probabilistic Tree-Substitution Grammar; Section 1.3.1
pos Part-of-Speech
svm Support Vector Machines; Section 4.2
tsg Tree-Substitution Grammar; Section 1.3.1
wsj Wall Street Journal section of ptb
pcfg Probabilistic Context-Free Grammar; Section 1.2
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Abstract

This thesis applies the Data-Oriented Parsing framework in two areas:
parsing & literature. The data-oriented approach rests on the assumption
that re-use of chunks of training data can be detected and exploited at

test time. Syntactic tree fragments form the common thread in the thesis.
Chapter 2 presents a method to efficiently extract them from treebanks,

based on heuristics of re-occurrence. This method is thus able to discover
the potential building blocks of large corpora. Chapter 3 then develops a
multi-lingual statistical parser based on tree-substitution grammar that handles
discontinuous constituents and function tags. We show how a mildly context-
sensitive grammar can be employed to produce discontinuous constituents,
and then compare this to an approximation that stays within the efficiently
parsable context-free framework. The conclusion from the empirical evaluation
is that tree fragments allow the grammar to adequately capture the statistical
regularities of non-local relations, without the need for the increased generative
capacity of mildly context-sensitive grammar.

The second part investigates what separates literary from other novels. Aside
from an introduction in Chapter 4 to machine learning we discuss the difference
between explanation and prediction.

Chapter 5 discusses the data used for this investigation. We work with a
corpus of novels and a reader survey with ratings of how literary novels are
perceived to be. While considerable questions remain with respect to whether a
survey of the general public is an appropriate instrument to probe the concept
of literature, when viewed as a barometer of public opinion we may consider
the basic question of whether such opinions are at all predictable. The first goal
is therefore to find out the extent to which the literary ratings can be predicted
from the texts; the second, more challenging goal is to characterize the kind of
patterns that are predictors of more or less literary texts.

Chapter 6 establishes baselines for this question. We show that literary novels
contain less adjectives and adverbs than non-literary novels, and present several
simple measures that are significantly correlated with the literary ratings, such
as vocabulary richness and text compressibility. Cliché expressions is established
as a negative marker of literary language. A topic model is developed of the
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corpus, revealing a number of clearly interpretable themes in the novels.
Special attention is given in Chapter 7 to syntactic aspects, as investigated

in the first part. The syntactic methods are contrasted with lexical baselines
based on bigrams (sequences of two consecutive words). The combination of
lexical and syntactic features gives an improvement, and the syntactic features
are more interpretable.

In the end, the literary ratings are predictable from textual features to a large
extent. While it is not possible to infer a causal relation between these textual
features and the ratings from the survey participants, this result clearly rules
out the notion that these value-judgments of literary merit were arbitrary, or
predominantly determined by factors beyond the text.
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Samenvatting

Dit proefschrift past Data-Geörienteerd Ontleden toe op twee proble-
men: ontleden & literatuur. De Data-Geörienteerde aanpak exploiteert
de aanname dat hergebruik van brokstukken uit eerdere taalervarin-

gen kan worden gedetecteerd en toegepast op nieuwe zinnen. Syntactische
boomfragmenten vormen de gemene deler in dit proefschrift.

Hoofdstuk 2 presenteert een methode om ze efficiënt te extraheren uit verza-
melingen parseerbomen, gebaseerd op de heuristiek dat relevante fragmenten
meerdere malen voorkomen. Deze methode kan zodoende potentiële bouwste-
nen ontdekken van grote corpora. Hoofdstuk 3 zet vervolgens een methode
uiteen om deze fragmenten te gebruiken bij de ontwikkeling van een multi-
linguaal statistisch model van parseren, gebruikmakend van een zogenaamde
boomsubstituerende grammatica die boomfragmenten samenvoegt tot volledige
analyses. Deze grammatica produceert analyses met discontinue constituenten
en grammaticale functierelaties. We laten zien hoe een mild contextgevoelige
grammatica gebruikt kan worden om discontinue constituenten te produceren,
en vergelijken dit model vervolgens met een benadering die binnen het efficiënt
parseerbare contextvrije formalisme blijft. De conclusie van de empirische eva-
luatie is dat boomfragmenten het mogelijk maken voor de grammatica om de
statistische regulariteit van niet-lokale afhankelijkheden adequaat te omvatten,
zonder daarbij de toegevoegde generatieve capaciteit van mild contextgevoelige
grammatica’s nodig te hebben.

Het tweede deel behandelt de vraag wat literaire van andere romans onder-
scheid. Hoofdstuk 5 behandelt de data die wordt gebruikt voor dit onderzoek.
We gebruiken een corpus van romans en een lezersonderzoek met lezersmenin-
gen over hoe literair romans bevonden worden. Het eerste doel is te kwantifice-
ren in hoeverre ‘literariteit’ kan worden voorspeld aan de hand van tekstuele
kenmerken; het tweede doel is te karakteriseren welke kenmerken voorspellend
zijn voor literariteit.

Hoofdstuk 6 toont enkele basale modellen voor deze vraag. We laten zien dat
literaire romans minder bijvoeglijke en bijwoordelijke naamwoorden bevatten
dan niet-literaire romans, en presenteren verscheidene simpele maten met
een significante correlatie met de literaire oordelen, zoals de rijkheid van het
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vocabulaire en de comprimeerbaarheid van de tekst. Cliché uitdrukkingen
worden ingezet als een negatieve marker van literaire taal. Een zogeheten ‘topic’
model van het corpus wordt ontwikkeld, wat laat zien dat er een aantal duidelijk
interpreteerbare thema’s in de romans aanwezig zijn.

Speciale aandacht wordt in Hoofdstuk 7 besteed aan syntactische kenmerken,
zoals behandeld in het eerste deel. De syntactische methoden worden gecontras-
teerd met simpelere lexicale methoden gebaseerd op bigrammen (sequenties
van twee opeenvolgende woorden). De combinatie van lexicale en syntactische
kenmerken geeft een verbetering, en de syntactische kenmerken zijn beter te
interpreteren.

Uiteindelijk is de conclusie dat de literaire oordelen in grote mate voorspel-
baar zijn op basis van tekstkenmerken. Hoewel het niet mogelijk is om een direct
oorzakelijk verband aan te wijzen tussen de tekstkenmerken en de oordelen
van proefpersonen, is toch duidelijk aangetoond dat de waardeoordelen over
literariteit geenszins arbitrair zijn, noch in meerderheid bepaald door factoren
buiten de tekst.
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