
New Directions in Model Checking
Dynamic Epistemic Logic

Malvin Gattinger

New Directions in Model Checking
Dynamic Epistemic Logic

Malvin Gattinger

New Directions in Model Checking
Dynamic Epistemic Logic

ILLC Dissertation Series DS-2018-11

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: https://www.illc.uva.nl/

This work was financially supported and hosted by the Tsinghua-UvA Joint
Research Center for Logic. The author also received financial travel support from
the Australian Research Council Future Fellowship FT0991785 and the European
Research Council Starting Grant Epistemic Protocol Synthesis 313360.

Copyright c© 2018 by Malvin Gattinger.

Cover drawings by Sarah Vollert.

Printed and bound by Ipskamp Printing.

ISBN: 978–94–028–1025–7

mailto:illc@uva.nl
https://www.illc.uva.nl/

New Directions in Model Checking
Dynamic Epistemic Logic

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 13 juni 2018, te 11.00 uur

door

Benjamin Rene Malvin Gattinger

geboren te Offenbach am Main, Duitsland

Promotiecommisie

Promotor: Prof. dr. D.J.N. van Eijck Universiteit van Amsterdam
Co-promotor: Dr. A. Baltag Universiteit van Amsterdam

Prof. dr. K. Su Griffith University

Overige leden: Prof. dr. J.F.A.K. van Benthem Universiteit van Amsterdam
Dr. A. Herzig Université Paul-Sabatier
Dr. C. Schaffner Universiteit van Amsterdam
Prof. dr. F.Liu Tsinghua University
Prof. dr. F.J.M.M. Veltman Universiteit van Amsterdam
Prof. dr. Y. Venema Universiteit van Amsterdam
Dr. Y.Wang Peking University

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Acknowledgments ix

Introduction 1
Key Contributions . 5
Outline . 6
Sources of the Chapters . 7
List of Symbols . 9

1 Basics 11
1.1 Epistemic Logic on Kripke Models 13
1.2 Public Announcement Logic . 17
1.3 Dynamic Epistemic Logic with Action Models 19
1.4 Arrow Updates . 24
1.5 Temporal Logics on Interpreted Systems 25
1.6 Comparing Dynamic and Temporal Logics 26
1.7 Model Checking . 28
1.8 Symbolic Representation . 29
1.9 Binary Decision Diagrams . 34

2 Symbolic Model Checking DEL 37
2.1 Related Work . 38
2.2 Knowledge Structures . 39
2.3 Example: Muddy Children . 44
2.4 Equivalence Proof for S5-PAL . 47
2.5 Knowledge Transformers . 52
2.6 Belief Structures . 56
2.7 Belief Transformers . 63
2.8 Symbolic Factual Change . 63
2.9 Equivalence Proof for the General Case 67
2.10 Symbolic Language and Reduction Axioms 73
2.11 Symbolic Bisimulations . 76
2.12 Redundancy and Optimization . 80
2.13 Other Similarity Types, Beyond Normality 82

v

3 Implementing Symbolic DEL with BDDs 85
3.1 Existing Epistemic Model Checkers 86
3.2 From Mathematics to Haskell . 89
3.3 Knowledge Structures with BDDs 91
3.4 S5 Input and Output Examples 94
3.5 Type-Safe Vocabulary Management 97
3.6 Belief Structures with BDDs . 100
3.7 Reduction and Optimization . 101
3.8 Transformers . 102
3.9 Module Overview . 104
3.10 Automated Testing . 105
3.11 Further Development . 107

4 Examples and Benchmarks 109
4.1 Muddy Children . 109
4.2 Drinking Logicians . 114
4.3 Dining Cryptographers . 116
4.4 Comparing DEL and ETL model checkers 118
4.5 Russian Cards . 120
4.6 Sum and Product . 122
4.7 Sally and Anne . 126
4.8 Epistemic Planning . 128
4.9 Conclusion and Future Work . 130

5 Knowing and Inspecting Values 131
5.1 Binary Encoding . 132
5.2 Register Models . 134
5.3 Public Inspection . 137
5.4 Richer Languages . 138
5.5 Single-Agent PIL . 140
5.6 Multi-Agent PIL . 148
5.7 Conclusion and Future Work . 152

vi

6 Dynamic Gossip 155
6.1 Gossip graphs and calls . 159
6.2 Constructible Graphs and Subgraphs 160
6.3 Epistemic Logic for Dynamic Gossip Protocols 163

6.3.1 Syntax and Protocols . 163
6.3.2 Protocol-Dependent Knowledge 165

6.4 Strengthening of Protocols . 170
6.4.1 What is strengthening? . 170
6.4.2 Syntactic Strengthening: Look-Ahead and One-Step 171
6.4.3 Semantic Strengthening: Uniform Backward Defoliation . . 173
6.4.4 Iterated Strengthenings . 174
6.4.5 Limits and Fixpoints of Strengthenings 180
6.4.6 Detailed Example: the Diamond Gossip Graph 181

6.5 Impossibility Result on Strengthening LNS 185
6.6 Model Checking for Dynamic Gossip 188

6.6.1 An Explicit Implementation 189
6.6.2 Gossip in Standard DEL 192
6.6.3 Knowing-whether, Knowing-that, Atomic-knowing 192
6.6.4 Action Models for Gossip 193
6.6.5 Symbolic Gossip . 194

6.7 Conclusion and Future Work . 196

Conclusion 199

Bibliography 203

Samenvatting 223

Abstract 225

vii

Acknowledgments

Throughout this thesis we do our best to avoid long lists. It is my pleasure to
begin with an exception to this rule and thank those who helped me.

Dear Jan van Eijck, thank you for encouraging me to pursue a PhD and for
being the most relaxed and relaxing supervisor, again. It was great to have you on
my side for these four years. I will remember your office as a magic place where
logic, computer science and philosophy happily meet each other. You gave me
plenty of advice that I will not forget. Whenever I get frustrated I will now look
deep into myself and deep into the reviews — in this order. Finally, thank you for
still being available and helping me finish this adventure after your retirement.
苏开乐, thank you for being my co-supervisor, for laying the groundwork on

symbolic model checking for Public Announcement Logic and for inviting me
to Brisbane where you gave me the time and the freedom to invent knowledge
transformers and to hug a koala.

My gratitude also goes to Alexandru Baltag: Thank you for being my co-
supervisor and for very helpful comments and complaints about drafts of this
thesis. The ideas for future work which you scribbled into my margins will keep
me busy for a long time — and that was before I realized that the official ILLC
style demands even bigger margins. I already know that I will miss the LIRa
seminar and the drinks with your great stories and life lessons. Most of all, thank
you for spreading your passion for logic and science in general!

Besides my three official supervisors, I want to thank Hans van Ditmarsch
without whom this thesis would not be what it is. Thank you Hans, for establishing
logic puzzles and card games as a serious research area, for inviting me to Nancy
to study dynamic gossip on whiteboards and cycle-paths, and last but not least
for being yourself and a great role model.

I want to thank Johan van Benthem for both the foundations and landmarks
in our field, for building an international community I am proud to be part of, for
his incredibly detailed feedback emails after listening to my talks and for joining
my defense committee.

ix

I am also happy to have the following people on my committee: Andreas
Herzig, who already gave me helpful feedback at LORI 2015 and ESSLLI 2017,
Christian Schaffner, for whom being a teaching assistant in Cryptography was
really fun, Yde Venema, who showed me the joy of research already during the
master and who joined my committee on very short notice between Glühwein and
oliebollen, and Frank Veltman, who was the first to teach me Basic Logic properly.

Peter van Emde Boas deserves my thanks for coming to many of my talks with
rigorous questions and for being the chair of my defense committee.

These four years have been extra exciting because my position was part of the
Tsinghua-UvA Joint Research Centre for Logic. I am grateful for three trips to
China during which I learned much more than just logic. Among all the wonderful
people I met because of the Joint Research Centre, I especially want to thank刘奋
荣 for the invitations to Tsinghua University and for joining my defense committee,
王彦晶 for being one of my favorite collaborators that always made the right
choices (including the decision to withdraw one of our papers), for inviting me to
Peking University, and for being part of my committee, and 石辰威 for being a
great flatmate, colleague and excellent travel guide.

I would also like to thank my other co-authors for the joy of working with
them and their permission to include our work here: Rahim Ramezanian, the
months we spent looking at triangles to axiomatize Propositional Dynamic Gossip
Logic were not in vain — at least I had fun working with you, Louwe B. Kuijer,
thank you for catching many of my flawed ideas with your incredible precision
and kindness, and Pere Pardo, your care and accuracy were truly helpful.

Any science is team work, even if you do not actually work on the same topics.
I will miss my office colleagues, namely Giovanni Cinà, Dieuwke Hupkes and Jouke
Witteveen, who were all excellent partners in crime.

Facundo Carreiro and Sumit Sourabh deserve my gratitude because they gave
me a somewhat realistic idea of what doing a PhD would be like — also in
hindsight.

Nadine Theiler, thank you for staying in Amsterdam when most of our MoL
year was moving (far) away, for letting me stay at your place when I was a homeless
cyclist, and for many Cineville evenings.

It is common knowledge among PhD students that the challenging part is
not to write a thesis but to deal with the bureaucracy. The ILLC office has
been indispensable in navigating this chaos. In particular I want to thank Jenny
Batsoen, Peter van Ormondt, Debbie Klaassen, and the all-knowing and always
helpful Tanja Kassenaar.

Many more people helped me whom I do not know enough to properly thank
them. For example, let me thank all the people taking care of the ILLC, NIKHEF
and CWI buildings. It is a privilege to have clean offices, managed coffee machines
and fast internet. Though it really is time for IPv6 by now, dear UvA.

There is a lot of free/libre open source software without which my research
would have been impossible. I would like to thank the authors of the Glorious

x

Glasgow Haskell Compilation System (GHC) and many Haskell libraries, Debian
GNU/Linux, KDE, Firefox, Thunderbird, Nextcloud, Graphviz, LATEX, Pandoc,
Atom, and other software of which I might not even know that I have been using
it. Additionally, I am grateful to several small groups of idealists providing online
services like disroot.org. For technical help, I owe thanks to many geniuses around
the world who I only know by their nicknames on the #haskell IRC channel.

I had the privilege of traveling a lot during these four years. My cycling trips
to summer schools were even more fun thanks to the warmshowers.org community.
As Hans will confirm, cycling can yield new proof ideas which then have to be
written down and shared immediately. In these cases eduroam was of great
use, wherever I happened to be. Apropos traveling, I would also like to thank
Nederlandse Spoorwegen and Deutsche Bahn — especially the teams on board
the ICE International. Special thanks also go to the KLM travel clinic and to the
train schedule oracle at Delhi central station.

Back home in various senses, I want to thank Pauline Fleischmann, who often
knows me better than I do myself, Laura Stumpp, who has an excellent conspiracy
theory why I study the gossip problem, and Hannah Weisbach, who was an
unexpected but great flatmate.

I am indebted to Sarah Vollert for the cover drawings which she managed to
produce in almost no time and based on very vague and chaotic instructions.

My biggest thanks go to Emma Brakkee. Thank you Emma, for being a
wonderful companion in this crazy world in general and the academic world in
particular. I cannot even count the times you proofread for me or listened to my
worries about mistakes and deadlines. Fortunately, I can also share the joy of new
proofs and ideas with you, in a growing number of languages.

I first met my two paranymphs Jana Wagemaker and Esteban Landerreche
when they were among my favorite students in various courses and am truly happy
that they became friends and colleagues shortly after.

Emma, Jana and Esteban deserve not only my gratitude, but also that of
anyone who reads this work: They turned around every comma in this thesis
and kept me from writing it essentially in Germanglish by nesting way too many
colons and dashes in one-sentence paragraphs — almost. I also want to thank
Bastian Reitemeier and David Julian Veenstra for reading parts of my thesis. Of
course, all the remaining mistakes are my fault.

Finally, my deepest gratitude goes to Pia, Hans and Anne Gattinger. Dear
Pia and Hans, neither this thesis nor I would exist without you. I am proud to be
your son and grateful for your continuous support in all ways. Dear Anne, thank
you for being the best sister and for hosting me when I urgently needed some
mountains after all this.

Malvin Gattinger
Amsterdam, April 2018

xi

https://disroot.org
https://www.warmshowers.org

Introduction

Either a thing is true or it isn’t.
If it is true, you should believe it.
And if it isn’t, you shouldn’t.

Bertrand Russell

Computers are an essential part of modern life: Phones, watches, cars, planes
and bicycles are only a small selection of items that nowadays routinely have
more computational power than the whole Apollo team had available when it flew
to the moon. People trust computers on a daily basis to deliver messages and
pictures, to organize their calendars, to deliver the news, to manage their money,
to help them find the way, or to translate between different languages.

How can we be sure these devices do what we want them to do? Trusting a
device means trusting those who made it.1 Additionally, it means trusting that
they did not make any mistake. A tragic case of trust in a machine was the
Therac-25, a particle accelerator used in radiation therapy. Due to a concurrency
related bug in its software, six patients died after being overdosed [LT93]. How
can such problems be avoided? How can we be sure that a program will behave
in the way we want?

Formal methods such as model checking are an answer to this question: We
can use formal languages to specify what our systems should do and then check if
a program, a circuit, or a model thereof fulfills this specification. The strength
of this approach is that such checks can themselves be done automatically, by
computers. One is always testing (at least) three things, all against each other:
The specification, the model and the tool used to compare them.

Methods for verification were studied already in the 1960s and 1970s, but most
of them were based on theorem proving [Eme08]. A major breakthrough in the
1980s was the advent of symbolic methods for model checking that no longer need

1Given the recent revelations about surveillance and almost regular security problems affecting
the whole internet, this is already a big leap of faith, but not the topic of this thesis.

1

2 Introduction

to spell out large models explicitly to check them [Bur+90]. The success of model
checking in practice ranges from finding problems in formal protocols to improving
real-time systems ensuring the stability of buildings during earthquakes [CW96].
By now, model checking and other forms of verification are industry standards
and will hopefully prevent tragedies like the Therac-25 in the future.

Given this success, it is natural to ask where else model checking can be applied,
and in order to do so, which kinds of systems and problems can be modeled and
checked in formal languages. Most existing model checking tools work with a
variant of temporal logic. One way to extend these logics is to add epistemic
operators, allowing us to express situations or problems involving knowledge or
belief. Consider for example the following puzzle:

Three cryptographers go out to have dinner. After a delicious meal
the waiter tells them that the bill has already been paid. The cryptog-
raphers know that either one of them paid, or the National Security
Agency (NSA). They want to find out which of the two is the case
but also respect the wish to stay anonymous: If one of them paid they
do not want that person to be revealed. What should they do? And
suppose they find a procedure, how can they verify that it works?

Dynamic Epistemic Logic (DEL) is a logic developed during the last twenty
years which can easily describe this sort of scenario. However, so far no symbolic
implementation of it existed and while computers can easily deal with small toy
examples like the above, as soon as the number of agents — in this case dining
cryptographers — becomes larger, the models no longer fit into memory and we
need better methods. This leads us to the main research question of this thesis.

Research Question 1.
Can we find symbolic model checking methods for DEL?

To answer this question we need to find symbolic equivalents of the models
which are used in the standard semantics of DEL, namely Kripke models and
action models. Symbolic representations for Kripke models have already been
developed for temporal logics. This thesis essentially provides a general method to
import these techniques to DEL. Given a theoretical answer to our first research
question, we also want to know how usable it is in practice.

Research Question 2.
How can symbolic model checking for DEL be implemented?

An implementation and its use are not only a goal of our research, but at the
same time a source of inspiration and corrective feedback. Any logicians who
also happen to be programmers will confirm that implementation goes both ways.
We first need a well-defined language, data structures and semantics before we

Introduction 3

can even start implementing something like a model checker. But once we start
implementing we can also learn from an implementation what works well and
what does not. A strictly typed functional language like Haskell, which closely
resembles mathematical syntax, can provide new insights that motivate us to
go back and improve our original definitions. Then, after a fruitful back and
forth between theory and implementation, we want to measure the quality of our
implementation.

Research Question 3.
How good is the performance of symbolic methods for DEL?

To answer this, we should compare our new methods in two directions: First,
there are existing model checkers for DEL which have been used in previous
work and we expect symbolic methods to be much faster and to use less memory.
Second, there are multiple model checkers for temporal logics with knowledge.
Such temporal logics can model similar situations as DEL, but they are more
explicit about time steps. Given models of the same example in both frameworks,
it makes sense to compare which specifications can be checked by different tools,
and how fast.

In the literature on DEL it is common to define new modalities and update
mechanisms, such that it often makes sense to talk about dynamic epistemic logics
in the plural. We are therefore interested in both general ways to implement the
most standard versions of DEL efficiently and tailor-made solutions for specific
problems. We first define and discuss general methods that can be applied
independent of the particular example at hand, and then move to two specific
applications, the first of which is the knowledge of numeric variables.

Research Question 4.
How can we model knowledge of variables and values?

As part of the bigger research program “beyond knowing that” [Wan18], which
studies epistemic logics with different modalities, formalizations of “knowing what”
or “knowing the value” recently received more attention [GW16; Bal16]. We will
compare different approaches to modeling such knowledge and discuss how they
differ in expressivity of the languages and size of models.

The second application we discuss in detail are so-called gossip protocols. The
classical gossip problem, also known as the telephone problem, asks how many
phone calls are needed between a group of agents to spread secrets to everyone,
given that each agent starts only with their own secret. More generally, gossip
provides a formal model of any peer-to-peer network in which information has
to be synchronized. Recent applications of gossip can be found in decentralized
communication systems [Irv16] and cryptocurrencies [SLZ16; Bai17].

4 Introduction

Dynamic gossip is a generalization of the gossip setting in which phone numbers
are exchanged in addition to secrets. We no longer assume that everyone can call
everyone, but instead there is a reachability graph which constantly changes while
the protocol runs. As expected, this complicates the setting and new protocols
are needed. Given the decentralized nature of gossip, we are mainly interested in
protocols that can be executed by agents without any central scheduler. Epistemic
logic is an excellent tool to analyze dynamic gossip and we will describe protocols
and their execution in a variant of DEL. Our next research question is whether
besides describing existing protocols from the literature we can also use our logic
to define new ones.

Research Question 5.
Can we improve gossip protocols using epistemic logic?

As part of this investigation we will show how model checking can be used
to analyze dynamic gossip. It is then a natural combination of our topics to ask
whether the symbolic methods can also be applied to the gossip problem.

Research Question 6.
Can we use model checking for DEL to analyze gossip protocols?

Concluding this introduction, the fields in which this thesis takes place are
Logic and Computation — in particular their intersection. We are less concerned
with purely logical questions such as proof theory, but more with those aspects of
our logics that are relevant for implementations, for example the size of models
and their representations. Vice versa, we do not focus on purely computational
questions such as the computational complexity of model checking a given logic,
but rather how we can tweak the syntax and semantics of a formal language to find
the right balance between expressivity, usability and model checking performance.

Throughout the thesis we make heavy use of functional programming in the
strongly typed language Haskell. This allows us to structure our implementations
similar to the mathematical definitions and will make our programs both easier
to read and safer to run. Moreover, we try to follow best practices in academic
software engineering, as recently discussed in [All+17]. All our tools are released
as free software and all benchmarks are automated and documented in such a way
that they are easy to reproduce. We give links to source code and implementations
in the relevant chapters. There will also be a website for the thesis with further
links and errata at https://malv.in/phdthesis.

https://malv.in/phdthesis

Introduction 5

Key Contributions
The main contributions of this thesis are the following:

1. Methods for symbolic model checking a range of logics, starting with plain
Epistemic Logic, via Public Announcement Logic, up to Dynamic Epistemic
Logic with action models, including factual change.

2. As part of these methods, symbolic analogues for Kripke models and action
models: knowledge structures and knowledge transformers for S5 logics and
belief structures and transformers for the general case. In some sense, our
main contribution here is that we do not contribute anything fundamentally
new, because we prove that these symbolic structures are equivalent to the
well-known explicit models.

3. SMCDEL, an implementation of symbolic model checking Dynamic Epis-
temic Logic based on binary decision diagrams. It can be used as a Haskell
library, but also as a stand-alone program with a command-line and a web
interface. We release all our tools as free software under an open source
license.

4. Reproducible benchmarks to compare the performance of epistemic model
checkers on different examples from the literature, including epistemic puzzles
and security protocols.

5. The new Public Inspection Logic formalizing the knowledge and public
inspection of variables. We provide sound and complete axiomatizations for
the single and the multi-agent case.

6. A proof that in dynamic gossip all gossip graphs are reachable as parts of
larger graphs with more agents.

7. A new epistemic modality describing protocol-dependent knowledge as a
variant of conditional knowledge.

8. A family of new epistemic protocols for the dynamic gossip problem, obtained
by strengthening existing protocols in a natural way.

9. An impossibility theorem saying that there is no strongly successful strength-
ening of the “Learn New Secrets” protocol.

10. A symbolic modeling of dynamic gossip using knowledge transformers with
factual change.

6 Introduction

Outline

Here we give a short summary of each chapter.
In Chapter 1 we give an introduction to the different fields of research this

thesis contributes to, starting with a list of logics for which we summarize the
standard syntax and semantics: Epistemic Logic, Public Announcement Logic,
Dynamic Epistemic Logic and Epistemic Temporal Logic. We also mention some
existing results on the relation between the dynamic and temporal approach. The
last three sections of the first chapter then introduce Model Checking. We discuss
the state explosion problem and how it has been approached for temporal logics
using symbolic instead of explicit models. Last but not least we define Binary
Decision Diagrams which are the basis of most existing work on symbolic model
checking and also of our implementation.

Chapter 2 contains the main theoretical contribution of this thesis: a symbolic
representation for all models and updates of Dynamic Epistemic Logic. We start
with S5 Public Announcement Logic; then we extend our methods step by step to
general action models with factual change. For each variant of DEL we proceed in
the same way: First we define the new symbolic structures and how to interpret
DEL formulas on them. Next, we give translations to go back and forth between
explicit and symbolic representations. Finally, we prove that these translations are
truthful, to show that our symbolic structures and transformers describe exactly
the same classes as the well-known Kripke and action models.

This framework is then implemented in Chapter 3. We describe how all boolean
reasoning done in the previous chapter can be done efficiently using Binary Decision
Diagrams (BDDs). At the same time we translate our mathematical ideas into
the functional and typed programming language Haskell. The result is SMCDEL,
a symbolic model checker for different variants of DEL. We highlight some
of the design choices made during the development, such as type-safe variable
management, and give simple examples how to use SMCDEL.

In Chapter 4 we continue with more involved examples from the epistemic
logic literature which have traditionally been analyzed with Kripke models. We
show what the equivalent symbolic structures and transformers look like formally
and in the implementation with BDDs. Some examples suggest themselves as
benchmarks and we use them to compare the performance of our implementation
to existing model checking software, both for dynamic and temporal logics.

For the last two chapters we zoom in on two specific variants and concrete
applications of Dynamic Epistemic Logic.

Chapter 5 concerns the knowledge of numeric variables, i.e. knowing-what or
knowing-the-value, in contrast to factual knowing-that. We first discuss binary
encodings and our previous work on register models. Then we present Public
Inspection Logic (PIL), a new logic of knowing and inspecting values. It abstracts
and simplifies the reasoning about variables and their dependencies by removing
values from the language. This leads to a sound and complete axiomatization of

Introduction 7

PIL which relates it to existing theories of dependencies in relational databases
and existing work on dependence and independence logic. Finally, we compare
the three approaches to model numeric knowledge — binary encoding, register
models and PIL — and discuss further related work.

In Chapter 6 we discuss Dynamic Gossip, a generalization of the classic gossip
or telephone problem: How can a set of agents efficiently distribute a set of secrets?
The chapter contains two main new results, about the reachability of gossip graphs
and strengthening of protocols. First, we show that following the rules of dynamic
gossip not all gossip graphs are reachable from initial graphs. However, given a
large enough number of agents, we can construct any gossip graph as a subgraph.
Second, we use dynamic epistemic logic to formalize dynamic gossip protocols. We
present a new operator for protocol-dependent knowledge, and multiple ways of
strengthening gossip protocols using this operator. We then show that there is no
perfect strengthening of the “Learn New Secrets” protocol. For both results it was
helpful to implement explicit model checking procedures which we also present in
this chapter. Finally, we show how to apply the symbolic model checking methods
from the first four chapters to the gossip problem.

Sources of the Chapters
Parts of this thesis have been published before. Here we give a quick overview
which chapters and sections are based on what.

• Chapter 1 is a new summary of basic concepts and ideas from the literature.

• Chapter 2 is based on [Ben+15] and the extended version:
Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. “Sym-
bolic Model Checking for Dynamic Epistemic Logic – S5 and Beyond”. In:
Journal of Logic and Computation (JLC) (2017). doi: 10.1093/logcom/
exx038. url: https://is.gd/DELBDD [Ben+17]

• Sections 2.7 and 2.8 are based on an ESSLLI 2017 student session paper:
Malvin Gattinger. “Towards Symbolic Factual Change in DEL”. in: Pro-
ceedings of the ESSLLI 2017 Student Session. Edited by Karoliina Lo-
hiniva and Johannes Wahle. 2017, pages 14–24. url: https://is.gd/
symbolicfactualchange [Gat17b]

• The implementation discussed in Chapter 3 was first published online in
June 2015 and has since been updated regularly. It is released under
the GNU General Public License v2.0 and can be found under https:
//github.com/jrclogic/SMCDEL [Gat18].

• Chapter 4 brings together examples and benchmarks from the already
mentioned publications and some new material.

https://doi.org/10.1093/logcom/exx038
https://doi.org/10.1093/logcom/exx038
https://is.gd/DELBDD
https://is.gd/symbolicfactualchange
https://is.gd/symbolicfactualchange
https://github.com/jrclogic/SMCDEL
https://github.com/jrclogic/SMCDEL

8 Introduction

• Section 5.2 is based on:

Jan van Eijck and Malvin Gattinger. “Elements of Epistemic Crypto Logic”.
In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems. AAMAS ’15. Istanbul, Turkey: International Foun-
dation for Autonomous Agents and Multiagent Systems, 2015, pages 1795–
1796. isbn: 978-1-4503-3413-6. url: https://dl.acm.org/citation.
cfm?id=2773441 [EG15]

• Most parts of Chapter 5 are from:

Jan van Eijck, Malvin Gattinger, and Yanjing Wang. “Knowing Values
and Public Inspection”. In: Seventh Indian Conference on Logic and Its
Applications: ICLA 2017, Kanpur, India. Edited by Sujata Ghosh and
Sanjiva Prasad. 2017, pages 77–90. isbn: 978-3-662-54069-5. doi: 10.
1007/978-3-662-54069-5_7. url: https://arxiv.org/abs/1609.
03338 [EGW17]

• Chapter 6 is based on:

Hans van Ditmarsch, Malvin Gattinger, Louwe B. Kuijer, and Pere Pardo.
How Come You Don’t Call Me? Common Knowledge of Gossip Protocols.
Submitted. 2018 [Dit+18]

We also mention the following publication which is not included in this thesis
but related. It presents an explicit model checker for a variant of DEL with agent
types, including liars.

• Malvin Gattinger. “A Model Checker for the Hardest Logic Puzzle Ever”.
In: PhDs in Logic VIII, Darmstadt. 2016 [Gat16]

https://dl.acm.org/citation.cfm?id=2773441
https://dl.acm.org/citation.cfm?id=2773441
https://doi.org/10.1007/978-3-662-54069-5_7
https://doi.org/10.1007/978-3-662-54069-5_7
https://arxiv.org/abs/1609.03338
https://arxiv.org/abs/1609.03338

Introduction 9

List of Symbols

N natural numbers, starting with 0
P powerset

a, b, etc. agents
i, j, etc. agent variables
p, q, etc. atomic propositional variables
p′, p◦, p∗, etc. fresh variables, copies of p
V vocabulary
V ′, V ◦, V ∗, etc. fresh vocabularies, copies of V

LB boolean language
L epistemic language
LP public announcement language
LD dynamic epistemic language
LS symbolic dynamic epistemic language
ϕ, ψ, etc. formulas
[p 7→ ψ]ϕ substitution: replace p with ψ in ϕ

M Kripke model
W set of worlds
π valuation function
∼, ∼i equivalence relations
R, Ri relations
A action model

F structure
θ state law
O, Oi observational variables
Ω, Ωi observational laws
X transformer

Chapter 1

Basics

Most papers in computer science describe how their
author learned what someone else already knew.

Peter Landin

This thesis combines ideas from epistemic logic and computer science. In this
preliminary chapter we introduce the basic building blocks of our theory. Depend-
ing on their background, the reader should feel free to skip over sections about
structures or methods already known to them.

We follow standard set theoretic notation and write P for the powerset. We
assume a finite set of agents I = {1, . . . , n} to which we also refer using names
like Alice and Bob or for short a, b, . . . , or variables i, j,

For our formal languages we assume a countably infinite supply of fresh atomic
propositional variables. A finite subset of these is also called vocabulary and de-
noted by V , U or similar letters. Primes, stars and circles as in p′, p∗, p◦, V ′, V ∗, . . .
will denote (sets of) fresh variables that we use as copies of previously defined
propositions. We often write “iff” to abbreviate “if and only if”.

1.0.1. Definition. The language LB(V) of boolean formulas over a vocabulary
V is given by the Backus–Naur form ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ where p ∈ V .
We also use the common abbreviations ⊥ := ¬>, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and
ϕ → ψ := ¬(ϕ ∧ ¬ψ). We also use big conjunction and disjunction as usual:∧
{ϕ1, . . . , ϕn} := ϕ1 ∧ · · · ∧ ϕn, similarly for

∨
.

A less common notation we will use frequently is v to abbreviate a formula
which says that out of the propositions in the second argument exactly those in
the first argument are true: A v B :=

∧
A ∧

∧
{¬p | p ∈ B \ A}.

We define exclusive disjunction by ϕ⊕ψ := (ϕ∨ψ)∧¬(ϕ∧ψ). This operator
is also known as XOR and generalizes to an n-ary connective that is true iff an odd
number of the ϕi formulas is true: ⊕{ϕ1, . . . , ϕn} := (. . . (ϕ1⊕ϕ2) · · ·⊕ϕn−1)⊕ϕn.

11

12 Chapter 1. Basics

1.0.2. Definition. A boolean assignment for a vocabulary V assigns to each
atomic proposition a truth value. It is thus a function of type s : V → {True,False}.
When the vocabulary V is fixed, by a slight abuse of notation, we identify an
assignment s with the subset of atomic propositions that it makes true, i.e.
s = {p ∈ V | s(p) = True} ⊆ V . We write � for the usual boolean semantics:

1. s � > always holds

2. s � p iff p ∈ s

3. s � ¬ϕ iff not s � ϕ

4. s � ϕ ∧ ψ iff s � ϕ and s � ψ

A formula ϕ is valid iff it satisfies all assignments and then we write � ϕ. We call
two formulas ϕ and ψ semantically equivalent and write ϕ ≡ ψ iff they satisfy
exactly the same assignments.

Later we will also write � for other semantics between more complex models
or structures and formulas. It will be clear from the context of what type the
arguments are and thus which semantics we mean. In all languages we make heavy
use of substitution and boolean quantification as follows.

1.0.3. Definition. For any two formulas ϕ and ψ and any propositional variable
p, let [p 7→ ψ]ϕ denote the result of replacing every p in ϕ by ψ. For any finite
set of propositional variables A = {p1, . . . , pn}, let [A 7→ ψ]ϕ denote the result of
simultaneously substituting ψ for all elements of A in ϕ.

For any two finite sets of the same size A = {p1, . . . , pn} and B = {q1, . . . , qn}
let [A 7→ B]ϕ denote the result of simultaneously substituting each qk for the
corresponding pk in ϕ for all k ∈ {1, . . . , n}. Note that strictly speaking A and B
need to be ordered lists for this and we use an implicit bijection between them.

The boolean quantifier ∀pϕ abbreviates [p 7→ >]ϕ ∧ [p 7→ ⊥]ϕ. For any finite
set A = {p1, . . . , pn}, let ∀Aϕ := ∀p1∀p2 . . . ∀pnϕ. We define its dual as ∃pϕ :=
¬∀p(¬ϕ) which gives us the equivalence ∃pϕ ≡ [p 7→ >]ϕ ∨ [p 7→ ⊥]ϕ. Similarly
for finite sets A, ∃A is the dual of ∀A. We also define an “out of” substitution:
For any two finite sets A ⊆ B, let [A v B]ϕ := [A 7→ >][(B \ A) 7→ ⊥]ϕ.

1.0.4. Example. The following true statements illustrate our basic definitions.

• {p3, p4, p5} � p5 ∧ ¬p6 ∧ {p3, p5} v {pk | 1 ≤ k ≤ 100 and k is odd}

• ∀p(p ∨ q) ≡ q

• � ∃p(p ∨ q)

• [{p} v {p, s}]((p ∧ q) ∨ (r → s)) = (> ∧ q) ∨ (r → ⊥) ≡ q ∨ ¬r

1.1. Epistemic Logic on Kripke Models 13

Throughout this thesis we will often use boolean formulas to denote the boolean
functions they represent: We only care about the semantics and not the particular
syntax of a boolean formula. For the theory in Chapter 2 this difference actually
does not matter, but in Chapter 3 we implement all our boolean reasoning with
Binary Decision Diagrams, on which syntactic identity and semantic equivalence
coincide (see Section 1.9).

1.1 Epistemic Logic on Kripke Models
Most of this thesis is about epistemic logic, the study of knowledge, belief and other
epistemic attitudes using formal languages and mathematical models. Almost all
approaches to epistemic logic use modal logics. Those are logics with operators
that besides knowledge can also model the passing of time, the execution of
a program, possibility or any other modality. Additionally, modal logic has
become an independent field of study in mathematics and computer science. For
a general and thorough introduction for which we do not have time and space
here, see [BRV01]. Coming back to epistemic logic, one if not the classic reference
is [Fag+95]. We start by defining our main language.

1.1.1. Definition. Given a vocabulary V , the language of epistemic logic L(V)
extends the boolean language LB(V) from Definition 1.0.1 and is given by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | C∆ϕ

where p ∈ V , i ∈ I and ∆ ⊆ I. We also use the other boolean connectives ⊥, ∨,
→ in L(V) and define the abbreviation K?

i ϕ := Kiϕ ∨Ki¬ϕ.

We read the formula Kiϕ as “agent i knows that ϕ is true”, K?
i ϕ means “agent i

knows whether ϕ is true”, and the formula C∆ϕ says that ϕ is common knowledge
among agents in the group ∆. If ∆ = {i} for a single agent i ∈ I, then we also
just write i instead of {i}. Hence, Ki and Ci are the same as, but for clarity we
define K as a primitive connective with its own (simpler) semantics. The standard
semantics for L are given by means of Kripke models as follows.

1.1.2. Definition. A frame for a set of agents I = {1, . . . , n} is a tupleM =
(W,R), where W is a finite set of possible worlds and R is a family of binary
relations over W indexed by agents: Ri ⊆ W ×W for each i ∈ I.

A Kripke model for a set of agents I and vocabulary V is a tupleM = (W,π,R),
where (W,R) is a frame for I and π : W → P(V) is a valuation function: π(w) ⊆ V
for each w ∈ W .

By convention, we use WM, RMi and πM to refer to the components ofM
but we omit the superscriptM if it is clear from the context which model we are
concerned with.

14 Chapter 1. Basics

For any group of agents ∆ ⊆ I we denote the transitive closure of the union
of their relations by R∆ :=

(⋃
i∈∆Ri

)∗ which we will use to interpret common
knowledge below. A modelM is finite iff WM is finite. A model is an S5 Kripke
model iff, for every i, the relation Ri is an equivalence relation. In this case we
also write ∼i for Ri.

A pointed Kripke model is a pair (M, w) of where w is a world ofM.

For each agent i we thus have a relation Ri telling us which worlds the agent
considers possible. In the semantics below we then use this relation to define
knowledge in terms of possibility: i knows something iff it is the case at all the
worlds that i considers possible. Phrased differently and assuming that Ri is an
equivalence relation: i knows something iff it is true at all those worlds that i
cannot distinguish from the actual world.

This definition of Kripke models is standard in the literature, but we should
highlight a part of it that is often left implicit: Kripke models come with a
vocabulary V that defines the codomain of the valuation function π. We already
make this explicit now because later on we will deal with multiple different
vocabularies and have to be precise which languages over which vocabulary can
be interpreted on which models and structures.

1.1.3. Definition. Semantics for L(V) on pointed Kripke models are given
inductively as follows.

1. (M, w) � > always holds.

2. (M, w) � p iff p ∈ πM(w).

3. (M, w) � ¬ϕ iff not (M, w) � ϕ.

4. (M, w) � ϕ ∧ ψ iff (M, w) � ϕ and (M, w) � ψ

5. (M, w) � Kiϕ iff for all w′ ∈ W , if Riww
′, then (M, w′) � ϕ.

6. (M, w) � C∆ϕ iff for all w′ ∈ W , if R∆ww
′, then (M, w′) � ϕ.

If we consider all Kripke models, the set of valid formulas obtained from these
semantics is the logic usually called K. Additionally, we know that restricting
the class of frames to specific kinds of relations corresponds to adding specific
axioms. For example, the class of transitive frames is characterized by the axiom
Kip→ KiKip. Moreover, such axioms also have an intuitive reading in epistemic
logic, as summarized in Table 1.1.

Any reflexive and Euclidean relation is in fact an equivalence relation. The
corresponding modal logic is usually abbreviated as S5 and is the one used most
often to model knowledge [Fag+95; DHK07].

However, the S5 notion of knowing should not be identified with the natural
language use of “know”. The logic S5 describes a strong notion of knowledge in

1.1. Epistemic Logic on Kripke Models 15

Name Axiom Class of Relations Epistemic Property

D Kiϕ→ ¬Ki¬ϕ serial Consistency
T Kiϕ→ ϕ reflexive Truth
4 Kiϕ→ KiKiϕ transitive Positive Introspection
5 ¬Kiϕ→ Ki¬Kiϕ Euclidean Negative Introspection

Table 1.1: Modal correspondences and epistemic counterparts.

the following sense. Whatever is known also has to be true, any agent who knows
something also knows that she knows it and if an agent does not know something,
she knows that she does not know it. In particular the latter two, positive and
negative introspection, are controversial in Philosophy [HS15].

Besides this hard notion of knowledge also other modalities and their dynamics
have been formalized. Belief for example can be modeled using weaker modal
logics with more general relational semantics based on arbitrary relations. We
also consider these general, non-S5 models here. When working with such models,
to emphasize that the underlying relations do not have to be equivalence relations
and we are no longer talking about knowledge, we write Ri instead of ∼i for the
epistemic relations and 2i instead of Ki for the modal operator. Still, we do not
change the semantics to interpret 2i:

(M, w) � 2iϕ iff for all w′ ∈ W : If Riww
′ then (M, w′) � ϕ.

1.1.4. Example. Figure 1.1 shows an S5 Kripke modelM1 and a non-S5 model
M2. Both models consist of two worlds and describe the epistemic state of two
agents called Alice and Bob. We highlight the actual world with a double border.
When drawing S5 models we leave out the reflexive arrows and instead of two
arrows back and forth we draw one undirected edge between worlds. We illustrate
our semantics with the following true statements.

• M1, w1 � q ∧ ¬p ∧ CAlice,Bobq ∧KAlice¬p ∧ ¬KBobp

• M2, w1 � q ∧ ¬p ∧2Alice¬p ∧2Bobp ∧2Bob2Alicep

w1

q
w2

p, qBob
w1

q
w2

p, q

Alice

Bob

Alice

Bob

Figure 1.1: S5 modelM1 and non-S5 modelM2.

16 Chapter 1. Basics

For this thesis we put aside the philosophical quest for the “real” notion or
definition of knowledge. We first present our framework for the widely used S5
but then also extend our methods to weaker logics. Hence no matter which set
of axioms and class of models might be the right one for a particular task, our
methods can be applied.

Still, all agents in our framework know all the logical consequences of what
they know, i.e. Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ) is valid and if ϕ is valid, then so is
Kiϕ. All epistemic logics based on Kripke models as defined above are normal
modal logics and thereby have this property of logical omniscience. One could
say that all our agents are perfect logicians. This assumption is unrealistic for
humans or other real agents which are computationally bounded, but for concrete
examples and applications we can ignore the problem as we only care about what
our models say about specific formulas. In many settings it is actually the more
careful choice to let agents be perfect reasoners: If a protocol ensures that someone
cannot know something even if they are logically omniscient, then this also holds
for agents with bounded rationality. The converse however, is not true in general.

When working with Kripke models, a useful and important notion is that
of bisimulation. It provides a semantic characterization when two models are
equivalent. We consider a modal logic well-behaved when this semantic notion
coincides with the syntactic condition that models satisfy the same formulas. As
the following famous theorems state, this is the case for the epistemic logics we
will consider in this thesis.

1.1.5. Definition. Suppose that we have two Kripke modelsM1 = (W 1, π1, R1)
andM2 = (W 2, π2, R2) for the same vocabulary and the same set of agents. A
relation Z ⊆ W 1 ×W 2 linking possible worlds fromM1 to those fromM2 is a
bisimulation iff for all linked worlds (w1, w2) ∈ Z the following three conditions
hold:

• Propositional agreement: π1(w1) = π2(w2)

• Forth: For every agent i and for every v1 such that R1
iw

1v1 there is a v2

such that R2
iw

2v2 and (v1, v2) ∈ Z.

• Back: For every agent i and for every v2 such that R2
iw

2v2 there is a v1 such
that R1

iw
1v1 and (v1, v2) ∈ Z.

Two pointed Kripke models (M1, w1) and (M2, w2) are bisimilar iff there is a
bisimulation Z such that (w1, w2) ∈ Z.

1.1.6. Theorem. If two pointed Kripke models for the same vocabulary V and
the same set of agents are bisimilar, then they satisfy the same formulas of L(V).

1.2. Public Announcement Logic 17

We can also relate bisimulation and equivalence in the other direction, but
only for image-finite models. Intuitively, this is because any modal formula only
depends on finitely many worlds.

1.1.7. Definition. We call a Kripke modelM = (W,π,R) image-finite iff for
every agent i and every possible world w ∈ W the set {v ∈ W | Riwv} is finite.

Note that in particular all finite Kripke models are image-finite. Given that
we are mainly interested in model checking in this thesis, finite models are our
main object of study and the following theorem applies.

1.1.8. Theorem (Hennessy-Milner Theorem). If two pointed image-finite Kripke
models for the same vocabulary V and the same set of agents satisfy the same
formulas of L(V), then they are bisimilar.

For proofs of Theorem 1.1.6 and Theorem 1.1.8, we refer the interested reader
to [BRV01] in which they are listed as Theorem 2.20 and Theorem 2.24, respectively.
A key insight is that the relation of semantic equivalence itself is a bisimulation.

1.2 Public Announcement Logic

Besides modeling the knowledge of agents we are also interested in how their
epistemic states can change. The first logical approach to changes of knowledge is
the seminal [Pla07], first published in 1989. The logic presented there is nowadays
called Public Announcement Logic (PAL) and extends epistemic logic with a
modality to describe incoming information.

1.2.1. Definition. Given a vocabulary V , the language LP (V) for PAL is given
by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | C∆ϕ | [!ϕ]ϕ

where p ∈ V , i ∈ I and ∆ ⊆ I.
We also define the abbreviation [?!ψ]ϕ := [!ψ]ϕ ∧ [!¬ψ]ϕ.

The new formula [!ψ]ϕ indicates that after a public announcement of ψ, ϕ holds.
Formally, [!ψ] is a dynamic operator which takes us to a new model consisting
only of those worlds where ψ was true. After the update we then evaluate ϕ in
the new model.

The operator [!ψ] can thus be read as “After the public announcement that ψ
is true, it will be the case that . . . ”. Similarly, the abbreviation [?!ϕ] can be read
as “After a public announcement whether ϕ holds, it will be the case that . . . ”.

18 Chapter 1. Basics

1.2.2. Definition. We interpret LP (V) on Kripke models for the vocabulary V
by adding the following clause to the previous Definition 1.1.3:

(M, w) � [!ψ]ϕ iff (M, w) � ψ implies (Mψ, w) � ϕ

whereMψ is a new model defined by the set WMψ
:= {w ∈ WM | (M, w) � ψ},

the relations RMψ

i := RM
i ∩ (WMψ

)
2
and the valuation πMψ

(w) := πM(w).

Public announcements can create common knowledge, as Example 1.2.3 and
Fact 1.2.4 below show. In fact they are often the only way to establish common
knowledge, because any (partially) private announcement leaves room for specula-
tion: Someone might not have received the same information, or might think that
someone else did not receive it, or any other nesting of suspicions.

However, public announcements do not always create common knowledge. The
classic counterexamples are so-called Moore sentences as in Example 1.2.5.

1.2.3. Example. Whenever p ∨ q is truthfully and publicly announced, it will
be common knowledge among all agents after the announcement. Formally, the
formula [!p ∨ q]C(p ∨ q) is valid.

1.2.4. Fact. For any boolean formula ϕ ∈ LB, the formula [!ϕ]Cϕ ∈ LP is valid.

1.2.5. Example. The sentence “It is raining in Amsterdam and you don’t know
it.” can be announced truthfully, but it will not be common knowledge afterwards
because it will not be true any longer. Formally, [!p ∧ ¬Kip] never leads to a
model where p ∧ ¬Kip is common knowledge. In contrast, [!p ∧ ¬Kip]Kip is valid.

Interestingly, public announcement operators do not actually allow us to
say anything new: LP has the same expressivity as L. Moreover, there is an
easy translation procedure to remove public announcement operators which is
part of the standard axiomatization of PAL. As the focus of this thesis is on
semantics and model checking instead of proof theory, we will not discuss a
complete axiomatization. Still it should be noted that these axioms alone are not
enough and PAL can be axiomatized in different ways, as shown in [WC13].

1.2.6. Fact. The following LP formulas called reduction axioms are valid.

• [!ϕ]p↔ (ϕ→ p)

• [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)

• [!ϕ](ψ1 ∧ ψ2)↔ ([!ϕ]ψ1 ∧ [!ϕ]ψ2)

• [!ϕ]Kiψ ↔ (ϕ→ Ki(ϕ→ [!ϕ]ψ))

Hence for every formula in LP without C there is an equivalent formula in L.

1.3. Dynamic Epistemic Logic with Action Models 19

We exclude the common knowledge operator C in Fact 1.2.6, because announce-
ments cannot simply be pushed through it. Instead, a more expressive language
with conditional knowledge is needed to obtain reduction axioms for public an-
nouncement logic with common knowledge. We refer to [BEK06] and [DHK07,
Section 8.8] for further details on the expressivity of PAL with common knowledge.

Given that PAL is thus equally expressive as plain epistemic logic, one might
wonder if it is still useful. However, formalizing concrete examples using the public
announcement operator is usually more natural.

Moreover, the translation increases the size of the formula. The difference in
length can even be exponential and there are properties which L can only express
in an exponentially longer formula than LP , no matter which translation is used.
However, the satisfiability problems for LP and L still have the same complexity.
We refer to [Lut06] for these results.

Before going to more general updates we mention an equivalent definition
of public announcements which is also common in the literature: Instead of
removing all non-ψ worlds when ψ is announced, we can cut all links leading
to them. Formally, for each agent i let the new relation be RMψ

i := {(v, w) |
Rivw andM, w � ψ} and leave W and π as they are. Yet another and again
equivalent definition would be to cut all links between worlds which differ on the
announced formula: RMψ

i := {(v, w) | Riwv and (M, v � ψ iffM, w � ψ)}. In
this last variant announcing ϕ and announcing ¬ϕ is the same action and we
could say “announcing whether” instead of “announcing that”. Computationally
however, models obtained by cutting links are worse because they might contain
more “garbage” in the form of unreachable worlds.

1.3 Dynamic Epistemic Logic with Action Models

The previous section describes the most primitive way in which knowledge among
multiple agents can change: a truthful public announcement made by a trusted
authority, received and accepted by everyone. But there are many other types of
communication and events that affect knowledge and belief: We can tell someone
something in secret, hidden completely or partially from others. Carol might
observe that Alice is talking to Bob but not know what Alice is telling him.
Moreover, such events can be deceiving : Carol might believe that Alice tells Bob
that she got a job, but actually she tells him that she got a cat.

Besides purely epistemic events of communication we can also have factual
change that can be public or not: Suppose I flip a coin at random and then look
at the result without showing it to you. This changes a fact in the world, namely
which side of the coin is up, and makes it known to me but hidden from you.

These more complex actions of communication and change can be modeled
using so-called action models. They provide a natural formal way to talk about
the dynamics of information in the same way that Kripke models formalize static

20 Chapter 1. Basics

information. The general idea is to think of events as possible worlds. A Kripke
model says which different situations the agents can distinguish. An action model
then formalizes which different events the agents can tell apart

Action models were first presented in [BMS98] which might be called the
starting point of modern Dynamic Epistemic Logic (DEL) in general. The logic
of action models was then generalized in [BEK06] to also accommodate factual
change, using a version of Propositional Dynamic Logic (PDL). An axiomatization
for factual change was also developed in [DK08] where it is called ontic change, in
contrast to purely epistemic updates.

From a more general viewpoint, even if one does not want to use the full logics
presented in those seminal papers, they still provide a general method to obtain
sound and complete reduction axioms for languages with dynamic operators. A
rule of thumb is that if an epistemic update can be represented as an action model,
then it is straightforward to find reduction axioms for it.

The following definition describes action models and how they can be applied
to Kripke models. Our definition of postconditions differs from the standard
in [BEK06] because we only allow boolean formulas. This however does not
change the expressivity [DK08].

1.3.1. Definition. Suppose we have some vocabulary V . An action model is
a tuple A = (A,RA, pre, post) where A is a set of atomic events, RA is a family
of relations Ri ⊆ A × A for each i, pre : A → L(V) is a function which assigns
to each event a formula called the precondition and post : A× V → LB(V) is a
function which at each event assigns to each atomic proposition a boolean formula
called the postcondition. We call A an S5 action model iff all the relations are
equivalence relations.

Given a Kripke modelM and an action model A using the same vocabulary,
we define their product byM×A := (W new, Rnew

i , πnew) where

• W new := {(w, a) ∈ W × A | M, w � pre(a)}

• Rnew
i := {((w, a), (v, b)) | RMi wv and RAi ab}

• πnew((w, a)) := {p ∈ V | M, w � posta(p)}

We will first focus on action models without factual change, namely tuples
(A,R, pre) without the component post. To update with such an action model
the last clause should be πnew((w, a)) := π(w), which means we just keep the
old valuation function. Equivalently, we could say that post maps each atomic
proposition to itself (as a formula, so technically this is not an identity function).

An action is a pair (A, a) where a ∈ A. To update a pointed Kripke model
with an action we define (M, w)× (A, a) := (M×A, (w, a)).

1.3.2. Fact. The product of an S5 Kripke model and an S5 action model is again
an S5 Kripke model.

1.3. Dynamic Epistemic Logic with Action Models 21

To illustrate the definitions of action models and the product update, let us
first consider a simple S5 example without factual change.

1.3.3. Example. Alice has applied for a post-doc position and Bob knows this.
While Alice and Bob are in the same room, a messenger enters and gives Alice an
envelope with the university logo on it. She reads the letter and learns that she
got the position while Bob observes this but he does not see the content of the
letter. Bob only learns that Alice learns whether she got the position.

Let p stand for the atomic proposition “Alice gets the position.” The initial
situation can be represented by modelM shown on the left in Figure 1.2. Both
Alice and Bob do not know whether p and this is common knowledge among them.

Alice reading the letter is modeled as the action model A in the middle of
Figure 1.2. The two events in this case stand for the two possible contents of
the letter, thus they have the preconditions ?p and ?¬p. To indicate that A is
an action model and not a Kripke model we draw events as rectangles instead of
circles and we prefix precondition with a question mark.

The result of the product updateM×A is shown on the right in Figure 1.2.
Again note that Bob did not learn whether p, but he did learn that Alice learns
whether p. In fact, we haveM×A � CAlice,Bob(KAlicep ∨KAlice¬p) which means
that it is now common knowledge between them that she knows whether p holds.

w1

p
w2

Alice

Bob

M

α
?p

β
?¬p

Bob

A

(w1, α)
p

(w2, β)

Bob

M×A× =

Figure 1.2: Alice reads the letter, observed by Bob.

We can also use action models to model changes of belief instead of knowledge
as the following non-S5 example shows.

1.3.4. Example. Suppose in Example 1.3.3 Alice reads the letter in private, such
that Bob does not notice anything. We model such a fully private announcement
of p to Alice in Figure 1.3. In the resulting pointed model p holds, Alice knows it
but Bob does not. Moreover, Bob has a false belief that Alice still does not know
it. Formally, we have p ∧2Alicep ∧ ¬2Bobp ∧2Bob¬2Alicep.

22 Chapter 1. Basics

p

Alice

Bob

Alice

Bob

Alice

Bob

×

α
?>

β
?¬p

Alice

Bob

Bob

Alice

=

Alice

Bob

p

Alice

Bob
Alice

Bob

p

Bob
Bob

Alice

Figure 1.3: Alice secretly reads the letter.

Example 1.3.4 only concerns epistemic change. In the next example we also
change facts about the world using postconditions.

1.3.5. Example. Consider a coin lying on a table with heads up: p is true and
this is common knowledge. Suppose we then toss it randomly and hide the result
from agent a but reveal it to agent b. Figure 1.4 shows a Kripke model of this
the initial situation, an action model representing the coin flip and the resulting
Kripke model.

w
p

a,b ×

a1

?>
p := ⊥

a2

?>
p := >

a,b

a,b

a =

(w, a1)
¬p

(w, a2)
p

a,b

a,b

a

Figure 1.4: A coin flip hidden from agent a.

One of the main features of DEL is that we can add action models as operators
to our language. Similar to the public announcement operator [!ϕ] we get a new
modality for each pointed action model.

1.3.6. Definition. Given a vocabulary V , the language of Dynamic Epistemic
Logic LD(V) with dynamic operators for action models extends L(V) and is given
by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | C∆ϕ | [A, a]ϕ

where p ∈ V , i ∈ I, ∆ ⊆ I and (A, a) is an action as in Definition 1.3.1.

1.3. Dynamic Epistemic Logic with Action Models 23

1.3.7. Definition. We interpret dynamic operators for action models as follows:

M, w � [A, a]ϕ iff M, w � pre(a) impliesM×A, (w, a) � ϕ

Action models live in two worlds: On the one hand they are semantic objects
similar to Kripke models. On the other hand, in LD they are syntactic objects
similar to public announcements in LP . We thus have formulas in action models
and action models in formulas. Should we get worried whether LD is well-defined?

This problem has been discussed extensively in the literature. Giving a correct
well-founded account of a most general DEL language is tricky. We can of course
allow preconditions and postconditions to also include dynamic operators, but
if formulas should remain finite objects and evaluating them should always be
possible, then we have to forbid self-reference. Preconditions in an action A may
not include a dynamic operator [A, a] for the same A. Also any general version of
this can lead to contradictions: If A includes a precondition involving [A′, a′] and
A′ has a precondition involving [A, a], then we might have to jump back and forth
and never be able to evaluate them. More formally, consider a graph of action
models and formulas where an edge means “occurs in”. Any cycle in this graph
means that model checking would never terminate. For a detailed discussion and
an inductive definition to avoid such circularity, see [DHK07, Section 6.1].

We now take the easy way out in this thesis: Definitions 1.3.1 and 1.3.6 are
meant exactly as we stated them. Note especially that Definition 1.3.1 uses L and
not LD. Preconditions are not allowed to contain any dynamic operators. The
same holds for postconditions which we restricted even further, to only boolean
formulas. It is then clear that our language and its semantics are well-founded.

Fortunately, this does not restrict the applicability of what follows, because
similar to the restriction to boolean postconditions, restricting preconditions does
not restrict the class of updates we can describe [DK08].

If we do not have the common knowledge operator C, then similar to PAL, also
DEL with action models is equally expressive as plain epistemic logic, because of
the following reduction axioms. This does not make languages with action models
useless — they are much more convenient and can be exponentially more succinct.

1.3.8. Fact. The following LD formulas called reduction axioms are valid.

• [A, a]p↔ (preA(a)→ postAa (p))

• [A, a]¬ψ ↔ (preA(a)→ ¬[A, a]ψ)

• [A, a](ψ1 ∧ ψ2)↔ ([A, a]ψ1 ∧ [A, a]ψ2)

• [A, a]Kiψ ↔ (preA(a)→
∧
b∼iaKi[A, b]ψ)

Hence for every formula in LD without C there is an equivalent formula in L.

24 Chapter 1. Basics

Concluding this section, we stress the generality of action models: Basically any
transformation of Kripke models can be seen as a product update with an action
model — including public, semi-private and private announcements. The product
update can almost get us from any model to any other. Already action models
without factual change reach all refinements of a model and for any formula ϕ
there is an action model that, whenever it is applicable, will make ϕ true [Hal13].

1.4 Arrow Updates
We have seen that action models provide a very general method to change Kripke
models. In some settings though, less expressivity might be wanted. Also, the
definition of action models and the product update above focuses on which worlds
are kept or created. Intuitively, action models generalize the “deleting worlds”
definition of public announcements and not the “cutting links” idea — though
formally action models can of course do both.

An alternative method to describe dynamics of knowledge focuses on how
epistemic relations are changed: Arrow Update Logic from [KR11b] describes model
transformations using triples of the form (ψ, i, χ) where ψ and χ are formulas and
i is an agent. The intuitive reading of such a triple is that the epistemic edges for
agent i should be restricted to those going from a ψ-world to a χ-world.

1.4.1. Definition. An arrow is a tuple (ψ, i, χ) where ψ, χ ∈ L and i ∈ I. We
define dynamic operators for any finite set of arrows U with these semantics:

M, w � [U]ϕ iff M∗ U,w � ϕ

whereM∗ U is a new model defined by:

• WM∗U := W

• RM∗Ui wv :⇐⇒ RMi wv and there are ψ, χ ∈ L such that
(ψ, i, χ) ∈ U andM, w � ψ andM, v � χ

• πM∗U := π

1.4.2. Example. The letter story from Example 1.3.3 can also be described
as an arrow update with {(p,Alice, p), (¬p,Alice,¬p), (>,Bob,>)}. In contrast,
Example 1.3.4, where Alice reads the letter in private, cannot be modeled with an
arrow update, because arrow updates never increase the number of worlds.

In [KR11b] it is shown that every arrow update can be emulated by an action
model. However, the action model might be exponentially larger than the arrow
update. Arrow updates can thus be seen as a form of abstraction or symbolic
representation of much larger action models, similar to the transformers we present
in the next chapter.

1.5. Temporal Logics on Interpreted Systems 25

Arrow Update Logic was further generalized in [KR11a] and it was shown that
generalized arrow updates describe the same class of updates as action models
without postconditions for factual change. For this thesis, we will only consider
the basic version given by Definition 1.4.1.

1.5 Temporal Logics on Interpreted Systems
The dynamic languages we defined in Sections 1.2 to 1.4 focus on what happens
and their dynamic operators are interpreted by changing the model. There is
also a plethora of temporal logics which focus on when something is the case.
Their modal operators do not describe actions but instead refer to the passage of
time. Such temporal logics are not our main object of study, but most existing
work on model checking, in particular symbolic representation, was developed for
such languages with temporal operators. Therefore, in this section we provide
definitions for a basic temporal logic as a reference.

We follow [LP15] and use an epistemic version of the branching time logic
CTL*. In particular, we do not distinguish between state and path formulas which
is sometimes done to describe fragments of CTL* like CTL and LTL [CGP99,
Section 3.2].

1.5.1. Definition. The CTLK language LT (V) for a vocabulary V is given by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | C∆ϕ | AXϕ | AGϕ | A(ϕUϕ)

where p ∈ V , i ∈ I and ∆ ⊆ I.
The dual of AX is EXϕ := ¬AX¬ϕ and similarly for the other operators.

We can read A as “in all possible paths”, together with the operators X for “at
the next step”, G for “always in the future” and U for “until”.

We now deviate from [LP15] in two ways: First, our global states are primitives
and not built from local states for agents and environments. But we still have an
equivalence relation over states for each agent. Second, our transitions are given
directly and not labeled by actions. Note that CTLK does not refer to actions in
the language.

1.5.2. Definition. An interpreted system is a tuple S = (S, S0, T,∼, π) where
S is a set of states, S0 ⊆ S is a set of initial states, T : S → P(S) is a transition
function, ∼ is a family of equivalence relations ∼i for each agent i and π is a
valuation function π : S → P(V).

A path through a system S is a maximal sequence σ = g0g1 . . . of states such
that for all k ≥ 0 we have T (gk) 3 gk+1.

We write paths(g) for the set of all paths starting at g. For any path σ = g0g1 . . .
we denote its kth state by σ(k) := gk.

26 Chapter 1. Basics

1.5.3. Definition. We interpret LT on an interpreted system with the standard
semantics for boolean operators as follows:

1. (S, g) � Kiϕ iff for all g′ ∈ G, if g ∼i g′, then (S, g′) � ϕ.

2. (S, g) � C∆ϕ iff for all g′ ∈ W , if w ∼∆ w′, then (S, g′) � ϕ where
∼∆:=

(⋃
i∈∆ ∼i

)∗.
3. (S, g) � AXϕ iff for all σ ∈ paths(g) we have S, σ(1) � ϕ.

4. (S, g) � AGϕ iff for all σ ∈ paths(g), for all k we have S, σ(k) � ϕ.

5. (S, g) � A(ϕUψ) iff for all σ ∈ paths(g), there is a k such that S, σ(k) � ψ
and for all j such that 0 ≤ j ≤ k we have S, σ(j) � ϕ.

The avid reader will immediately wonder what the connections between DEL
and ETL are. Do they describe the same sort of agents, situations and protocols?
Can we translate back and forth between them? These questions have been
partially answered. We summarize some results connecting the dynamic and the
temporal approach in the next section.

1.6 Comparing Dynamic and Temporal Logics

The main difference between temporal and dynamic epistemic logics is how they
model actions and time. In temporal logics time is represented inside a model,
with a transition function. In DEL in contrast, time changes the model and is
something outside of it. Whereas in temporal logics the model already contains
the information about all possible actions, for example as labels for the transition
function, in DEL the actions are in action models to be applied or formulas to be
evaluated.

Still, from a third perspective, these are merely two different ways to talk
about the same thing and we can directly connect a DEL model to a temporal
model as follows. Consider an initial Kripke model for DEL and some set of
actions, for example different public announcements that could be made. We
let the Kripke model be the root of a tree and add an edge for each action (e.g.
announcement) that can be made, leading to a new Kripke model. The result
is called “DEL-induced model” in the literature [Ben+09] or also the resulting
“tree” or “forest”, depending on whether we start with one or multiple DEL Kripke
models as roots. Figure 1.5 illustrates this idea.

1.6. Comparing Dynamic and Temporal Logics 27

p, qp q

p, qp

[!p]

[!p]

p, q

[!q]

p, q q

[!q]

[!q]

p, q

[!p]

Figure 1.5: Induced tree starting from a DEL model.

We now expect an equivalence of some sort between an original DEL model
and the induced tree, if we consider the announcement-arrows to be the time
relation for a temporal model and give a translation of DEL formulas to ETL
formulas. Additionally, we might wonder which temporal models can be generated
in this way. When is there a Kripke model for DEL which generates a given
temporal model or a tree that is isomorphic to it?

The connection can be made precise by the following theorem which was first
shown in [Ben+09, p. 505]. For simplicity we state and use the simpler formulation
from [BS15, Section 7.7].

1.6.1. Theorem. For ETL models H the following two are equivalent:

(a) H is isomorphic to some DEL-induced model Forest(M,σ)

(b) H satisfies Perfect Recall [and thereby Synchronicity], Uniform No Miracles
and Definable Executability.

Given this result, we can use DEL as an alternative to the synchronous, perfect
recall and no miracles fragment of ETL. To really use it for model checking
however, we also need to study how single models and formulas can be translated.

While the focus of [Ben+09; BS15] is on meta-logical properties such as an
axiomatization of PAL with restrictions via ETL, we find a more application and
model checking oriented comparison between ETL and DEL in [DHR13].

The authors start with a common problem for modeling the same scenario in
DEL and ETL: To translate public announcements or other dynamic operators one
needs to add additional variables “with values corresponding to unknown (i.e. before
the announcement is made), and true (after a truthful announcement)” [DHR13].
This was done more or less ad hoc for concrete examples before, for example
in [Dit+06], but the syntactic translation and semantic transformation given
in [DHR13] is the first systematic approach. We use these translations in Section 4.4
where we compare the performance of dynamic and temporal model checking.

28 Chapter 1. Basics

1.7 Model Checking

The model checking problem is easy to state: Given a model and a formula, is the
formula true in this model? More precisely, in our case: Given a pointed Kripke
model (M, w) and a formula ϕ ∈ L, do we have M, w � ϕ or not? To a pure
mathematical logician, this is possibly the most boring task or question one can
ask about a logic: If the logic is defined properly, we can simply go through the
semantics definition for � to answer the question. We might have to recurse a
number of times, but for most logics this number is bounded by the size of the
formula and seems straightforward. So what is the problem and why is model
checking so difficult that it has become its own field of research?

Model checking is hard because we have to consider concrete data structures.
Implementing standard logical semantics naively would mean that we explicitly
spell out and list all worlds of a Kripke model, for example in a lookup table.
But already for toy examples like the muddy children the number of worlds is
exponential in the number of agents and propositions — it eventually becomes
so large that the models no longer fit into the memory of our computers. This is
known as the state explosion problem.

A solution to this problem appeared on the horizon when Randal Bryant pre-
sented Binary Decision Diagrams [Bry86] which we introduce below in Section 1.9.
This new representation of boolean functions and circuits quickly led to symbolic
model checking, starting with the seminal [Bur+90] and [CGL94]. In contrast
to explicit methods, the idea here is to work with a symbolic representation of
the model. A good description of a model should be compact, but still allow us
to evaluate all the formulas we are interested in. Hence we should not lose any
relevant information by moving to a symbolic representation. In a Kripke model
for example, names or symbols referring to specific worlds are not relevant, but the
valuation function is needed because it influences the interpretation of formulas.

Model checking is often seen as an alternative to theorem proving: Suppose
we have a description of a system — a circuit, a protocol, a machine or a process
— and a specification which properties this system should have. If both the system
and the specification can be formalized in the same logical language, say as ϕ and
ψ, then we can answer the question whether the system fulfills the specification
by proving or disproving the implication: Is ϕ→ ψ provable? However, theorem
proving in general is not fully mechanical but involves creativity or heuristics. In
the worst case, like for first-order logic, it can even be undecidable. In contrast,
model checking does not need heuristics and is fully automated. Since the 1980s
it has become the standard technique for formal verification. Given a modelM
of our system we check that it satisfies a specification: DoesM � ϕ hold?

For a thorough introduction to the field of model checking, see the clas-
sic [CGP99] or the new [Cla+18]. We also note that model checking is only one of
the decision problems associated with every logic. In model checking we only ask
whether a given formula holds in a given model. It has to be distinguished from

1.8. Symbolic Representation 29

various other tasks: Theorem proving, where as mentioned above the goal is to
prove that a given formula is valid, i.e. true in all models; Proof checking, where
such a proof is part of the input the goal is to verify a given proof; Satisfiability,
which asks whether there is a model in which the given formula is true; and finally
model generation, where one additionally has to return a witness model in which
the given formula is true.

Corresponding to this landscape of decision problems is a plethora of automated
tools, some of which only solve a specific task, others also combining a model
checker, theorem prover or satisfiability solver in the same program.

More background on the comparison and competition between model checking
and theorem proving can be found in the manifesto [HV91].

In the next section we present standard representation methods for sets of
possible worlds and relations on them. Our main goal in the subsequent chapters
is then to adapt and apply these techniques to Dynamic Epistemic Logic. In
particular we are interested in a direct symbolic representation and semantics
for DEL, which is both more mathematically interesting and more efficient than
translating to a temporal logic in order to use existing symbolic methods afterwards.

1.8 Symbolic Representation

One of the best ways to tackle the state explosion problem is the observation, that
even though we might be dealing with a huge model, we do not actually need
the whole model to check a given formula. That is, we rarely have to look up
the valuation function at all possible worlds and follow all epistemic relations to
decide a formula. For example, to check ¬Kip, it is enough to find one i-reachable
world where p is false and we can stop as soon as we found one. Moreover, the
truth of this formula does not depend on how large the model is and which other
propositions the valuation function covers.

The goal of symbolic representation therefore is to describe a model in a more
compact way and only unpack those parts of the description which matter for the
formula we want to check.

In this section we will explain three principal ideas which allow us to sym-
bolically represent worlds, equivalence relations over them and finally arbitrary
relations. Our general motto is: Make laws, not lists! Do not spell out the model
explicitly but summarize it with a rule to check whether something is part of the
model or not. Intuitively, instead of “these are the worlds and relations” we say
“this is how we decide whether a world exists in the model and how we decide
whether two worlds are connected”.

We start with a symbolic representation for sets of possible worlds : If we have
unique valuations then we can identify worlds with the set of propositions that
are true at them.

30 Chapter 1. Basics

1.8.1. Definition. Suppose we have a finite vocabulary V , a set of possible
worlds W and a valuation function π : W → P(V) which is injective, i.e. all the
valuations are different. A boolean formula θ ∈ LB(V) is a symbolic encoding of
W iff for all s ⊆ V we have:

s � θ ⇐⇒ ∃w ∈ W : s = π(w)

Whenever π is injective, a symbolic encoding can be computed as follows.

1.8.2. Fact. Recall the “out of” abbreviation v from Definition 1.0.1. Given V ,
W and π as in Definition 1.8.1, the formula

θ :=
∨
w∈W

(π(w) v V)

and all formulas equivalent to θ are symbolic encodings of W .

1.8.3. Example. Consider the vocabulary {p, q}. Suppose we want to encode
the set of worlds W = {0, 1, 2} with the valuation function π saying π(0) := {p},
π(1) := {q} and π(2) := {p, q}. Then we can use θ := p ∨ q ∈ LB({p, q}) and
identify W with the set {s ⊆ {p, q} | s � p ∨ q}.

Not all valuation functions are injective. However, there is a simple trick to
obtain symbolic encodings for sets of possible worlds with non-unique valuations:
We just add additional propositions to distinguish the worlds.

1.8.4. Example. Again consider the vocabulary {p, q}. Suppose we want to
encode the set of worlds W = {0, 1, 2} with the valuation function π saying
π(0) := {p}, π(1) := {p} and π(2) := {p, q}. Note that π is not injective because
π(0) = π(1). But we can lift π to a bigger vocabulary {p, q, r} where r is fresh. Let
π′(0) := {p}, π′(1) := {p, r} and π′(2) := {p, q}. Then p∧¬(q ∧ r) ∈ LB({p, q, r})
is a symbolic encoding of W and π′.

With this symbolic encoding we lose the names of the worlds: V and θ no
longer mention the symbols we used to refer to individual possible worlds. This is
perfectly fine, because after all those were just names to talk about our model and
not part of the model itself. Anything we say about or do with a Kripke model
does not depend on how a world is called.

Given a boolean function which describes a set of worlds, we can also try to
describe a relation over this set by directly referring to the propositional variables.
The goal again is to save memory and avoid an explicit set or list of pairs.

For equivalence relations we can already do much better by using partitions.
For example, the relation {(0, 0), (0, 1), (1, 1), (1, 0), (2, 2)} can be represented by
[[0, 1], [2]]. This representation has been implemented in [Eij14c] and is used in the

1.8. Symbolic Representation 31

model checker DEMO-S5, a variant of DEMO which is optimized for equivalence
relations [Eij14a]. However, we still mention all worlds explicitly and thus might
have to store a long list, even if the relation actually contains not much or no
information at all. For example, if R is the total relation over W , the size of its
representation as a partition is still |W |.

A truly symbolic way to encode equivalence relations over sets of worlds
with unique valuations is to use observational variables. They are also used
in model checking temporal epistemic logics and determine the local state of
agents [Bur+90; LQR15]. The way we use observational variables is inspired by
the problem-specific approaches in [Luo+08; MS04] and the model checker MCTK
for temporal logics [SSL07].

The key idea is to describe an equivalence relation over possible worlds by a
subset of V : Two worlds are related if the valuation function agrees at them on
this subset. Intuitively, an agent with knowledge described by this subset can only
distinguish worlds if there is a difference she can observe.

1.8.5. Definition. Suppose we have V , W , π and θ as in Definition 1.8.1. We
say that a set of observational variables O ⊆ V encodes an equivalence relation
∼ over the set of worlds encoded by θ iff we have for all worlds s and t that
s ∼ t ⇐⇒ O ∩ s = O ∩ t.

1.8.6. Example. Figure 1.6 shows a Kripke model based on the set of worlds W
and the valuation function π from Example 1.8.3. Again we leave out the reflexive
arrows and use undirected edges to draw equivalence relations. We can describe
the relations in this model in three different ways:

• Explicitly spelling out the relations as lists or sets of pairs:

RAlice = {(0, 0), (1, 1), (2, 2), (1, 2), (2, 1)}

RBob = {(0, 0), (1, 1), (2, 2), (2, 0), (0, 2)}

• As partitions: RAlice = [[2, 1], [0]] and RBob = [[2, 0], [1]]

• With observational variables: OAlice = {q} and OBob = {p}

2
p, q

0
p

1
q

Alice Bob

Figure 1.6: Alice observes q and Bob observes p.

32 Chapter 1. Basics

It becomes clear that observational variables provide a concise way to represent
the epistemic state of an agent. Unfortunately, we cannot represent all relations
in this way. First, it is clear that only equivalence relations can be encoded like
this. But second, not even all equivalence relations over distinctly valuated worlds
are representable with observational variables, as the following example shows.

1.8.7. Example. In the left part of Figure 1.7 the knowledge of Alice and Bob
is given by two equivalence relations. Note that we omit the reflexive arrows as
usual and the edges are not directed because of symmetry. It is easy to see that
OBob = {p} encodes the knowledge of Bob. But the knowledge of Alice cannot be
described by saying which subset of the vocabulary V = {p, q} she observes.

We would want to say that she observes p ∧ q, but to encode this with
observational variables we have to add a new variable r to distinguish the two
equivalence classes of Alice, as shown in the right part of Figure 1.7.

p, q p

q

Alice Alice

Alice

Bob

Bob

OBob = {p}, OAlice = undefined

p, q, r p

q

Alice Alice

Alice

Bob

Bob

OBob = {p}, OAlice = {r}

Figure 1.7: Observational variables need to be added.

We therefore introduce yet another, more general way to encode relations.
A relation over P(V) can be represented as a boolean formula over a double
vocabulary V ∪ V ′. Just like observational variables, this boolean encoding of
relations has been widely used for model checking temporal logics [CGL94].

Suppose again that all states satisfy a unique set of propositions. Then any
relation over states is also a relation over sets of propositions. To encode these
relations we use the same idea as [GR02] where BDDs have also been used to
model belief revision. We replace observational variables O ⊆ V with a boolean
formula Ω ∈ LB(V ∪ V ′). This formula uses a double vocabulary: Suppose our
original vocabulary is the set V = {p, q}, then such an Ω is a boolean formula
over the twice as large vocabulary {p, q, p′, q′}. The formula Ω is true exactly for
those pairs of assignments that are connected by the relation. For example, to
represent an edge from {p, q} to {q}, the assignment {p, q, q′} should makes Ω
true. The opposite edge corresponds to {q, p′, q′}. The following definition makes
this precise. For more details, see also [CGP99, Section 5.2].

1.8. Symbolic Representation 33

1.8.8. Definition. If s is an assignment for V , then s′ is the corresponding
assignment for V ′. For example, {p1, p3}′ = {p′1, p′3}. If ϕ is a formula, (ϕ)′ is the
result of priming all propositions. For example, (p1 → ¬p2)

′ = (p′1 → ¬p′2). If s
and t′ are assignments for V and V ′ respectively such that V ∩ V ′ = ∅ and ϕ is a
formula over V ∪ V ′, we also write st′ � ϕ instead of s ∪ t′ � ϕ. Suppose we have
a relation R on P(V). A boolean formula Ω ∈ LB(V ∪ V ′) is a symbolic encoding
of R iff we have for all s, t ⊆ V that Rst iff st′ � Ω.

1.8.9. Fact. Suppose we have V and R as in Definition 1.8.8. Then the following
Φ(R) ∈ LB(V ∪ V ′) and any equivalent boolean formula is a symbolic encoding of
R:

Φ(R) :=
∨

(s,t)∈R

((s v V) ∧ (t v V)′)

This encoding of relations as boolean functions plays an important role in the
following chapters. Hence we illustrate it with two examples before moving on.

1.8.10. Example. Figures 1.8 to 1.10 show an example from [GR02, p. 136] how
to go from a relation to its encoding as a boolean function. We start with a relation
R over states with the vocabulary V = {p1, p2}. That is, R ⊆ (P({p1, p2}))2. The
formula Φ(R) shown in Figure 1.9 is a disjunction with one disjunct for each edge
in the graph of R. We use V for the source and V ′ for the target.

For example, the second disjunct ¬p1 ∧¬p2 ∧¬p′1 ∧ p′2 is for the edge from the
top left state ∅ to the top right state {p2}. But there is no edge from the top
right to the bottom right state, hence ¬p1 ∧ p2 ∧ p′1 ∧ p′2 is not a disjunct of Φ(R).

p1

p2

p1, p2

Figure 1.8: Relation R.

(¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ ¬p′2)
∨ (¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ p′2)
∨ (¬p1 ∧ ¬p2 ∧ p′1 ∧ ¬p′2)
∨ (¬p1 ∧ ¬p2 ∧ p′1 ∧ p′2)
∨ (¬p1 ∧ p2 ∧ ¬p′1 ∧ p′2)
∨ (p1 ∧ ¬p2 ∧ p′1 ∧ p′2)
∨ (p1 ∧ ¬p2 ∧ p′1 ∧ ¬p′2)
∨ (p1 ∧ p2 ∧ p′1 ∧ p′2)

Figure 1.9: Φ(R).

p1

p′1

p2

p′2

> ⊥

Figure 1.10: Bdd(Φ(R)).

In our implementation the formula Φ(R) is never constructed explicitly. Instead
we represent it using the Binary Decision Diagram (BDD) as shown in Figure 1.10
and to be explained in Section 1.9.

34 Chapter 1. Basics

1.8.11. Example. Consider the equivalence relation describing the knowledge
of Alice in the left model of Figure 1.7. As noted above, this relation can not be
encoded by saying which atomic propositions Alice observes, but instead we would
like to say that she observes whether p ∧ q is true. Switching from observational
variables to observation laws allows us to do exactly that.

We could use the same way as in Example 1.8.10 to obtain the formula Φ(RAlice):
For each directed edge, add a disjunct which describes the starting world in V and
the reached world in V ′. Note that in the left part of Figure 1.7 we have three
undirected edges for Alice. Moreover, there are four identity arrows which we did
not draw. In total we would therefore get ten disjuncts.

But in this case there is an intuitive shortcut: Φ(RAlice) ≡ (p ∧ q)↔ (p′ ∧ q′).
Two worlds are indistinguishable for Alice if both satisfy p ∧ q or both do not —
she observes p ∧ q. There is an edge from one world to another iff their combined
boolean assignment satisfies (p∧q)↔ (p′∧q′). For example, the diagonal edge from
the bottom left to the top right world is represented by {q, p′} � (p∧ q)↔ (p′∧ q′).
On the other hand, there is no edge from the top left to the top right world and
indeed we have {p, q, p′} 6� (p ∧ q)↔ (p′ ∧ q′).

To conclude this section, in Table 1.2 we give an overview how different
elements of a Kripke model can be encoded symbolically. In the next chapter we
will combine all of these methods to encode entire Kripke models. We will also
see that the symbolic representations preserve enough information such that we
can still evaluate the same languages on symbolic encodings of our models.

Explicit Symbolic

set of worlds W and valuation π vocabulary V and formula θ ∈ LB(V)
equivalence relation ∼ ⊆ W ×W observational variables O ⊆ V
arbitrary relation R ⊆ W ×W observational law Φ(R) ∈ LB(V ∪ V ′)

Table 1.2: Overview of symbolic representation methods.

1.9 Binary Decision Diagrams
We have seen in the previous sections that instead of listing all worlds and
relations of a Kripke model explicitly we can encode them with boolean formulas
of propositional logic. But why should these formulas be easier to handle than
lists of possible worlds? The answer is that we will not actually deal with boolean
formulas but instead directly work with the boolean function they represent.

Boolean functions can be represented nicely using Binary Decision Diagrams,
which have been called “one of the only really fundamental data structures that
came out in the last twenty-five years” [Knu08]. They were first presented by
Randal Bryant in [Bry86] and have since been applied to a plethora of problems
throughout computer science.

1.9. Binary Decision Diagrams 35

1.9.1. Definition. A binary decision diagram for a vocabulary V is a directed
acyclic graph where non-terminal nodes are from V with two outgoing edges and
terminal nodes are > or ⊥. Outgoing edges are distinguished by drawing them
dashed or solid. The size |B| of a binary decision diagram B is its number of
nodes. A binary decision diagram is ordered according to a total order < of V iff
for any edge from a node p to a node q we have p < q. A binary decision diagram
is reduced iff it does not contain two subgraphs which are isomorphic as labeled
graphs. By the abbreviation BDD we always mean an ordered and reduced binary
decision diagram.

We read a BDD from top to bottom. At every non-terminal node we need to
provide a truth value for the proposition this node asks for. If it is true we follow
the solid outgoing arrow, otherwise the dashed one. Finally we reach a terminal
node telling us the value of the boolean function encoded by this BDD.

1.9.2. Example. Consider the boolean function given by the formula ¬(p1 ∧
¬p2)→ p3. Figure 1.11 shows a full decision tree for this function and the BDD
obtained by identifying all isomorphic subgraphs.

p1

p2 p2

p3 p3 p3 p3

⊥ > ⊥ > > > ⊥ >

p1

p2

p3

⊥ >

Figure 1.11: Full decision tree and BDD of ¬(p1 ∧ ¬p2)→ p3.

Even though BDDs are more compact, we do not lose any information. To
check whether a given assignment satisfies the function represented by this BDD,
we start at the root and follow the arrows as follows: If the variable at the current
node is true according to the given assignment, go along the solid arrow, otherwise
the dashed one.

We can check that {p1, p3} � ¬(p1 ∧ ¬p2)→ p3 using the BDD on the right in
Figure 1.11: We start at the top node p1 which is true, hence we follow the solid
arrow to a node which asks for p2. This is false in our assignment, thus we now
follow the dashed arrow to the result > which means that {p1, p3} satisfies the
boolean function. Note that the BDD did not even ask about p3. This reflects
that we also have {p1} � ¬(p1 ∧ ¬p2)→ p3.

36 Chapter 1. Basics

BDDs have several advantages over truth tables, the classical explicit repre-
sentation of boolean functions. In many cases BDDs are less redundant and thus
smaller than a corresponding truth table. While the worst-case size is the same as
for truth-tables or full decision trees, in many practical applications the boolean
functions have an additional structure and using a good variable ordering leads
to compact BDDs. Probably the best feature of BDDs however, is that they are
canonical in the following sense.

1.9.3. Theorem. Given a total order on the propositional variables there is
exactly one reduced and ordered binary decision diagram for each boolean function.

For a proof, see the classic [Bry86].

1.9.4. Definition. For any formula ϕ ∈ LB we also call the BDD of the boolean
function given by ϕ the BDD of ϕ itself and denote it by Bdd(ϕ).

Theorem 1.9.3 means that two formulas are equivalent if and only if their
BDDs are identical. In particular, once we have the BDD of a formula, it is trivial
to check whether it is a tautology or a contradiction: A formula is a tautology if
and only if its BDD consists of a single terminal node > and it is a contradiction
if and only if its BDD is the single terminal node ⊥.

Additionally, BDDs can be manipulated efficiently. Given BDDs of ϕ and ψ we
can compute the BDD of ϕ∧ψ, ϕ→ ψ and other boolean combinations as follows:
Given Bdd(ϕ) and Bdd(ψ) and a binary boolean operator ?, we can compute a
new ordered binary decision diagram for ϕ ? ψ essentially by traversing the two
given BDDs in parallel and then reduce the result to obtain Bdd(ϕ ? ψ). Both the
intermediate result and hence |Bdd(ϕ ? ψ)| are bounded by |Bdd(ϕ)| · |Bdd(ψ)|.
Moreover, this can be done in running time of order |Bdd(ϕ ? ψ)| as shown
in [Knu11, p. 219].

To summarize this, we can say that BDDs are hard to construct, but easy to
use. Generating the BDD for a given formula is as hard as the boolean satisfiability
problem (i.e. NP-complete), but once we have one or more BDDs then it is easy
to combine or evaluate them. It therefore makes sense in an implementation to
translate boolean formulas to BDDs as early as possible.

For an in-depth introduction to BDDs we refer the interested reader to the
original [Bry86], the classic [Knu11, p. 202-280] and the entertaining [Knu08].

When presenting our theoretical framework in the next chapter we will write
down many boolean formulas, but in the implementation later on those will be
replaced with BDDs representing the boolean function. We are therefore sloppy
on purpose and will from now on identify a boolean formula with the boolean
function that it represents. That is, we simply write ϕ also if the implementation
will use Bdd(ϕ). Additionally, we will consider two formulas to be the same if
their represented functions are the same. In particular, for functions on LB, we
will also call a formula a fixpoint if it is a fixpoint regarding semantic equivalence.

Chapter 2

Symbolic Model Checking DEL

It is not a good idea to name a state after its valuation.

[DHK07, page 22]

We now present our main framework: a symbolic representation of Kripke models
and updates which provides symbolic model checking for Dynamic Epistemic
Logic. Our goal is to connect the two worlds of symbolic model checking and DEL
in order to gain new insights on both sides.

On one side, there are many frameworks for symbolic model checking inter-
preted systems using temporal logics [SSL07; LQR15]. On the other hand, there
are explicit model checkers for Dynamic Epistemic Logic (DEL) [Eij07; Eij14a].
The latter provide superior usability as they allow specification in dynamic lan-
guages directly, but inferior performance. This reflects that the cradle of DEL
was logic and philosophy, not computer science: For logicians, models are just
abstract mathematical objects whose size does not matter.

Our framework can be applied to different variants of DEL, hence we will
build it step by step: First we only deal with S5 Public Announcement Logic,
then we extend our ideas to cover all epistemic change with action models, still in
the S5 setting. After that we generalize to non-S5 logics for belief. Finally, we
also encode factual change with a symbolic representation for action models with
postconditions.

Table 2.1 gives an overview of various flavors of DEL and shows in which
sections of this chapter we cover them. For each logic we first define symbolic

Public Announcements Action Models with factual change

S5: Sections 2.2 to 2.4 Section 2.5 Section 2.8
General: Section 2.6 Section 2.7 Sections 2.8 and 2.9

Table 2.1: Different flavors of DEL and where we discuss them.

37

38 Chapter 2. Symbolic Model Checking DEL

analogues of the standard semantics and then provide translations to show that
they are equivalent. To be less repetitive, we only give proofs for the most simple
case of S5 PAL and the most general setting with factual change.

2.1 Related Work

Existing work on how to optimize the model checking performance of DEL mainly
focuses on specific examples, such as the Dining Cryptographers [MS04], the Sum
and Product riddle [Luo+08] or Russian Cards [Dit+06]. Given these successful
specific approaches, a general method for symbolic model checking full DEL is
desirable. A first step is [SSL07] which presents symbolic model checking for
temporal logics of knowledge. Based on [SLZ04], it gives us a boolean translation
of the knowledge operators in S5, but does not cover announcements or other
dynamics. We extend these ideas to non-S5 logics with dynamic operators.

An alternative representation for Kripke models and action models was recently
developed in [CS17]. Their so-called succinct models describe sets of worlds
symbolically with boolean formulas as defined in Definition 1.8.1. This is the
same encoding as we use for our structures, but epistemic relations and factual
change are encoded differently in succinct models, with mental programs instead of
observational variables or boolean formulas as introduced in Section 1.8. Notably,
model checking DEL is still in PSPACE when models and actions are represented
in this succinct way. No complexity is known for our structures and transformers
so far, but we expect it to be the same as for succinct models and actions.

Another related line of work also focuses on the idea of observation and started
in [HLM15]. The authors also assume that all knowledge is encoded by which
agents can observe which propositional variables. They also add propositional
variables to encode meta-observations of the form “agent a observes whether
agent b observes proposition p” etc. This allows, for example, a more intuitive
modeling of gossip [HM17]. The encoding allows one to eliminate knowledge
operators in all formulas, similarly to the reduction we have on our structures. An
important difference to our framework however, is that we do not add all such
extra propositional variables to the language. Instead we only add a few fresh
propositional variables to individual models in order to make valuations unique
and all epistemic relations describable. Our added propositions are not part of
the original language to be interpreted on our structures. We merely give a new
representation for Kripke models and do not introduce a new logic, whereas the
“Poor Man’s Epistemic Logic” from [HLM15] has a very different axiomatization
than standard DEL.

Finally, our knowledge structures are similar in spirit to the “hypercubes”
from [LMR00] which represent interpreted systems. As discussed in Section 1.5,
this means hypercubes can only be used for languages with temporal but not with
dynamic operators for events.

2.2. Knowledge Structures 39

2.2 Knowledge Structures
While the Kripke semantics from the previous chapter is standard in logic, it cannot
serve directly as an input to current sophisticated model-checking techniques. For
this purpose, in this section we introduce a new format, knowledge structures. Their
main advantage is that they also allow knowledge and results of announcements
to be computed via purely boolean operations.

2.2.1. Definition. Suppose we have a set I of n agents. A knowledge structure is
a tuple F = (V, θ, O) where V is a finite set of propositional variables, θ ∈ LB(V)
is a boolean formula over V and O is a family of subsets of V indexed by agents,
such that Oi ⊆ V for each agent i.

The set V is the vocabulary of F and the formula θ is the state law of F .
Crucially, θ comes from LB(V) and thus is only allowed to contain boolean
operators. The variables in Oi are called agent i’s observable variables. We also
write (V, θ, O1, . . . , On) for (V, θ, O).

Recall from Definition 1.0.2 that we identify a boolean assignment with the
subset s ⊆ V of atomic propositions that it makes true. A boolean assignment
for V that satisfies θ is called a state of the structure F , i.e. the set of states is
represented symbolically as in Definition 1.8.1. Any knowledge structure only has
finitely many states. Given a state s of F , we call (F , s) a scene and define the
local state of an agent i at s as s ∩Oi.

We prepare our interpretation of common knowledge as follows. Given a
knowledge structure (V, θ, O) and a set of agents ∆, let E∆ be the following
relation on states of F and let E∗∆ denote its transitive closure.

(s, t) ∈ E∆ iff there exists an i ∈ ∆ with s ∩Oi = t ∩Oi

2.2.2. Example. Consider this knowledge structure:

F := (V = {p, q}, θ = p→ q, O1 = {p}, O2 = {q})

Here the vocabulary consists of two propositions. The state law is p→ q, hence
the states of F are the three assignments satisfying that formula. To simplify
notation we write assignments as the set of propositions they make true. The
states of F are thus ∅, {q} and {p, q}. Moreover, F describes two agents who each
observe one of the propositions. Intuitively, this can be understood as information
about knowing whether : Agent 1 knows whether p is true and agent 2 knows
whether q is true. We also use this knowledge structure in Example 2.2.4 below
and compute an equivalent Kripke model in Example 2.4.4.

We now interpret the language of public announcement logic, LP (V) from
Definition 1.2.1, on knowledge structures. Definitions 2.2.3 and 2.2.6 refer to each
other and therefore run in parallel, both proceeding inductively by the structure
of ϕ.

40 Chapter 2. Symbolic Model Checking DEL

2.2.3. Definition. Semantics for LP (V) on scenes are defined inductively as
follows.

1. (F , s) � > always holds.

2. (F , s) � p iff s � p.

3. (F , s) � ¬ϕ iff not (F , s) � ϕ

4. (F , s) � ϕ ∧ ψ iff (F , s) � ϕ and (F , s) � ψ

5. (F , s) � Kiϕ iff for all states t of F , if s ∩Oi = t ∩Oi, then (F , t) � ϕ.

6. (F , s) � C∆ϕ iff for all states t of F , if (s, t) ∈ E∗∆, then (F , t) � ϕ.

7. (F , s) � [!ψ]ϕ iff (F , s) � ψ implies (Fψ, s) � ϕ. Here the new structure
after the announcement is given by

Fψ := (V, θ ∧ ‖ψ‖F , O)

where ‖ψ‖F ∈ LB(V) is from Definition 2.2.6 and notably θ ∧ ‖ψ‖F is again
a boolean formula.

We write (F , s) ≡V (F ′, s′) iff these two scenes agree on all formulas. If we have
(F , s) � ϕ for all states s of F , then we say that ϕ is valid on F and write F � ϕ.

Before defining boolean equivalents of formulas, we can already explain some
connections between the Kripke semantics in Definition 1.2.2 and Definition 2.2.3.
The semantics of the boolean connectives are the same. For the knowledge
operators, on Kripke models we use the accessibility relation Ri on worlds. On
knowledge structures this is replaced with the condition s ∩Oi = t ∩Oi, inducing
an equivalence relation on states. We can already guess that knowledge structures
encode S5 Kripke models.

2.2.4. Example. Consider again the knowledge structure F from Example 2.2.2.
We can easily check that (F ,∅) � K1¬p holds: The only states t of F such that
∅ ∩O1 = t ∩O1 are ∅ and {q}, and we have (F ,∅) � ¬p and (F , {q}) � ¬p.

Similarly we can check that (F , {p, q}) � K1q: There is no state t other than
{p, q} such that {p, q} ∩O1 = t ∩O1, because the state law θ = p→ q rules out
{p}. Intuitively, even though agent 1 does not observe q, at state {p, q} she does
observe that p is true and together with the state law p → q this implies q. In
general, the state law of a knowledge structure is always valid on it and therefore
common knowledge among all agents. In this case: F � C{1,2}(p→ q).

Our intuitive understanding of observational variables as knowing whether can
now also be stated formally.

2.2. Knowledge Structures 41

2.2.5. Fact. If p ∈ Oi in a knowledge structure F , then F � Kip ∨Ki¬p.

That is, any agent observing a proposition will know whether it is true.
To illustrate this, note that in Example 2.2.4 we have F � K1p ∨ K1¬p and
F � K2q ∨K2¬q.

The following definition of local boolean equivalents is the crucial ingredient
that enables symbolic model checking on our structures.

2.2.6. Definition. For any knowledge structure F = (V, θ, O) and any formula
ϕ ∈ L(V) we define its local boolean translation ‖ϕ‖F as follows.

1. For the true constant, let ‖>‖F := >.

2. For atomic propositions, let ‖p‖F := p.

3. For negation, let ‖¬ψ‖F := ¬‖ψ‖F .

4. For conjunction, let ‖ψ1 ∧ ψ2‖F := ‖ψ1‖F ∧ ‖ψ2‖F .

5. For knowledge, let ‖Kiψ‖F := ∀(V \Oi)(θ → ‖ψ‖F).

6. For common knowledge, let ‖C∆ψ‖F := gfpΛ where Λ is the following
operator in the lattice of boolean formulas modulo semantic equivalence
LB(V) /≡ and gfpΛ denotes a representative of its greatest fixed point:

Λ(α) := ‖ψ‖F ∧
∧
i∈∆

∀(V \Oi)(θ → α)

7. For public announcements, let ‖[ψ]ξ‖F := ‖ψ‖F → ‖ξ‖Fψ . where Fψ is as
given by Definition 2.2.3.

The translation of common knowledge ‖C∆ψ‖F deserves some explanation:
It is crucial that Λ is not a syntactic operator on plain formulas, because then
it would not have a fixpoint — the formula would just become more and more
complex. However, the lattice of boolean formulas modulo equivalence LB(V) /≡
is finite, because there are only finitely many boolean functions for the finite
vocabulary V . Moreover, we can check that Λ is monotone. Hence its greatest
fixpoint can be computed by starting with Λ(>) and then iterating Λ until we
reach the first and thereby smallest k such that Λk(>) ≡ Λk+1(>). Formally, the
result of our translation needs to be a formula again and not an equivalence class
thereof, hence we let gfpΛ be the representative of Λk(>) obtained by reading Λ
as a syntactic operator. Any other representative would work as well. In practice,
i.e. in Chapter 3, all computations will be done on Binary Decision Diagrams
instead of boolean formulas.

42 Chapter 2. Symbolic Model Checking DEL

2.2.7. Example. Using the structure F from Example 2.2.2 we have:

‖K2(p ∨ q)‖F = ∀(V \O2)(θ → ‖p ∨ q‖F)
= ∀p((p→ q)→ (p ∨ q))
= ((> → q)→ (> ∨ q)) ∧ ((⊥ → q)→ (⊥ ∨ q))
≡ (q → >) ∧ (> → q)
≡ q

One can check that indeed the formulas K2(p∨q) and q are true at the same states
of F , namely {p, q} and {q}. Note that we consider equivalent boolean formulas
to be identical, so in particular we can ignore succinctness of DEL formulas and
their translations, in line with the implementation in Chapter 3.

The next section contains more complex examples of this translation. Here it
remains to show that the boolean translations are indeed locally equivalent.

2.2.8. Theorem. Definition 2.2.6 preserves and reflects truth. That is, for any
formula ϕ and any scene (F , s) we have that (F , s) � ϕ iff s � ‖ϕ‖F .

Proof:
By induction on ϕ. The base case for atomic propositions is immediate. In the
induction step, negation and conjunction are standard.

For the case of knowledge, so ϕ = Kiψ, remember how we defined boolean
quantification in Definition 1.0.3 and note the following equivalences:

(F , s) � Kiψ
⇐⇒ ∀t of F s.t. s ∩Oi = t ∩Oi : (F , t) � ψ by Definition 2.2.3
⇐⇒ ∀t s.t. t � θ and s ∩Oi = t ∩Oi : (F , t) � ψ by Definition 2.2.1
⇐⇒ ∀t s.t. s ∩Oi = t ∩Oi and t � θ : t � ‖ψ‖F by induction hypothesis
⇐⇒ ∀t s.t. s ∩Oi = t ∩Oi : t � θ → ‖ψ‖F
⇐⇒ s � ∀(V \Oi)(θ → ‖ψ‖F)

For the common knowledge case ϕ = C∆ψ, let Λ be the operator defined in as
in Definition 2.2.6. Also let Λ0(α) := α and Λk+1(α) := Λ(Λk(α)).

For left to right, suppose (F , s) � C∆ψ. Note that Λ is monotone but there
are only finitely many boolean functions over V . Hence there is some m such
that gfpΛ = Λm(>). Therefore we can show s � gfpΛ by proving s � Λm(>) for
all m. Suppose not, i.e. there is an m such that s 2 Λm(>). Then s 2 ‖ψ‖F
or s 2

∧
i∈∆ ∀(V \ Oi)(θ → Λm−1(>)). The first is excluded by the induction

hypothesis applied to (F , s) � ψ which follows from (F , s) � C∆ψ by reflexivity.
Hence there must be some i ∈ ∆ and an assignment s2 such that s ∩Oi = s2 ∩Oi

and s2 2 θ → Λm−1(>). Then s2 � θ, so s2 is a state of F , and s2 2 Λm−1(>).
Spelling this out we have s2 2 ‖ψ‖F or s2 2

∧
i∈∆ ∀(V \ Oi)(θ → Λm−2(>)).

Again the first case cannot be: s2 is a state of F and by s1 ∩ Oi = s2 ∩ Oi we

2.2. Knowledge Structures 43

have (s, s2) ∈ E∆. Thus (F , s) � C∆ψ implies (F , s2) � ψ which by induction
hypothesis gives s2 � ‖ψ‖F . Iterating this we get an E∆-chain s = s1, . . . , sm such
that s1+k � ‖ψ‖F and s1+k 2 Λm−k(>) for all k ∈ {1, . . . ,m − 1}. In particular
sm 2 Λ(>) and because sm � ‖ψ‖F we get sm 2 >. Contradiction! Hence
s � Λm(>) must hold for all m.

For right to left, suppose s � gfpΛ. Note that gfpΛ→ Λk(>) is valid and thus
we have s � Λk(>) for any k. Fix any state t of F such that (s, t) ∈ E∗∆. We
have to show (F , t) � ψ. By definition of E∗∆ there is a chain s = s1, . . . , sm = t
and there are agents i1, . . . , im−1 ∈ ∆ such that for all k ∈ {1, . . . ,m − 1}
we have sk ∩ Oik = sk+1 ∩ Oik . Note that s = s1 and s1 � Λm(>), i.e. s1 �
‖ψ‖F∧

∧
i∈∆ ∀(V \Oi)(θ → Λm−1(>)). This implies s1 � ∀(V \Oi1)(θ → Λm−1(>)).

By s1 ∩ Oi1 = s2 ∩ Oi1 we get s2 � θ → Λm−1(>). Because s2 is a state of F we
have s2 � θ and therefore s2 � Λm−1(>). Iterating this, we get s1+k � Λm−k(>)
for all k ∈ {1, . . . ,m− 1}. In particular sm � Λ(>) which implies sm � ‖ψ‖F . By
sm = t and the induction hypothesis, this shows (F , t) � ψ.

For public announcements ϕ = [!ψ]ξ note the following equivalences:

(F , s) � [!ψ]ξ
⇐⇒ (F , s) � ψ implies (Fψ, s) � ξ by Definition 2.2.3
⇐⇒ s � ‖ψ‖F implies s � ‖ξ‖Fψ by induction hypothesis
⇐⇒ s � ‖ψ‖F → ‖ξ‖Fψ 2

We can now explain the semantics for public announcements given in Defi-
nition 2.2.3. Note that public announcements only modify the state law of the
knowledge structure. Moreover, the new state law is always a conjunction con-
taining the previous one. Hence the set of states is restricted, just like public
announcements on Kripke models can only restrict and never enlarge the set of
possible worlds.

An announcement uses the local boolean equivalent of the announced formula
with respect to the original structure F , just like in Kripke semantics the condition
for copying worlds or cutting edges is about the original modelM and not the
model Mψ after the announcement. Hence a well-known consequence of this
definition also holds for our knowledge structures: Truthful announcements can
be unsuccessful in the sense that after something is announced, it might not be
true anymore. Famous examples are Moore sentences of the form “It is snowing in
Amsterdam and you don’t know it”.

Theorem 2.2.8 is somewhat surprising because it “explains away” knowledge
and announcement operators. For dynamic operators like [!ϕ] this is also possible
on Kripke models, using well-known reduction axioms that might lead to an
exponentially larger formula [Lut06]. In contrast, removing static modalities like
Ki is impossible on Kripke models. It can be done on our structures only because
the implicit valuation function is injective.

44 Chapter 2. Symbolic Model Checking DEL

All this does not make DEL any less expressive. Rather we can think of
the original formulas as universally usable — they capture an intended meaning
across different models or structures. Their local boolean equivalents given by
Definition 2.2.6 still do so across states, but only within a specific structure.

Common knowledge is the trickiest part in the definitions and proof above.
One might think that, given the representation of epistemic relations as sets of
observable propositions, there would be an easier way. How about using the set
O∆ := ∩i∈∆Oi and the induced relation R∆xy :⇐⇒ (x ∩O∆ = y ∩O∆) instead
of the harder to compute transitive closure of E∆ above? Intuitively, this would
define common knowledge as those observations which all agents in a group make.
However, the following example shows that in general these two definitions do
not yield the same relation. Hence O∆ does not give us a shortcut in computing
common knowledge of a group on knowledge structures.

2.2.9. Example. Consider the knowledge structure

(V = {p, q}, θ = (p↔ q), Oa = {p}, Ob = {q})

which has the two states {p, q} and ∅. Note that on this set of states (i) E{a,b}
is not the total relation but the identity and (ii) ∩i∈∆Oi = ∅ and therefore R∆

would be total.

2.3 Example: Muddy Children
What do knowledge structures look like in practice? To give an answer, we
consider probably the most famous example in the epistemic agency literature.
The Muddy Children story illustrates how announcements, both of propositional
and of epistemic facts, work on knowledge structures.

An early version of this puzzle are the three ladies on a train:

“Three ladies, A, B, C in a railway carriage all have dirty faces and
are all laughing. It suddenly flashes on A: why doesn’t B realize C
is laughing at her? — Heavens! I must be laughable. (Formally: if
I, A, am not laughable, B will be arguing: if I, B, am not laughable,
C has nothing to laugh at. Since B does not so argue, I, A, must be
laughable.)” [Lit53]

Isomorphic to this is the story about muddy children:

“Imagine n children playing together. The mother of these children
has told them that if they get dirty there will be severe consequences.
So, of course, each child wants to keep clean, but each would love to
see the others get dirty. Now it happens during their play that some

2.3. Example: Muddy Children 45

of the children, say k of them, get mud on their foreheads. Each can
see the mud on others but not on his own forehead. So, of course, no
one says a thing. Along comes the father, who says, “At least one of
you has mud on your forehead,” thus expressing a fact known to each
of them before he spoke (if k > 1). The father then asks the following
question, over and over: “Does any of you know whether you have mud
on your own forehead?” Assuming that all the children are perceptive,
intelligent, truthful, and that they answer simultaneously, what will
happen?” [Fag+95, p. 4]

For a standard analysis with Kripke models, see [Fag+95, p. 24-30] or [DHK07,
p. 93-96].

Let pi stand for “child i is muddy”. We consider the case of three children
I = {1, 2, 3} who are all muddy, i.e. the actual state is {p1, p2, p3}. At the
beginning the children do not have any further information, hence the initial
knowledge structure F0 in Figure 2.1 has the state law θ0 = > and the set of
states is the full powerset of the vocabulary, i.e. P({p1, p2, p3}). All children can
observe whether the others are muddy but do not see their own face. This is
represented with observational variables: Agent 1 observes p2 and p3, etc.

F0 =

V = {p1, p2, p3}, θ0 = >,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}


⇓ [!(p1 ∨ p2 ∨ p3)]

F1 =

V = {p1, p2, p3}, θ1 = (p1 ∨ p2 ∨ p3),
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}


Figure 2.1: Knowledge structures before and after the first announcement.

Now the father says “At least one of you is muddy.” which we model as a
public announcement of p1 ∨ p2 ∨ p3. This limits the set of states by adding this
statement to the state law. Note that it already is a purely boolean statement,
hence the formula is added as it is, leading to the new knowledge structure F1 in
Figure 2.1.

The father now asks “Do you know if you are muddy?” but none of the
children does. As it is common in the literature, we understand this as a public
announcement of “Nobody knows their own state.”:∧

i∈I

(¬(Kipi ∨Ki¬pi))

This is not a purely boolean formula, hence the public announcement is slightly
more complicated: Using Definition 2.2.6 and Theorem 2.2.8 we first find a

46 Chapter 2. Symbolic Model Checking DEL

boolean formula which on the current knowledge structure F1 is equivalent to the
announced formula. Then this boolean equivalent is added to θ.

We have

‖K1p1‖F1 = ∀(V \O1)(θ1 → ‖p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ p1)
≡ ((> ∨ p2 ∨ p3)→ >) ∧ ((⊥ ∨ p2 ∨ p3)→ ⊥)
≡ ¬(p2 ∨ p3)

‖K1¬p1‖F1 = ∀(V \O1)(θ1 → ‖¬p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ ¬p1)
≡ ((> ∨ p2 ∨ p3)→ ¬>) ∧ ((⊥ ∨ p2 ∨ p3)→ ¬⊥)
≡ ⊥

and analogous for K2p2, K2¬p2, K3p3 and K3¬p3. These results make intuitive
sense: In F1 it is common knowledge that at least one child is muddy. Hence a
child knows it is muddy if and only if it sees that the other two children are clean,
but it can never know that it is clean itself.

The announced formula becomes

‖
∧
i∈I

(¬(Kipi ∨Ki¬pi))‖F1 =
∧
i∈I
‖¬(Kipi ∨Ki¬pi)‖F1

≡ ¬(¬(p2 ∨ p3)) ∧ ¬(¬(p1 ∨ p3)) ∧ ¬(¬(p1 ∨ p2))
≡ (p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2)

The announcement essentially says that at least two children are muddy. We get
a knowledge structure F2 with the following more restrictive state law θ2. The
vocabulary and the observational variables do not change, so we do not repeat
them.

θ2 = (p1 ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2))

Now the same announcement is made again: “Nobody knows their own state.” It
is important that we again start with the epistemic formula

∧
i∈I(¬(Kipi∨Ki¬pi))

and compute a new boolean equivalent, now with respect to F2.
By further boolean reasoning we have that

‖K1p1‖F2 = ∀(V \O1)(θ2 → ‖p1‖F2)
≡ ∀p1((p1 ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2))→ p1)
≡ ((> ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (> ∨ p3) ∧ (> ∨ p2))→ >)
∧((⊥ ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (⊥ ∨ p3) ∧ (⊥ ∨ p2))→ ⊥)

≡ > ∧ ((p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ p3 ∧ p2)→ ⊥)
≡ ¬((p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ p3 ∧ p2))
≡ ¬(p2 ∧ p3)

2.4. Equivalence Proof for S5-PAL 47

and

‖K1¬p1‖F2 = ∀(V \O1)(θ2 → ‖¬p1‖F2)
≡ ∀p1(θ2 → ¬p1)
≡ ∀p1((p1 ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2))→ ¬p1)
≡ ((> ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (> ∨ p3) ∧ (> ∨ p2))→ ¬>)
∧((⊥ ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (⊥ ∨ p3) ∧ (⊥ ∨ p2))→ ¬⊥)

≡ (> ∧ ((p2 ∨ p3) ∧ > ∧ >)→ ⊥)
∧((p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (p3) ∧ (p2))→ >)

≡ (p2 ∨ p3 → ⊥) ∧ >
≡ ¬(p2 ∨ p3)

which together gives us:

‖¬(K1p1 ∨K1¬p1)‖F2 = ¬(‖K1p1‖F2 ∨ ‖K1¬p1‖F2)
≡ ¬(¬(p2 ∧ p3) ∨ ¬(p2 ∨ p3))
≡ (p2 ∧ p3) ∧ (p2 ∨ p3)
≡ p2 ∧ p3

We have analogous formulas for children 2 and 3. Note that this admittedly tedious
calculation brings to light a detail of the puzzle: It would suffice to announce “I do
not know that I am muddy”, in contrast to “I do not know whether I am muddy”
which in general is more informative but not in this specific situation.

Finally, with respect to F2, we get the following boolean equivalent of the
announcement, essentially saying that everyone is muddy.

‖
∧
i∈I

(¬(Kipi ∨Ki¬pi))‖F2 ≡ (p3 ∧ p2) ∧ (p3 ∧ p1) ∧ (p2 ∧ p1)

≡ p1 ∧ p2 ∧ p3

The resulting knowledge structure thus has the state law θ3 = θ2 ∧ (p1 ∧ p2 ∧ p3)
which is equivalent to p1 ∧ p2 ∧ p3 and marks the end of the story: The only
state left is the situation in which all three children are muddy. Moreover, this
is common knowledge among them because the only state is also the only state
reachable via E∗I in Definition 2.2.3. Alternatively, note that the fixed point
mentioned in Definition 2.2.6 in this case will be the same as θ3.

2.4 Equivalence Proof for S5-PAL
We now look more deeply into the foundations of what we have been doing. For
a start, we show that knowledge structures and standard models for DEL are
equivalent from a semantic point of view. Lemma 2.4.1 gives us a canonical way
to show that a knowledge structure and an S5 Kripke model satisfy the same
formulas. Theorems 2.4.3 and 2.4.6 say that such equivalent models and structures
can always be found.

48 Chapter 2. Symbolic Model Checking DEL

2.4.1. Lemma. Suppose we have a knowledge structure F = (V, θ, O1, . . . , On)
and a finite S5 Kripke model M = (W,π,R) with a set of primitive propositions
U ⊆ V . Furthermore, suppose we have a function g : W → P(V) such that

C1 For all w1, w2 ∈ W , and all i such that 1 ≤ i ≤ n, we have that g(w1)∩Oi =
g(w2) ∩Oi iff Riw1w2.

C2 For all w ∈ W and p ∈ U , we have that p ∈ g(w) iff p ∈ π(w).

C3 For every s ⊆ V , s is a state of F iff s = g(w) for some w ∈ W .

Then, for every L(U)-formula ϕ we have (F , g(w)) � ϕ iff (M, w) � ϕ.

Before we dive into the proof, let us step back a bit to see that conditions
C1 to C3 describe a special case of something well-known, namely a surjective
p-morphism between the model M and a model encoded by the structure F
which uses a subset of P(V) as its set of worlds. We will make this precise in
Definition 2.4.2 below. The mathematical reader might thus already be convinced
by general invariance results [BRV01, §2.1] and skip the following induction.
Proof:
We proceed by induction on ϕ. First consider the base case when ϕ is a primitive
proposition, say p. Then, by condition C2, we have that (F , g(w)) � p iff p ∈ g(w)
iff p ∈ π(w) iff (M, w) � p.

Now suppose that ϕ is not a primitive proposition, and as an induction
hypothesis the claim holds for every formula of lower complexity than ϕ. We
distinguish four cases:

1. ϕ is of the form ¬ψ or ψ∧ξ. Definitions 1.1.3 and 2.2.3 do the same recursion
for negations and conjunctions, hence this case follows from the induction
hypothesis.

2. ϕ is of the form Kiψ. By Definition 2.2.3, we have (F , g(w)) � Kiψ iff
(F , s) � ψ for all states s of F with g(w) ∩ Oi = s ∩ Oi. By C3 this is
equivalent to having (F , g(w′)) � ψ for all w′ ∈ W with g(w)∩Oi = g(w′)∩Oi,
which by C1 is equivalent to (F , g(w′)) � ψ for all w′ ∈ W with Riww

′.
Now by the induction hypothesis, this is equivalent to (M, w′) � ψ for all
w′ ∈ W with Riww

′, which is exactly (M, w) � Kiψ by Definition 1.1.3.

3. ϕ is of the form C∆ψ. Recall that for states s and t of F , (s, t) ∈ E∆ iff there
exists an i ∈ ∆ with s ∩Oi = t ∩Oi. By C1 we have, for all w1, w2 ∈ W :

(g(w1), g(w2)) ∈ E∆ iff (w1, w2) ∈
⋃
i∈∆

Ri

As E∗∆ is the transitive closure of E∆ and R∆ is that of
⋃
i∈∆Ri, by C3 we

have for all w1, w2 ∈ W that

(g(w1), g(w2)) ∈ E∗∆ iff (w1, w2) ∈ RM
∆

2.4. Equivalence Proof for S5-PAL 49

We now claim that (F , g(w)) � C∆ψ iff (M, w) � C∆ψ. On the one hand,
we have (F , g(w)) � C∆ψ iff for all states s of F with (g(w), s) ∈ E∗∆ we have
(F , s) � ψ. By C3 this is the case iff for all w′ ∈ W with (g(w), g(w′)) ∈ E∗∆
we have (F , g(w′)) � ψ. On the other hand, (M, w) � C∆ψ iff for all w′ ∈ W
with (w,w′) ∈ R∆ we haveM, w′ � ψ. Hence our claim follows by the above
connection between the two transitive closures and the induction hypothesis
applied to ψ.

4. ϕ is of the form [!ψ]ξ. By Definition 1.2.2, we have that (M, w) � [!ψ]ξ
iff (M, w) � ψ implies (Mψ, w) � ξ, and by Definition 2.2.3 we have that
(F , g(w)) � [!ψ]ξ, iff (F , g(w)) � ψ implies (Fψ, g(w)) � ξ. As (M, w) � ψ
iff (F , g(w)) � ψ by the induction hypothesis, it suffices to prove that
(Mψ, w) � ξ iff (Fψ, g(w)) � ξ. Let g′ be the restriction of g to WMψ

=
{w ∈ W | (M, w) � ψ}. Note that because g fulfills the universal conditions
C1 and C2, they must also hold for g′ with respect to the restricted set
WMψ . To show C3 for g′, for left to right suppose s ⊆ V is a state of Fψ.
Then s is also a state of F and by condition C3 for g, there is a w ∈ W
such that s = g(w). Moreover, F , s � ψ and therefore by the induction
hypothesis (M, w) � ψ. Hence w ∈ WMψ and we also have g′(w) = s. For
right to left suppose g′(w) = s for some w ∈ WMψ and some s ⊆ V . Then
(M, w) � ψ and s is a state of F because g(w) = g′(w) = s. Therefore by
the induction hypothesis F , s � ψ. Hence s � ‖ψ‖F which implies that s
is also a state of Fψ. Together, g′ fulfills all three conditions and by the
induction hypothesis we get that (Mψ, w) � ξ iff (Fψ, g(w)) � ξ. 2

The following definition and theorem show that for every knowledge structure
there is an equivalent Kripke model. This is the easy direction which follows
directly from Lemma 2.4.1.

2.4.2. Definition. For any knowledge structure F = (V, θ, O), we define the
Kripke modelM(F) := (W,π,R) as follows:

1. W := {s ⊆ V | s � θ} is the set of all states of F

2. for each w ∈ W , let the assignment be w itself: π(w) := w

3. for each agent i and all v, w ∈ W , let Rivw iff v ∩Oi = w ∩Oi

2.4.3. Theorem. The functionM(·) from Definition 2.4.2 preserves truth: For
any knowledge structure F , any state s of F and any formula ϕ ∈ L(V), we have
(F , s) � ϕ iff (M(F), s) � ϕ.

Proof:
By Lemma 2.4.1 using the identity function for g. 2

50 Chapter 2. Symbolic Model Checking DEL

2.4.4. Example. We can apply Definition 2.4.2 to F = ({p, q}, p→ q, {p}, {q})
from Example 2.2.2. The result is the equivalent Kripke model shown in Figure 2.2:
The set of worlds is W = {s ⊆ {p, q} | s � p → q} = {∅, {q}, {p, q}} and the
valuation function is the identity. To illustrate point 3 of Definition 2.4.2, for
example, we have an edge for agent 1 between ∅ and {q} because ∅ ∩ O1 =
∅ ∩ {p} = ∅ = {q} ∩ {p} = {q} ∩O1.

∅ {q} {p, q}1 2

Figure 2.2: Kripke modelM(F) equivalent to F from Example 2.2.2.

Vice versa, for any S5 Kripke model we can find an equivalent knowledge
structure. This is the both more interesting and more difficult direction. The
essential idea is to add propositions as observational variables to encode the
relations of each agent. To obtain a simple knowledge structure we should add as
few propositions as possible. The method below adds

∑
i∈I dlog2 kie propositions,

where ki is the number of Ri-equivalence classes. This could be further improved
if one were to find a general way of using the propositions already present in the
Kripke model as observational variables directly.

2.4.5. Definition. For any S5 model M = (W,π,R) with vocabulary U we
define a knowledge structure F(M) as follows. For each agent i, write γi,1, . . . , γi,ki
for the equivalence classes given by Ri and let li := dlog2 kie. Let Oi be a set
of li many fresh atomic propositions. This yields sets of observational variables
O1, . . . , On, all disjoint to each other. If agent i has a total relation, i.e. only one
equivalence class, then we have Oi = ∅. Enumerate ki many subsets of Oi as
Oγi,1 , . . . , Oγi,ki

and define gi : W → P(Oi) by gi(w) := Oγi(w), where γi(w) is the
Ri-equivalence class of w. Let V := U ∪

⋃
0<i≤nOi and define g : W → P(V) by

g(w) := {v ∈ U | v ∈ π(w)} ∪
⋃

0<i≤n

gi(w)

Finally, let F(M) := (V, θM , O1, . . . , On) using

θM :=
∨
{g(w) v V | w ∈ W}

wherev is the abbreviation from Definition 1.0.1 saying that out of the propositions
in the second set exactly those in the first set are true.

Note that the idea here is to represent the state law θM as a BDD and not as
a complex formula. Thereby we obtain a compact representation for many Kripke
models, especially for situations with a lot of symmetry like the muddy children

2.4. Equivalence Proof for S5-PAL 51

story. However, in the worst case a BDD can have exponential size in the number
of variables [Bry86]. Hence Bdd(θM) might be of size exponential in |V |.

We also implemented these translations between Kripke models and knowledge
structures and will discuss them again in Chapter 3. For now it remains to prove
that the translation is correct.

2.4.6. Theorem. The function F(·) from Definition 2.4.5 preserves truth: For
any finite pointed S5 Kripke model (M, w) and every formula ϕ, we have (M, w) �
ϕ iff (F(M), g(w)) � ϕ.

Proof:
We have to check that Lemma 2.4.1 applies to Definition 2.4.5. To show C1,
take any w1, w2 ∈ W and i ∈ {1, . . . , n}. Note that g(w1) ∩ Oi = gi(w1) ∩ Oi

and g(w2) ∩ Oi = gi(w2) ∩ Oi because the observational variables introduced in
Definition 2.4.5 are disjoint sets of fresh propositions. By definition of gi, we have
that gi(w1) and gi(w2) are the same subset of Oi iff w1 and w2 are in the same
Ri-equivalence class. This shows that g(w1) ∩Oi = g(w2) ∩Oi iff Riw1w2.

For C2, take any w ∈ W and any v ∈ U . Note that U is the original set of
atomic propositions and therefore does not contain observational variables. Hence
by definition of g we have v ∈ g(w) iff v ∈ π(w).

For the right-to-left part of C3: If s = g(w) for some w ∈ W , then by definition
of θM we have g(w) � θM , hence g(w) is a state of F(M). For the left-to-right
part, suppose s is a state of F(M). Then s � θM , hence it must satisfy one of the
disjuncts and there must be a w ∈ W such that s � g(w) v V . Then by definition
of v we have s = g(w). Now the theorem follows from Lemma 2.4.1. 2

2.4.7. Example. Consider the pointed Kripke model (M, w1) in Figure 2.3.
Agent 2 knows that p, agent 1 does not know that p. Moreover, agent 1 does not
even know whether agent 2 knows whether p.

w1

p
w2

p
w3

1

1
1

2

M, w1 � K2p ∧ ¬K1p
M, w1 � ¬K1(K2p ∨K2¬p)
M, w1 � ¬K1¬(K2p ∨K2¬p)

Figure 2.3: Pointed Kripke model (M, w1) and some facts about it.

Now let us see how this knowledge and meta-knowledge get encoded symboli-
cally. This direction is more difficult than going from a knowledge structure to
a Kripke model as in Example 2.4.4, because here the worlds are not uniquely
identified by valuations: π(w1) = π(w2). Applying Definition 2.4.5 therefore means

52 Chapter 2. Symbolic Model Checking DEL

that we add one fresh proposition O2 := {q} to distinguish the two epistemic
equivalence classes {w1} and {w2, w3} of agent 2. For example, let g2(w1) := {q}
and g2(w2) = g2(w3) := ∅. Then we have g(w1) = {p, q}, g(w2) = {p} and
g(w3) = ∅. Now we can compute the state law, a boolean formula over the
vocabulary V = {p, q}, as follows:

θM = (g(w1) v V) ∨ (g(w2) v V) ∨ (g(w3) v V)
= ({p, q} v {p, q}) ∨ ({p} v {p, q}) ∨ (∅ v {p, q})
= (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ ¬q)
= q → p

The equivalent knowledge structure is thus

F(M) = (V ′ = {p, q}, θM = q → p,O1 = ∅, O2 = {q})

and the scene (F(M), {p, q}) is equivalent to (M, w1).

2.5 Knowledge Transformers

We have seen how the two ways of interpreting DEL, though computationally
different, are semantically equivalent. This leads us to consider how their interplay
will work in more complex settings. The obvious direction to probe this is the
area where DEL unleashes its full power: action models and the product update.
We now show how our structures can be accompanied with transformers to model
more complex events.

The following knowledge transformers are to knowledge structures what S5
action models without factual change are to S5 Kripke models.

2.5.1. Definition. A knowledge transformer for a given vocabulary V and set
of agents I = {1, . . . , n} is a tuple X = (V +, θ+, O1, . . . , On), where V + is a set of
atomic propositions such that V ∩ V + = ∅, θ+ is a possibly epistemic formula
from L(V ∪ V +) called the event law and Oi ⊆ V + for all agents i. An event is a
knowledge transformer together with a subset x ⊆ V +, written as (X , x).

The knowledge transformation of a knowledge structure F = (V, θ, O1, . . . , On)
with a knowledge transformer X = (V +, θ+, O+

1 , . . . , O
+
n) for V is defined by:

F × X := (V ∪ V +, θ ∧ ‖θ+‖F , O1 ∪O+
1 , . . . , On ∪O+

n)

Given a scene (F , s) and an event (X , x), we define (F , s)×(X , x) := (F×X , s∪x).

To illustrate the definition of knowledge transformers, we show how the public
and semi-private announcements from above fit into this new symbolic framework.

2.5. Knowledge Transformers 53

2.5.2. Example. The public announcement of ϕ is the event

(X = (V + = ∅, θ+ = ϕ, O1 = ∅, . . . , On = ∅), x = ∅)

and the semi-private announcement of ϕ to a group ∆ is given by

(({pϕ}, pϕ ↔ ϕ,O+
1 , . . . , O

+
n), {pϕ})

where O+
i = {pϕ} if i ∈ ∆ and O+

i = ∅ otherwise.

The event law θ+ is not restricted to be a boolean formula, just like precon-
ditions of action models can be arbitrary formulas. Still, applying a knowledge
transformer to a knowledge structure should again yield a knowledge structure
with a boolean formula as the new state law. Hence, in Definition 2.5.1 we do
not directly take the conjunction of θ and θ+, but first localize θ+ to the boolean
equivalent ‖θ+‖F . This formula will be equivalent to θ+ on the previous structure
F , but not necessarily on the new structure F × X .

For example, if the announced formula contains a Ki operator, then we rewrite
it by quantifying over V \Oi, not over V ∪ V + \Oi ∪O+

i as one might first think.
The latter would yield boolean equivalents with respect to F × X whereas the
former is with respect to F . Compare this to the product update in Definition 1.3.1
where the preconditions are also evaluated on the model before the update.

The alert reader might still be worried about the language of θ+. In an action
model we have one formula pre(a) ∈ LV for each possible action a. In a knowledge
transformer, the single formula θ+ ∈ L(V ∪ V +) encodes preconditions for all
events at once. Within that formula we use the propositional atoms from V + to
distinguish different events.

In Example 2.5.2 above, the fresh variable pϕ is used to distinguish two events,
where the announcement is positive or negative. The event law pψ ↔ ψ means
that [pϕ 7→ >]θ+ ≡ ψ is the precondition for one event and [pϕ 7→ ⊥]θ+ ≡ ¬ψ
for the other. In particular, ψ and thereby θ+ may contain modal operators, for
example if we announce Kap. Intuitively though, in the scope of these modal
operators there should only be atoms from V and not from V + because atoms
from V + describe which event happens and not when. That is, θ+ should be
a boolean combination of formulas from L(V) and atoms from V +. Somewhat
abusing notation, this is the language LB(L(V) ∪ V ′) and in practice we will
only use event laws of that form. Still, we can keep the simpler definition with
θ+ ∈ L(V ∪ V +), because the additional expressivity does not actually matter.
The following example illustrates that K operators in front of an atom q ∈ V +

simply disappear once we apply the transformer.

2.5.3. Example. Consider the structure (V = {p}, θ = >, Oa = {p}, Ob = ∅)
and the following, somewhat unusual but well-defined, knowledge transformer:

(V + = {q}, θ+ = (Kaq ∨Kbp), O
+
a = ∅, O+

b = {q})

54 Chapter 2. Symbolic Model Checking DEL

To apply the former to the latter, we calculate the new state law

θ ∧ ‖θ+‖F ≡ > ∧ ‖Kaq ∨Kbp‖F ≡ (∀∅q) ∨ (∀pp) ≡ q ∨ ⊥ ≡ q

and then get the result F ×X = (V = {p, q}, θ = q, Oa = {p}, Ob = {q}). Note
that the event law of X implies q ∨Kbp and on F the condition Kbp is always
false. Hence only {q} and not ∅ can happen. This is reflected in the new state law
which makes q common knowledge among all agents. It does not matter whether
q was prefixed with Ka or Kb or nothing at all.

An obvious question about knowledge transformers is how they relate to action
models, i.e. whether they describe the same class of events. The answer is the
same as for the relation between Kripke models and knowledge structures: For
any S5 action model there is an equivalent transformer and vice versa. We make
this precise as follows, using the same ideas as for Definitions 2.4.2 and 2.4.5 and
then using Lemma 2.4.1.

2.5.4. Definition. For any knowledge transformer X = (V +, θ+, O+
1 , . . . , O

+
n)

we define an S5 action model ActS5(X) as follows. First, let the set of actions
be A := P(V +). Second, for any two actions α, β ∈ A, let αRiβ iff α ∩ O+

i =
β ∩ O+

i . Third, for any α, let pre(α) := [α v V +] θ+. Finally, let ActS5(X) :=
(A, (Ri)i∈I , pre).

2.5.5. Definition. Suppose we have an S5 action model A = (A, (Ri)i∈I , pre).
The function TrfS5 maps it to a knowledge transformer as follows. Let P be a
finite set of fresh propositions such that there is an injective labeling function
` : A→ P(P) and let

Φ :=
∧
{(`(a) v P)→ pre(a) | a ∈ A}

where v is the “out of” abbreviation from Definition 1.0.1. Now, do the following
for each i: Write A/Ri for the set of equivalence classes induced by Ri. Let O+

i be
a finite set of fresh propositions such that there is an injective labeling function
gi : A/Ri → P(O+

i) and let

Φi :=
∧{

(gi(α) v Oi)→

(∨
a∈α

(`(a) v P)

)∣∣∣∣∣α ∈ A/Ri

}

Finally, define TrfS5(A) := (V +, θ+, O+
1 , . . . , O

+
n) where V + := P ∪

⋃
i∈I O

+
i and

θ+ := Φ ∧
∧
i∈I Φi.

In contrast to the translation in Definition 2.4.5, where θM could be represented
as a BDD, here we cannot do so with θ+ as it might contain non-boolean operators
in Φ. Still, before taking the outer conjunction in θ+ we can compute a smaller
equivalent of the purely boolean part

∧
i∈I Φi.

2.5. Knowledge Transformers 55

2.5.6. Example. We translate the product update from our letter story in Ex-
ample 1.3.3 to a knowledge transformation as follows. First note that in M
both agents have a total relation, hence we do not have to add observational
variables. The equivalent knowledge structure is just F(M) = ({p},>,∅,∅).
Now we use Definition 2.5.5 to obtain TrfS5(A). Choose the set P = {q}
where q is fresh, and label the events of A by `(α) := {q} and `(β) := ∅.
We then get Φ := (q → p) ∧ (¬q → ¬p) = q ↔ p. Bob has a total rela-
tion in A, so we can choose O+

b = ∅ and gb(α) := gb(β) := ∅. Note that
∅ v ∅ = >. Hence Φb = (> → (q ∨ ¬q)) = >. For Alice we need two la-
bels, so let O+

a := {r} where r is fresh, ga(α) := {r} and ga(β) := ∅. Then
we get Φa = (r → q) ∧ (¬r → ¬q) = r ↔ q. Putting it all together we get
θ+ = (q ↔ p) ∧ (r ↔ q) and thereby this transformer:

TrfS5(A) = (V + = {q, r}, θ+ = ((q ↔ p) ∧ (r ↔ q)), O+
a = {r}, O+

b = ∅)

Finally, we can calculate the knowledge transformation F(M)× TrfS5(A):

({p},>,∅,∅)
× ({q, r}, ((q ↔ p) ∧ (r ↔ q)), {r},∅)
= ({p, q, r}, ((q ↔ p) ∧ (r ↔ q)), {r},∅)

Observe that θ+ makes q and r equivalent which makes this transformer redundant.
As mentioned in Example 2.5.2, such a semi-private announcement can be done
with a simpler transformer using only one proposition, in this case (V + = {q}, θ+ =
(q ↔ p), O+

a = {q}, O+
b = ∅). In general however, the distinction between those

propositions linked to preconditions and those describing the observation is needed
to translate more complex action models to knowledge transformers.

It remains to show that our translations to go back and forth between S5
action models and knowledge transformers are truthful in general. The following
theorem says that we have an action emulation, as discussed in [ERS12], between
the explicit and the symbolic representation of updates.

2.5.7. Theorem.

(i) The function Act from Definition 2.5.4 preserves truth: For any scene (F , s),
any event (X , x) and any formula ϕ over the vocabulary of F we have

(F , s)× (X , x) � ϕ ⇐⇒ (M(F)× ActS5(X)), (s, x) � ϕ

(ii) The function Trf from Definition 2.5.5 preserves truth: For any pointed S5
Kripke model (M, w), any pointed S5 action model (A, α) and any formula
ϕ over the vocabulary ofM we have

M×A, (w, α) � ϕ ⇐⇒ F(M)× TrfS5(A), (gM(w) ∪ gA(α)) � ϕ

where gM is as in the construction of F(M) in Definition 2.4.2 and gA is
as in the construction of TrfS5(A) in Definition 2.5.5.

56 Chapter 2. Symbolic Model Checking DEL

Proof:
We use Lemma 2.4.1. For the first part, g needs to map worlds ofM(F)×ActS5(X)
to states of F ×X . The former are pairs (s, x) ∈ P(V)×P(V +), hence we define
g(s, x) := s ∪ x. For the second part, g should map worlds ofM×A to states
of F(M)× TrfS5(A). Hence let g(w, α) := gM(w) ∪ gA(α) where gM and gA are
from Definitions 2.4.5 and 2.5.5 respectively. It is straightforward to check C1 to
C3 for both functions. 2

Similar to the language LD, which contains dynamic operators for action
models, we can also define a language with dynamic operators for knowledge
transformers. Just like LD, the language we obtain will be more succinct, but
not more expressive than L. Analogously to Fact 1.3.8 we again have reduction
axioms, which provide a globally truthful translation back to pure L.

With respect to a given structure however, we can do even better: Formulas
with dynamic operators for knowledge transformers have local boolean equivalents
as well. We only need to add a clause like this to Definition 2.2.6:

‖[X , x]ϕ‖F := ‖[x v V +]θ+‖F → [x v V +]‖ϕ‖F×X

Note that [x v V +] plays two different roles here: Its first use reduces θ+ to the
actual precondition. The second use simulates that the actual event happens, i.e.
that we evaluate at the state s ∪ x of the new structure F × X instead of any
given state s of F .

We postpone a complete definition of the language including dynamic operators
for transformers and reduction axioms until Section 2.10, where we discuss the
most general case of transformers. The next sections lead there step-by-step: from
knowledge structures to belief structures, from knowledge transformers to belief
transformers, and finally to transformers which also model factual change.

2.6 Belief Structures

The previous methods only allow us to represent Kripke models based on equiva-
lence relations. But in Section 1.8 we already discussed a method to represent
arbitrary relations over sets of states symbolically. Indeed this can also be used
to generalize knowledge structures to what we call belief structures, employing
Definition 1.8.8 as follows.

2.6.1. Definition. A belief structure is a tuple F = (V, θ,Ω) where V is a finite
set of propositional variables called the vocabulary, θ ∈ LB(V) is a boolean formula
over V called the state law and Ω is a set of formulas indexed by agents such that
for each agent i, Ωi ∈ LB(V ∪V ′) is a boolean formula over the double vocabulary.
We call this formula the observation law of i.

2.6. Belief Structures 57

Any s ⊆ V such that s � θ is called a state of F . A pair (F , s) where s is a
state of F is called a scene. All terms and notational conventions for knowledge
structures in Definition 2.2.1 also apply to belief structures.

The relations encoded in these structures do not have to be (but still may be)
equivalence relations. We highlight this by calling them belief instead of knowledge
structures. However, they are neither meant to only model belief, nor do we claim
that they yield a semantics which is always appropriate to model beliefs. In fact,
will show that they are equivalent to the standard general Kripke models — with
all their features and problems. In particular, our belief structures are not meant
to directly model or replace more complex definitions for belief revision as in the
famous AGM framework from [AGM85], which has also been modeled as a part
of DEL in [BS08].

2.6.2. Definition. We define semantics for LP on belief structures in the same
way as in Definition 2.2.3 for knowledge structures, only changing the two clauses
for Ki and Ci:

1. For belief we now use Ωi instead of Oi:

(F , s) � 2iϕ iff for all states t of F : s ∪ t′ � Ωi implies (F , t) � ϕ

2. For common belief, let E∆ be the relation defined by Est : ⇐⇒ ∃i ∈ ∆ :
s ∪ t′ � Ωi and denote its transitive closure by E∗∆. Then let

(F , s) � C∆ϕ iff for all states t of F : (s, t) ∈ E∗∆ implies (F , t) � ϕ

Note that in Definition 2.6.2 we did not change the semantics of public
announcements, hence we implicitly use ‖ · ‖F where F is now a belief structure.
As on knowledge structures, all formulas have boolean equivalents with respect to
a given belief structure.

2.6.3. Definition. Given a belief structure F , we redefine the translation from
LP to LB from Definition 2.2.6 for the general modality 2i and common belief
C∆.

• For belief, let
‖2iψ‖F := ∀V ′(θ′ → (Ωi → (‖ψ‖F)′))

• For common belief, let ‖C∆ψ‖F := gfpΛ, where Λ is the following operator
on boolean formulas modulo equivalence and gfpΛ denotes a representative
of its greatest fixed point:

Λ(α) := ∀V ′
(
θ′ →

(∨
i∈∆

Ωi → (‖ψ‖F ∧ α)′

))

58 Chapter 2. Symbolic Model Checking DEL

As before with common knowledge, the translation of common belief is the
most difficult part — see page 41 where we discuss the type of gfpΛ and how it
can be computed.

It is crucial to use the primed formula (‖ψ‖F ∧ α)′ in this translation for
common belief. We check ψ at all reachable states, but it does not have to hold at
the starting state: Common belief might be wrong. Hence we cannot use the same
translation as for common knowledge in Definition 2.2.6 which assumes reflexivity,
i.e. factivity. If we are interested in common true belief however, then an operator
like the one in Definition 2.2.6 should be used because it is more efficient.

The quantification over V ′ removes all primed propositions. Hence Λ and the
whole translation function are both of type ‖ · ‖ : LP (V)→ LB(V). It remains to
state and prove that this translation is indeed correct.

2.6.4. Theorem. Definition 2.6.3 preserves and reflects truth. That is, for
any formula ϕ and any scene (F , s) where F is a belief structure, we have that
(F , s) � ϕ iff s � ‖ϕ‖F .

Proof:
By induction on ϕ, as in the proof of Theorem 2.2.8. We only consider the two
changed cases of belief and common belief. First, for 2i, note the following chain
of equivalences. Recall from Definition 1.8.8 that we write st′ � ϕ for s ∪ t′ � ϕ.

F , s � 2iϕ ⇐⇒ For all t ∈ F : If st′ � Ωi then (F , t) � ϕ
⇐⇒ For all t ∈ F : If st′ � Ωi then t � ‖ϕ‖F
⇐⇒ For all t : If t ∈ F and st′ � Ωi then t � ‖ϕ‖F
⇐⇒ For all t : If t � θ and st′ � Ωi then t � ‖ϕ‖F
⇐⇒ For all t : If t′ � θ′ and st′ � Ωi then t′ � (‖ϕ‖F)′

⇐⇒ For all t : If st′ � θ′ and st′ � Ωi then st′ � (‖ϕ‖F)′

⇐⇒ For all t : st′ � θ′ → (Ωi → (‖ϕ‖F)′)
⇐⇒ s � ∀V ′ : (θ′ → (Ωi → (‖ϕ‖F)′))

Second, for the case ϕ = C∆ψ, let Λ be the operator defined in as in Defini-
tion 2.6.3. Also let s1 := s, Λ0(α) := α and Λk+1(α) := Λ(Λk(α)).

For left to right, suppose (F , s1) � C∆ψ. As in the proof of Theorem 2.2.8 we
show s1 � gfpΛ by proving s1 � Λm(>) for any m. Suppose not, i.e. there is an m
such that s1 2 Λm(>). Then we have

s1 2 ∀V ′(θ′ → (
∨
i∈∆

Ωi → (‖ψ‖F ∧ Λm−1(>))′)).

Hence there must be some assignment s′2 ⊆ V ′ such that s′2 � θ′, and an agent
i ∈ ∆ such that s1s

′
2 � Ωi and s′2 2 (‖ψ‖F ∧ Λm−1(>))′. By removing the primes

we get that s2 � θ, so s2 is a state of F , and s2 2 ‖ψ‖F ∧ Λm−1(>). By boolean
semantics we have s2 2 ‖ψ‖F or s2 2 Λm−1(>). But the first cannot be: s2 is a

2.6. Belief Structures 59

state of F and by s1s
′
2 � Ωi we have (s1, s2) ∈ E∆. Thus (F , s1) � C∆ψ implies

(F , s2) � ψ which by induction hypothesis gives s2 � ‖ψ‖F . Hence the second
must hold. Spelling it out we get

s2 2 ∀V ′(θ′ → (
∨
i∈∆

Ωi → (‖ψ‖F ∧ Λm−2(>))′)).

But this means there has to be a state s3 to continue. Iterating the reasoning
m times we get an E∆-chain of states s1, . . . , sm such that s1+k � ‖ψ‖F and
s1+k 2 Λm−k(>) for all k ∈ {1, . . . ,m−1}. At the end of the chain with k = m−1
we have sm � ‖ψ‖F and sm 2 Λ(>). But then sm 2 >. Contradiction! Hence
s1 � Λm(>) must hold for all m.

For right to left, suppose s1 � gfpΛ. Note that gfpΛ → Λk(>) is valid and
thus we have s1 � Λk(>) for any k. To show (F , s) � C∆ϕ, fix any state t of F
such that (s, t) ∈ E∗∆. We have to show (F , t) � ψ. By definition of E∗∆ there is
a chain s1, . . . , sm = t of states of F and there are agents i1, . . . , im−1 ∈ ∆ such
that for all k ∈ {1, . . . ,m − 1} we have sks′k+1 � Ωik . Note that s1 � Λm(>),
i.e. s1 � ∀V ′(θ′ → (

∨
i∈∆ Ωi → (‖ψ‖F ∧ Λm−1(>))′)). This implies s1 � ∀V ′(θ′ →

(Ωi1 → Λm−1(>))). Because s2 is a state of F we have s′2 � θ′. Together with
s1s
′
2 � Ωi1 we thus get s2 � Λm−1(>). Iterating this, we follow the chain to get

s1+k � Λm−k(>) for all k ∈ {1, . . . ,m− 1}. In particular sm � Λ(>) which implies
sm � ‖ψ‖F . By sm = t and the induction hypothesis this shows (F , t) � ψ. 2

2.6.5. Fact. Belief structures are a generalization of knowledge structures: Any
set of observational variables O can also be encoded using the BDD of the boolean
formula Ω(O) :=

∧
p∈O(p↔ p′). This describes the same relation as O, because

for any two states s and t we have s ∪ t′ � Ω(O) iff s ∩O = t ∩O.

2.6.6. Example. We can also model Example 1.3.4 as a private announcement
on belief structures. The initial structure is

F = (V = {p}, θ = >,ΩAlice = >,ΩBob = >)

and after the update we have

FAlice
p = (V = {p, pp}, θ = (pp → p),ΩAlice = (pp ↔ p′p),ΩBob = ¬p′p)

We can see how this corresponds to the second Kripke model in Figure 1.3:
First note that the state law θ is satisfied by the three states ∅, {p} and {p, pp}
which we can identify respectively with the worlds in the top left, top right and
bottom. The observation law ΩAlice then says that the upper and the lower part
of the model are disconnected for Alice, whereas Bob almost has a total relation
encoded in ΩBob up to the lower world being unreachable.

60 Chapter 2. Symbolic Model Checking DEL

As the reader will already expect, such a correspondence between general
Kripke models and belief structures can also be made precise. The following
generalizes Lemma 2.4.1. The only difference is in condition C1, which now deals
with observation laws instead of observational variables.

2.6.7. Lemma. Suppose we have a belief structure F = (V, θ,Ω) and a finite
Kripke model M = (W,π,R) with a set of primitive propositions U ⊆ V . Further-
more, suppose we have a function g : W → P(V) such that

C1 For all w1, w2 ∈ W and i ∈ I, we have that g(w1)(g(w2)′) � Ωi iff Riw1w2.

C2 For all w ∈ W and p ∈ U , we have that p ∈ g(w) iff p ∈ π(w).

C3 For every s ⊆ V , s is a state of F iff s = g(w) for some w ∈ W .

Then, for every L(U)-formula ϕ we have (F , g(w)) � ϕ iff (M, w) � ϕ.

Proof:
By induction on ϕ, the same as for Lemma 2.4.1 up to the following cases:

1. Belief: If ϕ is of the form 2iψ, then by Definition 2.6.2, we have (F , g(w)) �
2iψ iff (F , s) � ψ for all states s of F with g(w)s′ � Ωi. By C3 this is
equivalent to having (F , g(w′)) � ψ for all w′ ∈ W with g(w)g(w′)′ � Ωi,
which by C1 is equivalent to (F , g(w′)) � ψ for all w′ ∈ W with Riww

′.
Now by the induction hypothesis, this is equivalent to (M, w′) � ψ for all
w′ ∈ W with Riww

′ which is exactly (M, w) � 2iψ by Definition 1.1.3.

2. Common Belief: Suppose ϕ is of the form C∆ϕ. Recall that for arbitrary
states s and t of F , (s, t) ∈ E∆ iff there exists an i ∈ ∆ with st′ � Ωi. By
C1 we have, for all w1, w2 ∈ W :

(g(w1), g(w2)) ∈ E∆ iff (w1, w2) ∈
⋃
i∈∆

Ri

Now the exact same reasoning as in the proof of Lemma 2.4.1 applies:
This iff-statement still holds if we take the transitive closure on both sides.
Then use C3 and the induction hypothesis for ψ to get (F , g(w)) � C∆ψ iff
(M, w) � C∆ψ.

3. Public announcements: Suppose ϕ is of the form [!ψ]ξ. Just like in the proof
for Lemma 2.4.1 it suffices to show that (Mψ,W) � ξ iff (Fψ, g(w)) � ξ. To
do so, let g′ be the restriction of g to WMψ

= {w ∈ W | (M, w) � ψ}. It
remains to show that g′ fulfills C1 to C3. The new C1 is again a universal
condition and holds for g on WM , hence it must also hold for g′ with respect
to the restricted set WMψ ⊆ WM . Conditions C2 and C3 are unchanged,
hence the proof for Lemma 2.4.1 still applies. Together, g′ fulfills all three
conditions and by the induction hypothesis we get that (Mψ,W) � ξ iff
(Fψ, g(w)) � ξ. 2

2.6. Belief Structures 61

We now also generalize the translation methods from Definitions 2.4.2 and 2.4.5
to belief structures. The new Lemma 2.6.7 then allows us to show the correctness
of our translations and get generalized versions of Theorems 2.4.3 and 2.4.6: For
every belief structure there is an equivalent Kripke model and vice versa.

2.6.8. Definition. For any belief structure F = (V, θ,Ω), we define the Kripke
modelM(F) := (W,π,R) as follows:

1. W is the set of all states of F .

2. For each w ∈ W , let the assignment π(w) be w itself.

3. For each agent i and all w,w′ ∈ W , let Riww
′ iff ww′ � Ωi.

2.6.9. Definition. For any finite Kripke model M = (W,π,R) we define a
belief structure F(M) as follows. Without loss of generality we assume unique
valuations, i.e. that for all w,w′ ∈ W we have π(w) 6= π(w′). If this is not the
case, we can add propositions to V and extend π in such a way that π(w) 6= π(w′)
for all w,w′ ∈ W . The maximum number of propositions we might have to add is
dlog2 |W |e. Let F(M) := (V, θM ,Ω) where

1. V is the vocabulary ofM, including extra propositions to make π injective,

2. θM :=
∨
{s v V | ∃w ∈ W : π(w) = s} using v from Definition 1.0.1.

3. For each i the boolean formula Ωi := Φ(Ri) represents the relation Ri on
P(V) given by Rist iff ∃v, w ∈ W : π(v) = s ∧ π(w) = t ∧Rivw.

Different from Definition 2.4.5, in Definition 2.6.9 we do not have to add
propositions to distinguish all equivalence classes of all agents. This is because
the Ωi can carry more information than the simple sets of observed variables Oi.

2.6.10. Theorem. For any belief structure F , any state s of F and any formula
ϕ, we have (F , s) � ϕ iff (M(F), s) � ϕ.

Proof:
By Lemma 2.6.7 using the identity function for g. 2

2.6.11. Theorem. For any finite pointed Kripke model (M, w) and every formula
ϕ, we have that (M, w) � ϕ iff (F(M), g(w)) � ϕ.

Proof:
We have to check that Lemma 2.6.7 applies to Definition 2.6.9. As we already
assume unique valuations inM, the appropriate injective function g : W → P(V)
is the same as the valuation function g(w) := {p ∈ V | p ∈ π(w)}.

62 Chapter 2. Symbolic Model Checking DEL

To show C1, take any w1, w2 ∈ W and i ∈ {1, . . . , n} and note that we have
g(w1)g(w2)′ � Ωi iff π(w1)π(w2)′ � Φ(Ri) iff Riw1w2.

For C2, take any w ∈ W and any v ∈ U . By definition of g we have v ∈ g(w)
iff v ∈ π(w).

For the right-to-left part of C3: If s = g(w) for some w ∈ W , then by the
definition of θM , we have that g(w) � θM and hence g(w) is a state of F(M). For
the left-to-right part, suppose s is a state of F(M). Then s � θM , hence it must
satisfy one of the disjuncts and there must be a w ∈ W such that s � g(w) v V .
Now by definition of v we have s = g(w) = π(w).

Now the theorem follows from Lemma 2.6.7. 2

Given this symbolic representation of Kripke models with arbitrary relations,
one might wonder whether graph properties characterized by modal formulas from
Table 1.1 correspond to properties of boolean formulas. The answer is positive.

2.6.12. Example. The frame properties for a relation R are related to properties
of its symbolic encoding Φ(R) ∈ LB(V ∪ V ′) as follows.

• The total relation is given by Φ(R) ≡ > and the empty relation by Φ(R) ≡ ⊥.

• To compute the inverse Φ(R−1), simultaneously substitute primed for un-
primed variables and vice versa in Φ(R).

• The relation R is symmetric iff Φ(R) ≡ Φ(R−1). To get the symmetric
closure, take Φ(R) ∨ Φ(R−1).

• Similarly, R is reflexive iff
∧
i(pi ↔ p′i) → Φ(R) is a tautology and the

reflexive closure is given by Φ(R) ∨
∧
p∈V (p↔ p′).

• To check for transitivity we need to talk about three states at the same time
which means we need a third copy of variables. Denote this third copy by
V ′′, then we have that R is transitive iff the formula Φ(R)∧Φ(R)′ → [V ′ 7→
V ′′]Φ(R) is a tautology. Note that this is a formula in LB(V ∪ V ′ ∪ V ′′).

• Similarly, to compose two relations R1 and R2, we can take

Φ(R2 ◦R1) := [V ′′ 7→ V ′](∃V ′ : Φ(R1) ∧ Φ(R2)′)

• Iterating this composition gives us the transitive closure: Φ(R∗) is given by
lfpΛ where Λ: LB(V ∪ V ′)→ LB(V ∪ V ′) is the operator

Λ(α) := Φ(R) ∨ [V ′′ 7→ V ′] (∃V ′ : Φ(R) ∧ α′)

and lfp denotes the least fixpoint with respect to semantic equivalence.

We note that these conditions are similar to those obtained from relation
algebra or matrix representations of Kripke models, see for example the analysis
of bisimulations as linear functions in [Fit03], and the representation of Kripke
semantics and communication between agents as matrix multiplication in [HST15].

2.7. Belief Transformers 63

2.7 Belief Transformers
The generalization from knowledge to belief structures is compatible with the
one from public announcements to knowledge transformers: We will now define
belief transformers in the same style as knowledge transformers in Definition 2.5.1,
replacing the additional observational propositions O+

i with boolean formulas Ω+
i

encoding a relation on P(V +). In an implementation, those boolean formulas
are of course again meant to be replaced by BDDs. Thus we obtain a symbolic
representation of events where the epistemic relation between different actions
need not be an equivalence relation, for example if someone is being deceived.

2.7.1. Definition. A belief transformer for V is a tuple X = (V +, θ+,Ω+) where
V + is a set of atomic propositions such that V ∩ V + = ∅, θ+ ∈ L(V ∪ V +) is a
possibly epistemic formula and Ω+

i ∈ LB(V ∪ V +) is a boolean formula for each
i ∈ I. A belief event is a belief transformer together with a subset x ⊆ V +, written
as (X , x).

The belief transformation of a belief structure F = (V, θ,Ω) with X is defined
by F ×X := (V ∪V +, θ∧‖θ+‖F , {Ωi ∧ Ω+

i }i∈I). Given a scene (F , s) and a belief
event (X , x), let (F , s)× (X , x) := (F × X , s ∪ x).

The resulting observations are boolean formulas over a new double vocabulary

(V ∪ V ′) ∪ (V + ∪ V +′) = (V ∪ V +) ∪ (V ∪ V +)′

describing a relation between the new states which are subsets of V ∪ V +.
Belief transformers share both the features and the problems of non-S5 action

models. As [Eij14b] says, “update of belief models with belief action models has a
glitch”: The result of updating a KD45 Kripke model (in which the relations are
serial, transitive and Euclidean, but not necessarily reflexive) with a KD45 action
model does not have to be KD45. Still, we consider it a feature of our symbolic
methods that they agree with the standard explicit semantics.

We further generalize from belief transformers to transformers with factual
change in the next section. Therefore we omit the definitions and theorems here
to connect belief transformers and non-S5 action models without factual change.

2.8 Symbolic Factual Change
Our knowledge and belief transformers so far only change what agents know and
not what is actually the case — they do not provide a symbolic equivalent of
postconditions for factual change as introduced in [BEK06] and included in our
Definition 1.3.1.

Possible worlds in a Kripke model get their meaning via a valuation function,
but not their identity. In particular, we can assign the same atomic truths to

64 Chapter 2. Symbolic Model Checking DEL

different possible worlds. In contrast, all states of our structures satisfy different
atomic propositions and can thus be identified with their valuation. This is what
makes structures symbolic and efficient to implement, but it complicates the idea
of changing facts, as the following minimal example shows.

2.8.1. Example. Consider the coin flip from Example 1.3.5. It is easy to find
the following structures that are equivalent to the initial and the resulting model,
but how can we symbolically describe the update which transforms one into the
other?

(V = {p}, θ = p, Oa = {p}, Ob = {p})

× ???

= (V = {p}, θ = >, Oa = ∅ , Ob = {p})

In product updates of Kripke and action models, the name of a resulting world
(w, a1) makes clear that it “comes from” w. In contrast, a state of a knowledge
structure like ∅ does not reveal its history or any relation to the previous state
{p}.

For purely epistemic actions this was not a problem — we only add propositions
from V + to the state to distinguish different epistemic events. But for factual
change, propositions from V have to be modified and we need a way to remove
them from states.

Our solution is to copy propositions: We store the old value of p in a fresh
variable p◦. Then we rewrite the state law and observations using substitutions.

We now define transformation with factual change, adding the components
V− and θ− to describe which propositions are changed and how. Note that the
belief transformers without factual change as discussed in the previous section are
exactly those transformers where V− = ∅.

2.8.2. Definition. A belief transformer with factual change, also just called
transformer, for the vocabulary V is a tuple X = (V +, θ+, V−, θ−,Ω

+) where

• V + is a set of fresh atomic propositions such that V ∩ V + = ∅,

• θ+ is a possibly epistemic formula from L(V ∪ V +) called the event law,

• V− ⊆ V is a subset of the original vocabulary called the modified subset,

• θ− : V− → LB(V ∪ V +) is a map from modified propositions to boolean
formulas called the change law,

• Ω+
i ∈ LB(V + ∪ V +′) is a boolean formula for each agent i ∈ I called the

event observation law.

2.8. Symbolic Factual Change 65

To transform a belief structure F = (V, θ,Ωi) with X , we define a new belief
structure F × X := (V new, θnew,Ωnew

i) where

1. V new := V ∪ V + ∪ V ◦−

2. θnew := [V− 7→ V ◦−] (θ ∧ ‖θ+‖F) ∧
∧
q∈V −

(
q ↔ [V− 7→ V ◦−](θ−(q))

)
3. Ωnew

i :=
(
[V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi

)
∧ Ω+

i

An event is a pair (X , x) where x ⊆ V +. Given a scene (F , s) and an event
(X , x), let (F , s)× (X , x) := (F × X , sx) where the new actual state is given by:

sx := (s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)}

To explain this definition, let us consider the components one by one.
First, the new vocabulary V new besides V and V + now also contains V ◦− =

{p◦ | p ∈ V−}. These are fresh copies of the modified subset. We use them to keep
track of the old valuation.

Second, the new state law θnew: A state in the resulting structure needs to
satisfy the old state law and the event law encoding the preconditions. For modified
propositions the old values have to be used, hence we apply a substitution to
both laws in the left conjunct. Modified propositions are then overwritten in the
right conjunct, using θ− which encodes postconditions. As in Definition 1.3.1,
postconditions are evaluated in the old model, hence we also substitute here.

Third, to define the new observations Ωnew
i we replace modified variables by

their copies. Two substitutions are needed because Ωi is in a double vocabulary.
Old observations induce new ones via the state law. For example, if q was flipped
publicly, then q ↔ ¬q◦ is part of the new state law and observing whether q
is equivalent to observing whether ¬q◦, i.e. having observed q in the original
structure.

Finally, the new actual state sx is the union of four sets: propositions in the
old state that have not been modified (s \ V−), copies of the modified propositions
that were in the old state (s ∩ V−)◦, those propositions labeling the actual event
x and the modified propositions whose precondition was true in the old state
{p ∈ V− | s ∪ x � θ−(p)}.

Note that we do not make it part of the definition of transformation that the
encoded precondition has to hold: (F , s)× (X , x) is well-defined even if we do not
have F , s � [a v V +] θ+. But then it yields a tuple where the second element, the
resulting actual state, is not a state of the first element, the resulting structure. In
practice and in Definition 2.10.2 below we check the encoded precondition before
applying a transformer and only ever apply possible events — similar to how
action models are used in Definition 1.3.7 above.

66 Chapter 2. Symbolic Model Checking DEL

2.8.3. Example. We can now model the coin flip from Example 1.3.5 as follows.
Because we use the more general belief (instead of knowledge) structures, the
initial structure now has observational laws Ωi instead of sets of observational
variables Oi:

(V = {p}, θ = p, Ωa = p↔ p′, Ωb = p↔ p′)

The following transformer models the coin flip visible to b but not to a. We use q
to label the two different events, representing different outcomes of the coin flip.

(V + = {q}, θ+ = >, V− = {p}, θ−(p) := q, Ω+
a = >, Ω+

b = q ↔ q′)

The result of applying the latter to the former is this:

(V = {p, q, p◦}, θ = p◦ ∧ (p↔ q), Ωa = p◦ ↔ p◦′, Ωb = (p◦ ↔ p◦′) ∧ (q ↔ q′))

This is not syntactically identical but still equivalent to the resulting structure we
gave in Example 2.8.1, as we will discuss in Sections 2.11 and 2.12.

2.8.4. Example. In general, a publicly observable change p := ϕ which sets the
truth value of p to the current truth value of a propositional formula ϕ can be
modeled by this transformer:

(V + = ∅, θ+ = >, V− = {p}, θ−(p) := ϕ, Ω+
i = >)

To conclude this section, we note that factual change can be added to knowl-
edge transformers instead of belief transformers in the same way. The following
definition shows what needs to be changed: We apply the substitution [V− 7→ V ◦−]
to the observational variables Oi instead of the observation laws Ωi.

2.8.5. Definition. A knowledge transformer with factual change for the vocab-
ulary V is a tuple X = (V +, θ+, V−, θ−, O

+), where V +, θ+, V− and θ− are the
same as for transformers in Definition 2.8.2 and O+

i ⊆ V + is a subset of V + for
each agent i ∈ I, called the event observation.

To transform a knowledge structure F = (V, θ, Oi) with a knowledge trans-
former with factual change X , let F × X := (V new, θnew, Onew

i) where V new and
θnew are the same as in Definition 2.8.2 and Onew

i :=
(
[V− 7→ V ◦−]Oi

)
∪O+

i .
To transform a scene (F , s) where F is a knowledge structure, with an event

(X , x) where X is a knowledge transformer with factual change, the actual state
of the result is the same as in Definition 2.8.2.

The implementation which we introduce in Chapter 3 implements both knowl-
edge and belief transformers with factual change, because using observational
variables instead of laws, when applicable, always uses less memory.

2.9. Equivalence Proof for the General Case 67

2.9 Equivalence Proof for the General Case
We now show that transformers describe exactly the same class of updates as
action models. The main ingredients for the proof are Lemma 2.6.7, to show that
a Kripke model and a belief structure are equivalent, and two definitions, to go
from transformers to action models and vice versa.

This is the most general setting we consider in this thesis. The following two
definitions generalize the previous translations for S5 updates in Definitions 2.5.4
and 2.5.5, respectively.

2.9.1. Definition. The function Act maps transformers to action models as
follows. Given an event (X = (V +, θ+, V−, θ−,Ω

+), x), we define an action
(Act(X) := (A, pre, post, R), x) by

• A := P(V +)

• pre(a) := [a v V +] θ+

• posta(p) :=

{
[a v V +] (θ−(p)) if p ∈ V−
p otherwise

• Ri := {(a, b) | a ∪ b′ � Ω+
i }

where b′ denotes a copy of b as in Definition 1.8.8.

2.9.2. Definition. We define the function Trf mapping action models to trans-
formers. Consider an action (A = (A, pre, post, R), a0). Let n := dlog2 |A|e and
let ` : A → P({q1, . . . , qn}) be an injective labeling function using fresh atomic
variables qk.

Then let (Trf(A) := (V +, θ+, V−, θ−,Ω
+), `(a0)) be the event defined by

• V + := {q1, . . . , qn}

• θ+ :=
∨
a∈A (pre(a) ∧ `(a) v V +)

• V− := {p ∈ V | ∃a : posta(p) 6= p}

• θ−(p) :=
∨
a∈A (`(a) v V + ∧ posta(p))

• Ω+
i :=

∨
(a,b)∈Ri (`(a) v V + ∧ (`(b) v V +)′)

Besides these translations for the dynamic parts, in the following we will also
use the translationsM(·) and F(·) from belief structures to Kripke models and
vice versa, as given in Definitions 2.6.8 and 2.6.9. Now everything is in place
to state and prove the main result of this section. The following generalizes
Theorem 2.5.7.

68 Chapter 2. Symbolic Model Checking DEL

2.9.3. Theorem.

(i) Act from Definition 2.9.1 is truth-preserving: For any scene (F , s), any
event (X , x) and any formula ϕ over the vocabulary of F we have:

(F , s)× (X , x) � ϕ ⇐⇒ (M(F), s)× (Act(X), x) � ϕ

(ii) Trf from Definition 2.9.2 is truth-preserving: For any pointed model (M, w),
any action (A, a) and any formula ϕ over the vocabulary ofM we have:

(M×A, (w, a)) � ϕ ⇐⇒ (F(M), gM(w))× (Trf(A), `(a)) � ϕ

where gM is the possibly extended valuation π from F(M) in Definition 2.6.9.

Proof:
By Lemma 2.6.7. We first need appropriate functions g. For part (i), g needs
to map worlds ofM(F)× Act(X), i.e. pairs (s, x) ∈ P(V)× P(V +), to states of
F × X , i.e. subsets of V ∪ V + ∪ V ◦−. Let

g(s, x) := (s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)}

which is exactly sx from Definition 2.8.2 above. We prove the conditions C1 to
C3 from Lemma 2.6.7 for this g.

For C1, take any two worlds (s, x) and (t, y). We need to show g(s, x)(g(t, y))′ �
Ωnew
i iff Rnew

i (s, x)(t, y). For this, start on the left side and note the following
equivalences. We have g(s, x)(g(t, y))′ � Ωnew

i iff

(s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)}
∪ ((t \ V−) ∪ (t ∩ V−)◦ ∪ y ∪ {p ∈ V− | t ∪ y � θ−(p)})′
� [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi ∧ Ω+

i

Here V− and V ′− do not occur in the formula, as old epistemic relations do not
depend on new values of modified propositions. Hence we can drop the subsets of
V− and V ′− to obtain the equivalent condition

(s\V−)∪(s ∩ V−)◦∪x∪(t\V−)′∪(t◦∩V ◦−)′∪y′ � [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi∧Ω+
i

in which we can split both sides into separate vocabularies:

(s \ V−) ∪ (s ∩ V−)◦ ∪ (t \ V−)′ ∪ (t◦ ∩ V ◦−)′ � [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi

and x ∪ y′ � Ω+
i

Now undo the ◦-substitution on both sides in the first conjunct to see that
it is equivalent to s ∪ t′ � Ωi. Hence the whole condition is equivalent to
RMi st and RAi xy, which is exactly Rnew

i (s, x)(t, y) by definition ofM(·) and Defi-
nition 2.9.1.

2.9. Equivalence Proof for the General Case 69

To show C2, take any (s, x) and any p ∈ V . We have to show that p ∈ g(s, x) iff
p ∈ πnew(s, x) = {p ∈ V | M, s � postx(p)}. There are two cases. First, if p /∈ V−,
then postx(p) = p by Definition 2.9.1 and we directly have p ∈ g(s, x) iff p ∈ s iff
M, s � p iff p ∈ πnew(s, x). Second, if p ∈ V−, then p ∈ g(s, x) iff s ∪ x � θ−(p)
by definition of g and postx(p) = [x v V +]θ−(p) by Definition 2.9.1. Hence we
have a chain of equivalences: p ∈ g(s, x) iff s ∪ x � θ−(p) iff s � [x v V +]θ−(p) iff
M, s � [x v V +]θ−(p) iff p ∈ πnew(s, x).

For C3, take any snew ⊆ V ∪ V + ∪ V ◦−. We want to show that snew � θnew

iff there is a world (s, x) such that g(s, x) = snew. For left-to-right, suppose
snew � θnew, i.e.:

snew � [V− 7→ V ◦−]
(
θ ∧ ‖θ+‖F

)
∧

∧
q∈V −

(
q ↔ [V− 7→ V ◦−](θ−(q))

)
(2.1)

Let s := (snew ∩ (V \ V−)) ∪ {p ∈ V− | p◦ ∈ snew}. From 2.1 we then get s � θ,
which means that s is a state of F and thus also a world ofM(F). Second, let
x := snew ∩ V +. Now by definition of g we have g(s, x) = sx = snew.

For right-to-left, suppose we have a world (s, x) such that g(s, x) = sx = snew.
We now have to show 2.1 above for snew = (s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− |
s ∪ x � θ−(p)}.

First note that s is a world ofM(F) and thus a state of F , i.e. we have s � θ.
Second, (s, x) is a world ofM(F)×Act(X), hence we have s∪ x � ‖θ+‖F . Third,
we have by definition of g that for all q ∈ V− on the one hand q◦ ∈ snew iff q ∈ s
and on the other hand q ∈ snew iff s � θ−(q). All three together imply 2.1.

For part (ii), g should map worlds of the modelM×A to states of the structure
F(M)× Trf(A). Again we use sx from above, but s and x are now given by the
propositional encodings gM(w) and `(a). Let g be defined by this:

g(w, a) := (gM(w)\V−)∪ (gM(w) ∩ V−)◦∪ `(a)∪{p ∈ V− | gM(w)∪ `(a) � θ−(p)}

We now have to check C1 to C3 again for this g. The proofs follow the same
pattern as in part (i), with gM(w) and `(a) taking the role of s and x respectively.

For C1, take any two worlds (w1, a1) and (w2, a2) in the updated model. We
need to show that g(w1, a1)(g(w2, a2))

′ � Ωnew
i iff Rnew

i (s, x)(t, y). For this, note
the following equivalences. We have g(w1, a1)(g(w2, a2))′ � Ωnew

i iff

(gM(w1) \ V−) ∪ (gM(w1) ∩ V−)◦ ∪ `(a1) ∪ {p ∈ V− | gM(w1) ∪ `(a1) � θ−(p)}∪
((gM(w2) \ V−) ∪ (gM(w2) ∩ V−)◦ ∪ `(a2) ∪ {p ∈ V− | gM(w2) ∪ `(a2) � θ−(p)})′
� [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi ∧ Ω+

i

Again V− and V ′− do not occur in the formula, so we can drop the subsets of V−
and V ′− to obtain the equivalent condition

(gM(w1) \ V−) ∪ (gM(w1) ∩ V−)◦ ∪ `(a1)

∪ (gM(w2) \ V−)′ ∪ (gM(w2)◦ ∩ V ◦−)
′ ∪ `(a2)′

� [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi ∧ Ω+
i

70 Chapter 2. Symbolic Model Checking DEL

which we can split into separate vocabularies:

(gM(w1) \ V−) ∪ (gM(w1) ∩ V−)◦

∪ (gM(w2) \ V−)′ ∪ (gM(w2)◦ ∩ V ◦−)
′

� [V− 7→ V ◦−][(V−)′ 7→ (V ◦−)′]Ωi

and `(a1) ∪ `(a2)′ � Ω+
i

Now we can undo the ◦-substitution on both sides in the first conjunct to see that
it is equivalent to gM(w1) ∪ gM(w2)′ � Ωi. In the proof of Theorem 2.6.8 we have
shown that the conditions of Lemma 2.6.7 also apply to gM in the construction of
F(M). In particular, by condition C1 we have gM(w1)∪gM(w2)′ � Ωi iff RMi w1w2.
Moreover, by Definition 2.9.2 we have `(a1) ∪ `(a2)′ � Ω+

i iff RAi a1a2. Hence the
combined condition is equivalent to RMi w1w2 and RAi a1a2. By Definition 1.3.1 for
the product update, this is exactly Rnew

i (w1, a1)(w2, a2).
To show C2, take any world (w, a) ofM×A and any p ∈ V . We have to show

that p ∈ g(w, a) iff p ∈ πnew(w, a) = {p ∈ V | M, s � posta(p)}. Consider the set
V− := {p ∈ V | ∃a : posta(p) 6= p} from Definition 2.9.1 and distinguish two cases.

First, if p /∈ V−, then posta(p) = p and we directly have p ∈ g(w, a) iff
p ∈ gM(w) iffM, w � p iff p ∈ πnew(w, a).

Second, if p ∈ V−, then p ∈ g(w, a) iff gM(w) ∪ `(a) � θ−(p) by definition of
g. Note that θ−(p) in Definition 2.9.2 is a disjunction over all actions in A with
mutually exclusive disjuncts, because only one action can actually take place.
Hence we have the following chain of equivalences: p ∈ g(w, a) iff gM(w) ∪ `(a) �
θ−(p) iff gM(w) ∪ `(a) �

∨
a∈A (`(a) v V + ∧ posta(p)) iff gM(w) � posta(p) iff

p ∈ πnew(s, x).
For C3, take any snew ⊆ V ∪ V + ∪ V ◦−. We want to show that snew � θnew

iff there is a world (w, a) such that g(w, a) = snew. To prepare both directions,
let us “take apart” snew into s := (snew ∩ (V \ V−)) ∪ {p ∈ V− | p◦ ∈ snew} and
x := snew ∩ V +.

For left-to-right, suppose snew � θnew, i.e.:

snew � [V− 7→ V ◦−]
(
θ ∧ ‖θ+‖F

)
∧

∧
q∈V −

(
q ↔ [V− 7→ V ◦−](θ−(q))

)
(2.2)

From 2.2 we then get s � θ, which means that s is a state of F(M). By condition
C3 there must be a world w of M such that gM(w) = s. Remember that we
defined x = snew ∩ V +. From 2.2 we have s ∪ x � ‖θ+‖F . By Definition 2.9.2 we
have θ+ :=

∨
a∈A (pre(a) ∧ `(a) v V +). Hence there must be an action a ∈ A such

that `(a) = x and s ∪ x � ‖pre(a)‖F , which impliesM, w � pre(a). Hence (w, a)
is a world ofM×A. Moreover, from 2.2 we get for all q ∈ V− that q ∈ snew iff
snew � posta(q). Hence by definition of g we have g(w, a) = snew.

For right-to-left, suppose we have a world (w, a) inM×A such that g(w, a) =
snew. We now have to show snew � θnew, i.e. 2.2 above. By definitions of s and

2.9. Equivalence Proof for the General Case 71

x we have gM(w) = s and `(a) = x. First note that w is a world of M and
thus s = gM(w) is a state of F , i.e. we have s � θ. Second, (w, a) is a world of
M×A, hence M, w � pre(a). With gM(w) ∪ `(a) = s ∪ x therefore, we have
s ∪ c � pre(a) ∧ `(a) v V + and thus s ∪ x � ‖θ+‖F by Definition 2.9.2. Third, we
have by definition of g that for all q ∈ V− (i) q◦ ∈ snew iff q ∈ s and (ii) q ∈ snew

iff s � θ−(q). All three together imply 2.2. 2

Given the translations from explicit action models to symbolic transformers,
and a proof of their correctness, we immediately obtain another connection,
between Arrow Update Logic from Section 1.4 and our symbolic version of DEL
with transformers.

2.9.4. Theorem. For every arrow update there is an equivalent transformer.
More formally, for every arrow update U as defined in Definition 1.4.1 there is an
event (X , x) such that

M∗ U,w � ϕ iff (F(M), gM(w))× (X , x) � ϕ

where F(M) and gM(w) are as in Definition 2.6.9.

Proof:
It was shown in [KR11b] that for every arrow update U there is an equivalent action
(A, a). This action model can be translated to a transformer X by Definition 2.9.2,
which will be equivalent to A by Theorem 2.9.3.

Together, we have:

M∗ U,w � ϕ iff M, w × (A, a) � ϕ iff (F(M), gM(w))× (Trf(A), `(a)) � ϕ
2

The translation procedure given by this proof is not efficient: Going from an
arrow update U to an equivalent action model A can already lead to an exponential
blow-up. Moreover, then going from A to Trf(A) using Definition 2.9.2 means we
add dlog2 |A|e atomic propositions. At least the latter can be avoided by going
directly from arrow updates to transformers, using the following definition.

2.9.5. Definition. Given an arrow update U , we define a new set of fresh
variables V + := {pϕ | ∃(ϕ, i, χ) ∈ U or ∃(ψ, i, ϕ) ∈ U} with an element for each
formula occurring in an arrow in U . Then we define a belief transformer Trf(U) :=
(V +, θ+,Ω+), where θ+ :=

∧
pϕ∈V +(pϕ ↔ ϕ) and Ω+

i :=
∨

(ψ,i,χ)∈U{pψ ∧ p′χ}.

2.9.6. Theorem. The function Trf(U) from Definition 2.9.5 is truth-preserving:
For any Kripke modelM and any arrow update U we have

M∗ U,w0 � ϕ iff (F(M), gM(w0))× (Trf(U), x0) � ϕ

where F(M) and gM(w) are as in Definition 2.6.9 and the actual event is given
by x0 := {pϕ ∈ V + | M, w0 � ϕ}.

72 Chapter 2. Symbolic Model Checking DEL

Proof:
We use Lemma 2.6.7, mapping worlds of the modelM∗U to states of the structure
(F(M), gM(w0))× (Trf(U), x0) by g(w) := gM(w) ∪ {pϕ ∈ V + | M, w � ϕ}.

To show C1, fix any agent i and any two worlds w1 and w2 ofM∗U . We have
the following chain of equivalences: RM∗Ui w1w2 holds iff we have

RMi w1w2 and there are ψ, χ s.t. (ψ, i, χ) ∈ U andM, w1 � ψ andM, w2 � χ

iff
gM(w1) ∪ gM(w2)′ � Ωi and

{pϕ ∈ V + | M, w1 � ϕ} ∪ {p′ϕ ∈ V + | M, w2 � ϕ} �
∨

(ψ,i,χ)∈U

{pψ ∧ p′χ}

iff
gM(w1) ∪ {pϕ ∈ V + | M, w1 � ϕ}

∪ gM(w2)′ ∪ {p′ϕ ∈ V + | M, w2 � ϕ}
� Ωi ∧

∨
(ψ,i,χ)∈U

{pψ ∧ p′χ}

iff
gM(w1) ∪ {pϕ ∈ V + | M, w1 � ϕ}

∪ gM(w2)′ ∪ {p′ϕ ∈ V + | M, w2 � ϕ}
� Ωi ∧ Ω+

i

iff
g(w1) ∪ g(w2)′ � Ωi ∧ Ω+

i

For C2, take any world w ofM∗ U and any p ∈ U where U is the original
vocabulary ofM. Arrow updates never modify the valuation, so we immediately
have p ∈ g(w) iff p ∈ gM(W) iff p ∈ πM(w).

For C3, take any t ⊆ V ∪ V + where V is the vocabulary of F(M), possibly
extending that ofM. We show only left-to-right, the other direction is similar.

Suppose t is a state of the resulting structure: t � θ∧‖θ+‖F(M). Then t∩V � θ
and thus t ∩ V is a state of F(M). In particular, there is a world w ofM such
that gM(w) = t ∩ V . Arrow updates never delete worlds, so w is also a world of
M∗ U .

Spelling out θ+, we have t � ‖
∧
pϕ∈V +(pϕ ↔ ϕ)‖

F(M)
, which means that for

all pϕ ∈ V + we have pϕ ∈ t iff t � ‖ϕ‖F(M). But note that ‖ϕ‖F(M) ∈ LB(V) and
recall gM(w) = t ∩ V . Therefore pϕ ∈ t iff gM(w) ∩ V � ‖ϕ‖F(M) iffM, w � ϕ.

Hence we have t ∩ V + = {pϕ ∈ V + | M, w � ϕ}, which is exactly the second
part of our definition for g. Together, we have a world w in M∗ U such that
t = g(w). 2

2.9.7. Example. Consider the arrow update U = {(p, a, p), (¬p, a,¬p), (>, b,>)}
from Example 1.4.2, with a and b referring to Alice and Bob, respectively. Defini-
tion 2.9.5 gives us the following equivalent belief transformer:(

V + = {pp, p¬p, p>}, θ+ =
(pp ↔ p) ∧ p>
∧(p¬p ↔ ¬p)

,
Ωa = (pp ∧ p′p) ∨ (p¬p ∧ p′¬p)
Ωb = >

)

2.10. Symbolic Language and Reduction Axioms 73

Here θ+ implies pp ↔ p¬p and p. Hence we can remove p¬p and p> from V + to
get the shorter equivalent (V + = {pp}, θ+ = (pp ↔ p), Ωa = (pp ↔ p′p), Ωb = >)
which in turn is equivalent to (V + = {q}, θ+ = (q ↔ p), O+

a = {q}, O+
b = ∅) from

Example 2.5.6.

The attentive reader will notice that Definition 2.9.5 still encodes an exponential
blow-up: If there are n different formulas occurring in the arrows of U , then we
also use |V +| = n new propositional variables to define Trf(U). This means that
the transformer in principle talks about 2n possible events, just like the action
model translation given in [KR11b, Definition 4.6].

We can define a better translation with less propositions by not labeling each
formula occurring in the arrows with a new proposition, but with a subset of
a large enough set of fresh propositions — similar to the labeling of actions in
Definition 2.9.2. This yields an equivalent transformer such that |V +| = dlog2 ne
where n is the number of different formulas occurring in the original arrow update.
The downside of this encoding is that the connection between individual arrows
and the observation laws becomes much less intuitive.

Translating arrow updates to transformers also sheds new light on a restriction
we made in the definition of transformers and transformations, namely the strict
separation between V and V +. In particular, we demanded that observational
laws Ω+

i are from the boolean language LB(V +).
Suppose we would allow observational laws to come from the language LB(V ∪

V +) including the original vocabulary V or even the epistemic language L(V ∪V +).
For this, we would have to adapt the definition of transformation to first translate
observational laws to local boolean equivalents. The result would be a symbolic
representation for updates that allows for a direct translation of arrows: for each
(ψ, i, χ), add the disjunct ψ ∧ χ′ to Ωi.

In fact, arrow updates then correspond to those knowledge transformers where
V + = ∅, reflecting the fact that they can only refine models and never increase
the number of worlds. We leave it as future work to define and study the details
of such “symbolic arrow updates”, and return to transformers for the next section.

2.10 Symbolic Language and Reduction Axioms
Analogous to the action model language from Definition 1.3.6, we can also add
transformers to our language as operators.

2.10.1. Definition. Given a vocabulary V , the symbolic language LS(V) of
Dynamic Epistemic Logic with dynamic operators for transformers extends L(V)
and is given by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | C∆ϕ | [X , x]ϕ

where p ∈ V , i ∈ I, ∆ ⊆ I and (X, x) is an event as in Definition 2.8.2.

74 Chapter 2. Symbolic Model Checking DEL

This language with dynamic operators can be interpreted on belief structures.

2.10.2. Definition. Suppose we have a transformer X = (V +, θ+, V−, θ−,Ω
+).

The corresponding dynamic operator in LS(V) is interpreted as follows:

(F , s) � [X , x]ϕ iff (F , s) � [x v V +]θ+ implies (F × X , sx) � ϕ

where sx is the new actual state as in Definition 2.8.2.

We can see how [x v V +]θ+ takes over the role of pre(a). These semantics
yield the following globally valid reduction axioms, similar to those for action
models in Fact 1.3.8.

2.10.3. Fact. The following LS formulas called reduction axioms are valid.

• [X , x]p↔ ([x v V +]θ+ → ([x v V +]θ−(p)))

• [X , x]¬ψ ↔ ([x v V +]θ+ → ¬[X , x]ψ)

• [X , x](ψ1 ∧ ψ2)↔ ([X , x]ψ1 ∧ [X , x]ψ2)

• [X , x]Kiψ ↔ ([x v V +]θ+ →
∧
{Ki[X , y]ψ | x ∪ y′ � Ω+})

Hence for every formula in LS without C there is an equivalent formula in L.

Formulas from LS can also be evaluated symbolically by translating them
to boolean equivalents. In contrast to the reduction axioms, this translation is
with respect to a specific belief structure. For a belief transformer (X , x) without
factual change, i.e. where we have V− = ∅, we can use the same reduction as for
knowledge transformers mentioned on page 56:

‖[X , x]ϕ‖F := ‖[x v V +]θ+‖F → [x v V +]‖ϕ‖F×X

For transformers with factual change the boolean translation becomes more
complex, because we also need to substitute postconditions for variables and
restore the old values. The following definition and theorem give all details.

2.10.4. Definition. Given a belief structure F we can translate from L(V) to
LB(V) as described in Definition 2.6.3. We extend this translation to LS(V) with
the following case.

‖[X , x]ϕ‖F := ‖[x v V +]θ+‖F → [V ◦− 7→ V−][x v V +][V− 7→ θ−(V−)]‖ϕ‖F×X

Admittedly, this chain of substitutions deserves some explanation. We can
read the consequent of this formula from inside out, i.e. from right to left, as
follows.

2.10. Symbolic Language and Reduction Axioms 75

1. ‖ϕ‖F×X is the boolean equivalent of ϕ with respect to the new structure
F × X after the transformation.

2. The operator [V− 7→ θ−(V−)] replaces all variables in V− with their postcon-
ditions, slightly abusing notation: It denotes the simultaneous substitution
of θ−(q) for each q ∈ V−.

In principle we would have to apply an additional substitution [V− 7→ V ◦−]
to all θ−(q), to evaluate postconditions with the old values of changed
propositions. But this would be undone by [V ◦− 7→ V−] in step 4 anyway, so
it makes no difference whether we use θ−(q) or [V− 7→ V ◦−]θ−(q) here.

In the proof of Theorem 2.10.5 however, the nested substitution is needed
as shown in line (5) below.

3. The next operator [x v V +] simulates the actual event x.

4. Finally, [V ◦− 7→ V−] moves the copies of modified propositions back to the
original variables.

2.10.5. Theorem. The translation given in Definition 2.10.4 is truthful: for any
belief structure F , any state s, any event (X , x) and any formula ϕ we have:

(F , s) � [X , x]ϕ ⇐⇒ s � ‖[X , x]ϕ‖F

Proof:
The interesting case is when the precondition holds, so we first assume that
(F , s) � [x v V +]θ+. Then we have the following chain of equivalences.

sx � ‖ϕ‖F×X (1)

⇐⇒ (s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)} � ‖ϕ‖F×X (2)

⇐⇒ (s \ V−) ∪ (s ∩ V−)◦ ∪ x � [V− 7→ [V− 7→ V ◦−]θ−(V−)]‖ϕ‖F×X (3)

⇐⇒ (s \ V−) ∪ (s ∩ V−)◦ � [x v V +][V− 7→ [V− 7→ V ◦−]θ−(V−)]‖ϕ‖F×X (4)

⇐⇒ s � [V ◦− 7→ V−][x v V +][V− 7→ [V− 7→ V ◦−]θ−(V−)]‖ϕ‖F×X (5)

⇐⇒ s � [V ◦− 7→ V−][x v V +][V− 7→ θ−(V−)]‖ϕ‖F×X (6)

To clarify what is happening here, note that lines (1) and (2) take place in the
language LB(V ∪ V + ∪ V ◦−), line (3) in LB((V \ V−) ∪ V + ∪ V ◦−), line (4) in
LB((V \ V−) ∪ V ◦−), and lines (5) and (6) in LB(V).

76 Chapter 2. Symbolic Model Checking DEL

Together with the semantics for [X , x], we can now finish the proof:

(F , s) � [X , x]ϕ

⇐⇒ (F , s) � [x v V +]θ+ impl. (F × X , sx) � ϕ by Definition 2.10.2

⇐⇒ s � ‖[x v V +]θ+‖F impl. sx � ‖ϕ‖F×X by Theorem 2.6.4

⇐⇒ s � ‖[x v V +]θ+‖F impl. s � [V ◦− 7→ V−][x v V +][V− 7→ θ−(V−)]‖ϕ‖F×X
by (1)⇐⇒ (6) above

⇐⇒ s � ‖[x v V +]θ+‖F → [V ◦− 7→ V−][x v V +][V− 7→ θ−(V−)]‖ϕ‖F×X
by Definition 1.0.2

⇐⇒ s � ‖[X , x]ϕ‖F by Definition 2.10.4

2

2.11 Symbolic Bisimulations
For Kripke models the notion of bisimulation characterizes the situation when two
models are equivalent — see Definition 1.1.5 and Theorems 1.1.6 and 1.1.8 in the
previous chapter. We now investigate how bisimulations can be defined for our
symbolic structures.

When are two knowledge or belief structures equivalent? This question comes
with a hidden parameter, namely the vocabulary for which we want them to be
equivalent. If the structures have disjoint vocabularies, then there are no non-
trivial formulas which can be interpreted on both. So we will assume that their
vocabularies at least overlap. They do not have to be same, though. For example,
the two structures can use different auxiliary variables that encode epistemic
relations. Or they might use the same variables, but still only be equivalent with
respect to a subset of the vocabulary.

The following definition describes a symbolic equivalent of bisimulations for
knowledge structures. We use a boolean formula over a double vocabulary to
encode the relation between the two models represented by the structures, similar
to how we encoded relations in belief structures.

2.11.1. Definition. Suppose we have two knowledge structures F1 = (V1, θ1, O1)
and F2 = (V2, θ2, O2). Consider a subset of their shared vocabulary V ⊆ V1 ∩ V2.
To separate any remaining shared vocabulary not in V , let V be the disjoint union
of V , V1 without V and V2 without V , i.e. V := V ∪ ((V1 \ V)] (V2 \ V)).

Similar to our notation with primes and ◦, for any set X, let X∗ denote a fresh
copy of all variables in X.

2.11. Symbolic Bisimulations 77

A boolean formula β ∈ LB(V ∪ V ∗) is called a symbolic bisimulation for V
between F1 and F2 iff for any states s1 of F1 and s2 of F2 such that s1 ∪ s∗2 � β,
we have:

1. Propositional agreement: For all p ∈ V we have s1 � p iff s2 � p.

2. Forth: For any agent i and any state t1 of F1 such that Oi
1 ∩ s1 = Oi

1 ∩ t1,
there is a state t2 of F2 such that t1 ∪ t∗2 � β and Oi

2 ∩ s2 = Oi
2 ∩ t2.

3. Back: For any agent i and any state t2 of F2 such that Oi
2 ∩ s2 = Oi

2 ∩ t2,
there is a state t1 of F1 such that t1 ∪ t∗2 � β and Oi

1 ∩ s1 = Oi
1 ∩ t1.

Similar to Kripke models, we call two scenes (F1, s1) and (F2, s2) bisimilar iff
there is a symbolic bisimulation β such that s1 ∪ s∗2 � β.

The conditions for a symbolic bisimulation encode the usual definition of
bisimulation: Connected worlds first need to agree on the atomic propositions, in
our case only those in the shared vocabulary. Then we have the “forth” and “back”
conditions which say that any reachable state on one side must be connected to a
reachable state on the other side.

An interesting feature of symbolic bisimulations is that all three conditions
about β can themselves be expressed as boolean formulas and therefore be checked
easily. In particular, the following lemma means that we do not have to generate
the encoded explicit Kripke models to check a bisimulation between two knowledge
structures.

2.11.2. Lemma. Suppose we have two knowledge structures F1 and F2. The
following are equivalent:

• β is a symbolic bisimulation for V between F1 and F2;

• β encodes a bisimulation for the vocabulary V between the two encoded S5
Kripke modelsM(F1) andM(F2);

• the following three boolean formulas are tautologies, i.e. their BDDs and the
single BDD of their conjunction are equal to >:

(θ1 ∧ θ∗2 ∧ β)→
∧
p∈V

(p→ p∗)

(θ1 ∧ θ∗2 ∧ β)→
∧
i

(
∀(V \Oi

1)
(
θ1 → ∃(V \Oi

2)
∗

(θ∗2 ∧ β′)
))

(θ1 ∧ θ∗2 ∧ β)→
∧
i

(
∀(V \Oi

2)
∗ (
θ∗2 → ∃(V \Oi

1) (θ1 ∧ β′)
))

78 Chapter 2. Symbolic Model Checking DEL

2.11.3. Theorem. Symbolic bisimulation implies semantic equivalence: If β is a
symbolic bisimulation for V between the knowledge structures F1 and F2 such that
s1 ∪ s∗2 � β, then for all ϕ ∈ L(V) we have that (F1, s1) � ϕ iff (F2, s2) � ϕ.

Proof:
This follows directly from Lemma 2.11.2 and Theorem 1.1.6. An alternative proof
is by induction on ϕ and proceeds analogous to a proof of Theorem 1.1.6. 2

Given this symbolic analogue of Theorem 1.1.6, we are naturally also interested
in the other direction: If two knowledge structures satisfy the same formulas, must
there be a symbolic bisimulation between them? The answer is yes and we have
the following symbolic version of the Hennessy-Milner Theorem 1.1.8.

2.11.4. Theorem. Semantic equivalence implies symbolic bisimilarity: Suppose
we have two knowledge structures F1 and F2 such that for all ϕ ∈ L(V) we have
that (F1, s1) � ϕ iff (F2, s2) � ϕ. Then there is a symbolic bisimulation β for V
between F1 and F2 such that s1 ∪ s∗2 � β.

Proof:
Suppose (F1, s1) is semantically equivalent to (F2, s2). Then we also have that
(M(F1), s1) is semantically equivalent to (M(F2), s2). By Theorem 1.1.8 there
must a bisimulation Z linking s1 and s2. Now let β :=

∨
{t1 v V1 ∧ (t2 v V2)∗ |

(t1, t2) ∈ Z}. Note that this encodes Z in the sense that we have t1 ∪ t∗2 � β iff
Zt1t2. Hence by Lemma 2.11.2 it is also a symbolic bisimulation. 2

In this proof we made a detour via Kripke models. Instead, one can also try
to imitate the proof for explicit bisimulations: To prove the Hennessy-Milner
Theorem it is usually shown that ≡, the relation of satisfying the same formulas,
is itself already a bisimulation (see [BRV01, page 69]). This is also true for our
symbolic structures, but we have to be precise about the vocabularies: Semantic
equivalence for the modal language L(V) is not always expressible in the boolean
language LB(V ∪ V ∗), because the epistemic relations in the structures can be
encoded using different propositions outside of V . In particular, the condition∧
p∈V (p↔ p∗) in LB(V ∪ V ∗) is not a symbolic bisimulation for V in general and

this is why we defined the larger vocabulary V in Definition 2.11.1. Given these
complications, we are content with the detour in the proof above and leave it as
future work to spell out a more direct proof.

We can generalize symbolic bisimulations to belief structures, where they also
correspond to the standard notion of bisimulation for explicit Kripke models with
non-S5 relations. For brevity we only state the definition and omit the direct
analogues of Lemma 2.11.2, Theorem 2.11.4 and Theorem 2.11.3.

2.11. Symbolic Bisimulations 79

2.11.5. Definition. Suppose we have two belief structures F1 = (V1, θ1,Ω1),
F2 = (V2, θ2,Ω2) and let V and V be as in Definition 2.11.1.

A boolean formula β ∈ LB(V ∪ V ∗) is called a symbolic bisimulation for V
between F1 and F2 iff for any states s1 of F1 and s2 of F2 such that s1 ∪ s∗2 � β
we have:

1. Propositional agreement: For all p ∈ V we have s1 � p iff s2 � p.

2. Forth: For any agent i and any state t1 of F1 such that s1 ∪ t′1 � Ωi
1, there

is a state t2 of F2 such that t1 ∪ t∗2 � β and s2 ∪ t′2 � Ωi
2.

3. Back: For any agent i and any state t2 of F2 such that s2 ∪ t′2 � Ωi
2, there is

a state t1 of F1 such that t1 ∪ t∗2 � β and s1 ∪ t′1 � Ωi
1.

Again, this can also be expressed as a boolean formula. However, we now
use four copies of our vocabulary, corresponding to the four corners of the usual
bisimulation diagram.

The “forth” and “back” conditions translate to:

(θ1 ∧ θ∗2 ∧ β)→
∧
i

(
∀V ′

(
(θ′1 ∧ Ωi

1)→ ∃V ′∗
(
θ′2
∗ ∧ β′ ∧ (Ωi

2)
∗)))

(θ1 ∧ θ∗2 ∧ β)→
∧
i

(
∀V ′∗

(
(θ′2
∗ ∧ (Ωi

2)
∗
)→ ∃V ′

(
(θ′1 ∧ β′ ∧ Ωi

1)
)))

We could also state this condition with only three copies of our vocabulary,
as the original variables in V do not occur after the ∃ quantifier. Hence we can
overwrite V instead of introducing the fourth copy V ′∗ and adapt (Ωi

2)
∗ accordingly.

This observation can also be made about the standard definition of bisimulation for
explicit Kripke models: Bisimulation for standard modal logic is usually described
with four variables, but it is already expressible in the three-variable fragment of
first-order logic.

If we implement symbolic bisimulation checking with BDDs, unused variables
do not matter much — they just do not occur in the BDD of the existentially
qualified expression. Hence it is just as fine to use four copies of variables above.
Moreover, it is more natural and efficient to sort our variables in this way: Both
the BDDs Ωi describing the agents’ relations and a BDD encoding a symbolic
bisimulation β will first ask for the variables encoding the starting point and after
that for those encoding the ending point.

Finally, we mention but do not further investigate another connection between
our symbolic bisimulations and first-order logic fragments: k-variable fragments
of first-order logic share many desirable properties of modal logic, including
polynomial model checking complexity [Var95]. Similar to our definition for basic
modal logic above, the bisimulation notion for a k-variable fragment of first order
logic could be encoded using k many copies of the vocabulary, then consisting of
predicate symbols instead of atomic propositions.

80 Chapter 2. Symbolic Model Checking DEL

2.12 Redundancy and Optimization
DEL does not have temporal operators and agents never know the past explicitly.
Therefore, after dynamic updates with factual change any old valuation that got
overwritten becomes irrelevant. The original explicit product update on Kripke
models does this “garbage collection” better than our symbolic transformation: In
the coin flip Example 1.3.5, the result is a model which no longer contains any
information about the old state of the coin. In contrast, the resulting structure in
Example 2.8.3, where we modeled the same coin flip as a transformer, still has the
old value. But we have no way in the language to refer to it, so this information
is indeed garbage. Fortunately, we can often eliminate such left-over propositions
outside the original vocabulary V .

2.12.1. Example. The result from Example 2.8.3 was this belief structure:

(V = {p, q, p◦}, θ = p◦ ∧ (p↔ q), Ωa = p◦ ↔ p◦′, Ωb = (p◦ ↔ p◦′) ∧ (q ↔ q′))

This structure is ≡{p,q} equivalent to

(V = {p, q}, θ = p↔ q, Ωa = >, Ωb = q ↔ q′)

In general, we can always eliminate an old copy — or any other proposition
we no longer care about — from a structure if it is determined by the state law.

2.12.2. Lemma. Suppose a structure F uses the vocabulary V ∪{p} and p 6∈ V is
determined by the state law, i.e. θ → p or θ → ¬p is a tautology. Then there is a
smaller structure F ′ using only the vocabulary V , such that (F , s) ≡V (F ′, s\{p}).

Proof:
We obtain F ′ by removing p from the vocabulary, replacing θ with ∃pθ, and
replacing each Ωi with ∃p∃p′Ωi. A symbolic bisimulation between F and F ′ is
β :=

∧
{q ↔ q∗ | q ∈ V }. 2

Another form of redundancy can occur between the state law and the encoded
epistemic relations, be it observational variables or observation laws. A state law
already determines which states we consider at all. The epistemic part of our
structures however might repeat this information, in the sense that the set of
accessible states will always be a subset of the set of all states determined by θ.
We consider the following two toy examples to illustrate this.

2.12.3. Example. The following knowledge structures are equivalent:

(V = {p, q}, θ = (p↔ q), Oa = {p, q})

(V = {p, q}, θ = (p↔ q), Oa = {p})

2.12. Redundancy and Optimization 81

Similarly, these belief structures are equivalent:

(V = {p, q}, θ = (p↔ q), Ωa = (p→ q) ∧ (p′ ↔ q′) ∧ p′ ∧ q′)
(V = {p, q}, θ = (p↔ q), Ωa = p′)

In these structures the components Oa and Ωa repeat (part of) the restriction
imposed by the state law θ. But we do not have to repeat θ in Oi or Ωi because
the state semantics are restricted to states of F anyway. Importantly, the boolean
translations in Definitions 2.2.6 and 2.6.3 also explicitly repeat θ (and θ′) to
restrict the set of accessible states. Our observation from Example 2.12.3 can thus
be generalized as follows.

2.12.4. Lemma. Suppose we have a belief structure F = (V, θ,Ω). Moreover,
suppose that for each i we have a formula Ω≡i such that (θ ∧ θ′)→ (Ωi ↔ Ω≡i) is a
boolean tautology. Then F is equivalent to (V, θ,Ω≡).

In the implementation we can use Lemma 2.12.4 to optimize our structures.
And we are in for a treat: Most BDD packages provide a restrictLaw function
which does exactly the kind of minimization we need here. For a detailed example,
see Section 3.7.

We now end this section with a note how the above compares to optimization
techniques for explicit methods. On Kripke models a well known and efficient
optimization is to use a generated submodel: Given a pointed model (M, w) we
start with the set {w} and close it under the relations of all agents, iterating until
a fixpoint is reached. The set of worlds can then be restricted to this reachable
subset and we obtain a modelM′ such that (M, w) and (M′, w) satisfy the same
formulas — a bisimulation is given by the identity on the worlds we kept.

Symbolically, the analogue of a generated submodel would be this: Start with
an actual state s and close it under the encoded relations to get a set of reachable
states S. Now change the state law from θ to θ ∧

∨
{s v V | s ∈ S}, i.e. a

conjunction of the original state law and a big disjunction saying that only those
reachable states exist. The resulting structure will be equivalent and will satisfy
the same formulas. However, this procedure is not necessarily an optimization:
Because we are taking a conjunction, the BDD of the new state law can become
much larger than before, incorporating all the relations.

In contrast, the optimization enabled by Lemma 2.12.4 above is safe in the sense
that BDDs of the structure will not grow, because we only restrict them with the
state law, but do not include it into them. We can now see that our optimization
method is actually dual to generated submodels: We restrict reachability encoded
in the Ωi, using the set of states given by θ, not vice versa. Going full circle, the
explicit analogue of our optimization would be to add, remove or simply ignore
epistemic edges outside the set of possible worlds W .

In conclusion, the switch from an explicit to a symbolic representation implies
that we have to rethink what sort of redundancy we should avoid and which
methods of optimization perform well.

82 Chapter 2. Symbolic Model Checking DEL

2.13 Other Similarity Types, Beyond Normality
Before we end this chapter and move on to the details of implementing knowledge
and belief structures, we consider some theoretical questions on the generality of
our approach. Within the field of Modal Logic we only covered a small specific
case: all the modalities we studied are unary and normal. While these are the
most common modalities, especially in epistemic logic, it is natural to ask whether
our methods can be extended to n-ary and non-normal modalities. For the case
of n-ary modalities we can give a positive answer.

2.13.1. Example. Consider a ternary relation R ⊆ (W×W×W) and a symbolic
encoding θ ∈ L(V) of W as in Definition 1.8.1. Then we can define a boolean
formula in a triple vocabulary Ω(R) ∈ L(V ∪ V ′ ∪ V ′′) by

Ω(R) :=
∨

(x,y,z)∈R

(x v V ∧ y v V ′ ∧ z v V ′′)

to get this equivalence:

∀xyz : Rxyz ⇐⇒ x ∪ y′ ∪ z′′ � Ω(R)

For example, the binary modality ◦ from [Kur+95] with the standard semantics

M, x � ϕ◦ψ ⇐⇒ ∃y ∈ W s.t. ∃z ∈ W s.t. Rxyz andM, y � ϕ andM, z � ψ

can then be translated to boolean equivalents:

‖ϕ ◦ ψ‖ := ∃V ′ (θ′ ∧ ∃V ′′ (θ′′ ∧ Ω(R) ∧ ‖ϕ‖′ ∧ ‖ψ‖′′))

If we want to change the quantifiers in the semantics of ◦, we can simply make
the same changes in the boolean translation to preserve the correspondence.

In general, for n-ary modalities, we can encode their (n + 1)-ary relation in
a boolean formula ΩR ∈ L(V 0 ∪ V 1 ∪ · · · ∪ V n) with n+ 1 copies of the original
vocabulary by defining

ΩR :=
∨
{(s0 v V 0) ∧ (s1 v V 1) ∧ · · · ∧ (sn v V n) | (s0, . . . , sn) ∈ R}

which gives us:
Rs0 . . . sn ⇐⇒ s0 ∪ s′1 ∪ · · · ∪ s′...′n � ΩR

Finding symbolic methods for non-normal modal logics though seems hard.
Preferences and plausibility orders are often used as an alternative to the (somewhat
controversial) KD45 Kripke models. In principle, such orders are still relations
and can be implemented using BDDs, as already shown in [GR02], which also

2.13. Other Similarity Types, Beyond Normality 83

covers belief revision. However, it is not clear whether there is a computational
advantage over explicit models.

Another widely used non-normal semantics are neighborhood models where a
world can reach multiple sets of worlds called neighborhoods. Relations in those
models are of type R ⊆ W ×P(W) or equivalently R : W 7→ P(P(W)). In recent
work they are used to model evidence available to an agent and the knowledge
based on it [BFP14].

To our knowledge it is an open question how to symbolically represent neigh-
borhood models. Assuming an injective valuation, the challenge is to characterize
sets of sets of worlds with boolean formulas or functions. If the number of neigh-
borhoods of each world has a finite bound, this could be done with enough copies
of the vocabulary, but this method will not scale well. We conjecture that different
representations might be useful for different classes of neighborhood models with
different closure conditions — similar to how partitions and observational variables
provide compact representations for S5 Kripke models.

Chapter 3
Implementing Symbolic DEL with BDDs

Informally, though, safe languages can be defined as ones that make
it impossible to shoot yourself in the foot while programming.

Benjamin C. Pierce: Types and Programming Languages

The previous chapter provides a symbolic framework for Dynamic Epistemic
Logic (DEL). We now present an implementation of this framework, resulting in
SMCDEL, a symbolic model checker for DEL based on Binary Decision Diagrams
(BDDs). From an outside perspective, SMCDEL mainly solves the following
task: Given a scene (F , s) and a DEL formula ϕ, decide whether F , s � ϕ holds.
Separate implementations are given for the case where F is a knowledge or a
belief structure.

Besides this main model checking task, we implement many helper functions
and other operations on models and structures. This includes functions to convert
back and forth between explicit Kripke models and symbolic structures, i.e.
implementations of the translations from Definitions 2.4.5 and 2.6.9.

Our model checker is implemented in Haskell and can be used like DEMO-S5,
both in the interactive compiler ghci and compiled as a library. Additionally we
provide a command-line and a web interface for the most common tasks, working
with knowledge structures.

We do not explain all parts of the implementation and not include the complete
source code in this thesis: It would waste a lot of paper and as we plan to further
develop the code in the future any printed version would quickly become outdated.
Instead, we only quote some of the main functions here. The complete code with
a documentation in literate programming style [Knu84] can be found here:

https://github.com/jrclogic/SMCDEL

The simple web interface is available at:

https://w4eg.de/malvin/illc/smcdelweb/

85

https://github.com/jrclogic/SMCDEL
https://w4eg.de/malvin/illc/smcdelweb/

86 Chapter 3. Implementing Symbolic DEL with BDDs

This chapter is structured as follows. We first give an overview of existing
software for epistemic model checking in Section 3.1. Section 3.2 explains our
choice of Haskell and illustrates its advantages with data types for formulas.
Section 3.3 shows how we use BDDs to implement knowledge structures. We
give two complete examples in Section 3.4 to show what the input and output of
SMCDEL looks like. In Section 3.5 we then give a type-safe implementation of
BDDs with different vocabularies. We use this in Section 3.6 to implement belief
structures with BDDs and show how they can be optimized in Section 3.7. To
model symbolic updates including factual change, we implement transformers in
Section 3.8. We end the chapter with a list of modules in Section 3.9, automated
testing in Section 3.10 and further ideas for development in Section 3.11.

3.1 Existing Epistemic Model Checkers

Most existing software for model checking was made for temporal logics. The first
implementation of symbolic model checking was SMV from [McM93] which is
also described in [CGP99, Section 8.1]. Since then it has been reimplemented as
NuSMV 2 [Cim+02], which also includes methods for bounded model checking
using SAT solvers instead of BDDs. NuSMV and its variants are probably the
most widely used model checkers to date. However, NuSMV uses plain temporal
logics as input languages and does not cover K or other epistemic operators.

One of the first model checkers for knowledge is MCK [GM04]. It still uses
LTL and CTL as a temporal base, but on top one can choose between different
knowledge semantics to interpret K for different kinds of agents: observational,
clock or synchronous perfect recall. MCK is written in Haskell, and internally
the original MCK uses BDDs to symbolically represent temporal Kripke models.
Recent versions also offer bounded semantics via SAT solving. MCK 1.1.0 was
released in August 2014. Unfortunately, only earlier versions of MCK were placed
under an open source license. As of March 2018, not even binaries are available
on the website of the project at https://cgi.cse.unsw.edu.au/~mck/pmck/.

Another model checker for temporal logics with knowledge is MCTK, first
presented in [SSL07]. It is based on NuSMV 2.1 and employs the same translation
of K to ∀(V \Oi) as the S5 version of our implementation (see Definition 2.2.6).
MCTK is open source and released under the LGPL. The newest version 1.0.2 was
released in January 2016 and can be downloaded from https://sites.google.
com/site/cnxyluo/MCTK/. Another mirror of the project website is http://
kailesu.net/MCTK/.

A third model checker for epistemic temporal logics is MCMAS which was
first released in 2006 [LR06] and has since been under heavy development. The
most recent presentation and a comparison to MCK and MCTK is in [LQR15].
The latest version 1.3.0 from September 2017 can be downloaded at http://vas.
doc.ic.ac.uk/software/mcmas/.

https://cgi.cse.unsw.edu.au/~mck/pmck/
https://sites.google.com/site/cnxyluo/MCTK/
https://sites.google.com/site/cnxyluo/MCTK/
http://kailesu.net/MCTK/
http://kailesu.net/MCTK/
http://vas.doc.ic.ac.uk/software/mcmas/
http://vas.doc.ic.ac.uk/software/mcmas/

3.1. Existing Epistemic Model Checkers 87

All three model checkers we mentioned so far are for temporal logics. For
Dynamic Epistemic Logic, the standard implementations are the two explicit model
checkers by Jan van Eijck: DEMO [Eij07] and the successor DEMO-S5 [Eij14a]
which is optimized for S5 logics, using partitions instead of list of pairs to represent
relations.

DEMO and DEMO-S5 are written in Haskell and have been adapted in various
ways, for example to deal with probabilistic belief [Eij13], actions with factual
change [Eij11], knowledge of numbers in register models [Gat14] and most recently,
public announcement logic with awareness [GT17].

Another explicit model checker for DEL is the VisualDEL tool written in Java
by Maduka Attamah, introduced in [Att12]. Unfortunately, this tools was initially
not released publicly and we were unable to include it in our comparisons and
benchmarks. It also has not been used as widely as DEMO [GT17; Dit+12; VR07;
Dit+06]. Since July 2017 VisualDEL is freely available under the MIT license at
https://github.com/mdk333/VisualDEL, so while it was not within the scope
of this thesis, we hope that a better comparison can be done in the future.

The big advantage of explicit implementations like DEMO is in their usability.
The user can simply work with the same kind of Kripke models as they are used
to drawing on paper. Moreover, we can manipulate models at a single possible
world and easily visualize them using tools like graphviz [Ell+04].

Additionally, DEMO uses the power of Haskell’s type variables to gain extra
flexibility: possible worlds in Kripke models do not have to be mere indices but can
be of almost any type a, thereby carrying information in their names, eliminating
the need for a valuation function. The DEL language is then extended with
a construct Info of type a -> Form and a formula Info x is true at world w
iff w == x. For example, the Muddy Children can be represented with worlds
of type [Bool] and a formula saying that all three are muddy is simply Info
[True,True,True].

3.1.1. Example. Consider the Muddy Children example from Section 2.3. Fig-
ure 3.1 shows how we can define the Muddy Children Kripke model for DEMO-S5.
The function mudDemoKrpInit takes parameters n and m and returns the initial
situation of n children out of which m are muddy. It makes use of bTables, which
generates all possible boolean assignments for a set of propositions. Instead of
using a valuation function, the states themselves are lists of boolean values that
indicate which agents are muddy. The equivalence relations for each agent are
then defined as partitions. The output for n = m = 3 is shown in Figure 3.2 and
a graph of the model can be seen in Figure 3.3.

At the same time, explicit representation is also the biggest disadvantage of
tools like DEMO, because it means that models have to be quite small to be
manageable and fit in the memory — the well known state explosion problem
already mentioned in Section 1.7.

https://github.com/mdk333/VisualDEL

88 Chapter 3. Implementing Symbolic DEL with BDDs

mudDemoKrpInit :: Int -> Int -> DEMO_S5.EpistM [Bool]
mudDemoKrpInit n m = (DEMO_S5.Mo states agents [] rels points) where

states = DEMO_S5.bTables n
agents = map DEMO_S5.Ag [1..n]
rels = [(DEMO_S5.Ag i, [[tab1 ++[True]++tab2 ,tab1 ++[False]++ tab2] |

tab1 <- DEMO_S5.bTables (i-1),
tab2 <- DEMO_S5.bTables (n-i)]) | i <- [1..n]]

points = [replicate (n-m) False ++ replicate m True]

Figure 3.1: DEMO-S5 definition and for Muddy Children.

λ> mudDemoKrpInit 3 3
Mo [[True ,True ,True], [True ,True ,False] -- 8 possible worlds

, [True ,False,True], [True ,False,False] -- of type [Bool]
, [False,True ,True], [False,True ,False]
, [False,False,True], [False,False,False]]
[Ag 1,Ag 2,Ag 3] -- three agents
[] -- no valuation function
[(Ag 1,[[[True ,True ,True],[False,True ,True]] -- relation as

, [[True ,True ,False],[False,True ,False]] -- partition
, [[True ,False,True],[False,False,True]] -- for agent 1
, [[True ,False,False],[False,False,False]]])

, ... -- similar for agent 2 and 3 (omitted)
, ...]
[[True,True,True]] -- actual world: all three are muddy

Figure 3.2: DEMO-S5 output for three muddy children.

>,>,> >,>,⊥

>,⊥,> >,⊥,⊥

⊥,>,> ⊥,>,⊥

⊥,⊥,> ⊥,⊥,⊥

1 1

1 1

2 2

2 2
3

3

3

3

Figure 3.3: Visualized DEMO-S5 model for three muddy children.

3.2. From Mathematics to Haskell 89

With our new implementation SMCDEL we combine the best of two worlds:
efficient symbolic model checking on one side and intuitive modeling in DEL on
the other side. While SMCDEL is not directly based on any of the above model
checkers, it uses many ideas from the existing tools. As already mentioned, for
the S5 case we use the same translation for K as in MCTK. Moreover, to make it
easy to compare and run benchmarks, we include a full copy of DEMO-S5 in the
module SMCDEL.Explicit.DEMO_S5.

3.2 From Mathematics to Haskell
Our implementation is written in Haskell, a modern purely functional program-
ming language which has several advantages over other languages that make it
particularly suitable for our task.

First, Haskell is functional, which fits nicely to mathematical style. For example
the list syntax, pattern matching and point-free function composition allow us
to write code that resembles the original notation. We especially encourage any
reader unfamiliar with Haskell to read the code examples to see how close they
are to the original formal mathematical definition.

Second, Haskell is statically typed. This gives us safety guarantees — many
mistakes one could easily make in other languages are already noticed at compile
time. As an easy example, in our implementation it is impossible to represent
a formula that is not well-formed. A more involved usage of the type system is
discussed in Section 3.5, where we move the management of different vocabularies
to the type level to make sure we do not construct wrong or meaningless BDDs.

Third, Haskell is lazy, i.e. it only evaluates expressions in our program when
they are needed. This means that we can work with infinite structures we are
used to, such as the list of natural numbers [0..] or an infinite supply of atomic
propositional variables — as long as we make sure that, once we actually run it,
our program will only use a finite part. Laziness can also speed up our program
for finite objects: If we only need parts of a model or structure later, the rest does
not have to be computed.

A nice cheat sheet for the basic syntax of Haskell is [Bai13]. Proper and
systematic introductions to Haskell can be found in the fun and colorful [Lip11],
the serious and mature [OSG08], and the opinionated and forthcoming [AM18].
An alternative introduction to Haskell, Mathematics and Logic at the same time
is [DE12].

When translating mathematics to Haskell we have to be precise and careful.
It often happens that differences which we did not care about when defining
something, suddenly become important when we want to implement it. For
example, we usually identify a propositional variable p ∈ V with the same variable
used as a formula p ∈ LB(V). To implement our ideas in a typed language such

90 Chapter 3. Implementing Symbolic DEL with BDDs

as Haskell, the difference has to be spelled out. In SMCDEL, P 0 is the atomic
proposition and PrpF (P 0) is the corresponding formula.

Similarly, all representations of relations (see Section 1.8) are isomorphic and
when proving something about a relation R, we do not worry whether it is a
subset of A × B, a function A → P(B) or a function A → B → {True,False}.
For Haskell though, lists of pairs [(a,b)], unary functions to lists a -> [b] and
binary functions to booleans a -> b -> Bool are all different types.

Even when there is a way to repeat a mathematical simplification in code,
this might not be the best idea for performance reasons. In the definition of
boolean languages we only introduce ∧ and ¬ as primitive operators and then
define ∨ and → as abbreviations. But if we evaluate p ∨ q by first spelling it out
as ¬(p∧ q) it will take longer and use more memory than if we make ∨ a primitive.
While this seems irrelevant for small examples, the effect does matter for more
complex boolean functions. Hence in our implementation, all boolean connectives
are primitives which get interpreted with their usual semantics.

Figure 3.4 shows the data types for propositional variables and formulas used
in SMCDEL. Note the similarity between a recursive BNF, which we use to give
mathematical definitions of formal languages, and the definition of a data type in
Haskell.

newtype Prp = P Int deriving (Eq ,Ord ,Show)

data Form
= Top -- ^ True Constant
| Bot -- ^ False Constant
| PrpF Prp -- ^ Atomic Proposition
| Neg Form -- ^ Negation
| Conj [Form] -- ^ Conjunction
| Disj [Form] -- ^ Disjunction
| Xor [Form] -- ^ n-ary X-OR
| Impl Form Form -- ^ Implication
| Equi Form Form -- ^ Bi-Implication
| Forall [Prp] Form -- ^ Boolean Universal Quantification
| Exists [Prp] Form -- ^ Boolean Existential Quantification
| K Agent Form -- ^ Knowing that
| Ck [Agent] Form -- ^ Common knowing that
| Kw Agent Form -- ^ Knowing whether
| Ckw [Agent] Form -- ^ Common knowing whether
| PubAnnounce Form Form -- ^ Public announcement that
| PubAnnounceW Form Form -- ^ Public announcement whether
| Announce [Agent] Form Form -- ^ (Semi -) Private announcement that
| AnnounceW [Agent] Form Form -- ^ (Semi -) Private announcement whether
deriving (Eq ,Ord ,Show)

Figure 3.4: Definition of formulas in SMCDEL.Language.

Our Form type has many more cases, i.e. primitives, than the formal language
from Definition 1.3.6, because it is more convenient and efficient to implement
them directly and not as abbreviations.

3.3. Knowledge Structures with BDDs 91

On the other hand, just like DEMO and DEMO-S5, we do not include all
dynamic operators into our language as done in Definition 1.3.6. This is to
interpret the same language on explicit and symbolic structures: If our language
contained action models or transformers, those formulas could only be interpreted
via translations, to make sense of something likeM, w � [X , x]ϕ which strictly
speaking is not well-defined — we only interpret LD on Kripke models and not LS.
Vice versa, also F , s � [A, a]ϕ would not make sense directly. Hence in the Form
type below we use labels for public and (semi-)private announcements, which then
get mapped to the appropriate action model or transformer, depending on where
they are interpreted. This does not limit the power of our program, because we
can still define the result of more complex updates outside the language and then
evaluate the remaining formula on the resulting model or structure.

3.3 Knowledge Structures with BDDs
In this section we describe the implementation of knowledge structures, our
symbolic equivalent of S5 Kripke models. In Section 2.3 we showed how epistemic
operators get replaced by boolean connectives when a new state law is computed.
Syntactically, the state law became more and more complex, but semantically the
same boolean function could be represented with a much shorter formula, allowing
us to write down an equivalent but more succinct knowledge structure.

In the implementation we go one step further. We never actually need the
syntax of a state law θ in a knowledge structure F = (V, θ, O). Even though θ
is a formula from the boolean language LB(V), we only care about the boolean
function which it represents. This is where Binary Decision Diagrams (BDDs), as
introduced in Section 1.9, come in extremely handy. In our code we let the second
component of a knowledge structure be of type Bdd. The complete data type for
knowledge structures in SMCDEL is shown in Figure 3.5.

data KnowStruct = KnS [Prp] -- vocabulary
Bdd -- state law
[(Agent ,[Prp])] -- observational variables

deriving (Eq ,Show)
type State = [Prp]
type Scenario = (KnowStruct ,State)

Figure 3.5: Data type for knowledge structures.

3.3.1. Example. We consider again the knowledge structure

F := (V = {p1, p2}, θ = p1 → p2, O1 = {p1}, O2 = {p2})

from Example 2.2.2, now with p1 and p2 instead of p and q, respectively. Figure 3.6
shows how F is represented in the implementation, with a BDD for θ.

92 Chapter 3. Implementing Symbolic DEL with BDDs

KnS [P 1,P 2] (Var 1 (Var 2 Top Bot) Top) [("1",[P 1]),("2",[P 2])]

F :=


V = {p1, p2}, θ =

p1

p2

⊥ >

, O1 = {p1}, O2 = {p2}


Figure 3.6: A knowledge structure with a BDD for θ.

3.3.2. Example. Consider again the muddy children example from Section 2.3.
Figure 3.7 shows the BDDs of the state laws θ0 to θ3, reflecting the smaller and
smaller set of allowed states after each announcement.

>

p1

p2

p3

⊥ >

p1

p2 p2

p3

⊥ >

p1

p2

p3

⊥ >

Figure 3.7: Four BDDs representing the Muddy Children state laws.

Figure 3.8 shows the core of SMCDEL: The function bddOf implements the
DEL-to-boolean translation ‖ · ‖F given in Definition 2.2.6. Intuitively, the type of
this translation would be KnowStruct -> Form -> Form, where the output only
uses boolean connectives and could be given to a function that computes BDDs.
But this type would be inefficient, because we do not need the possibly lengthy
formula given by Definition 2.2.6. Hence we skip the intermediate computation
and translate a given DEL formula ϕ directly to the BDD of ‖ϕ‖F .

For clarity, here we leave out parts of the language that are primitives in the
implementation but abbreviations in the previous chapters. For the full code, see
the module SMCDEL.Symbolic.HasCacBDD in [Gat18].

For all operations on BDDs we use the CacBDD package [LSX13], via the
binding library HasCacBDD [Gat17a] which we developed during this research.
Still, our framework and implementation can easily be adapted to use other

3.3. Knowledge Structures with BDDs 93

bddOf :: KnowStruct -> Form -> Bdd
bddOf _ Top = top
bddOf _ (PrpF (P n)) = var n
bddOf kns (Neg form) = neg (bddOf kns form)
bddOf kns (Conj forms) = conSet (map (bddOf kns) forms)
bddOf kns@(KnS allprops lawbdd obs) (K i form) =

forallSet otherps (imp lawbdd (bddOf kns form)) where
otherps = map (\ (P n) -> n) (allprops \\ apply obs i)

bddOf kns@(KnS allprops lawbdd obs) (Ck ags form) =
gfp lambda where

otherps i = map (\ (P n) -> n) (allprops \\ apply obs i)
lambda z = conSet (bddOf kns form :

[forallSet (otherps i) (imp lawbdd z) | i <- ags])
bddOf kns (PubAnnounce form1 form2) =

imp (bddOf kns form1) (bddOf (pubAnnounce kns form1) form2)

Figure 3.8: Implementing the boolean translation from Definition 2.2.6.

BDD packages, as long as they provide the same functions to create and manip-
ulate BDDs that we use on the right side in Figure 3.8: top, var, neg, conSet,
forallSet and so on. For example, SMCDEL already includes the module
SMCDEL.Symbolic.CUDD. Instead of CacBDD it uses the CUDD library [Som12]
which is also the base of many other symbolic model checkers. Because CUDD is
not written in Haskell, we use it via bindings from [Wal15].

After implementing the boolean translation, we can write a symbolic evaluation
function evalViaBdd. To check whether ϕ holds at state s of F , it first computes
the BDD of the equivalent boolean formula ‖ϕ‖F according to Definition 2.2.6.
Then it checks the boolean satisfaction s � ‖ϕ‖F .

The function validViaBdd decides whether a formula ϕ is valid on F , i.e.
true at all states. We simply check whether the boolean formula θ → ‖ϕ‖F is a
tautology, i.e. whether the boolean equivalent of ϕ is implied by the state law.

Note that both functions do not have to generate the set of all states. In case
we are interested in the set of all states of F , we provide the function whereViaBdd.
It asks the BDD package for all satisfying assignments of the state law θ and
then converts assignments of type Assignment = [(Int, Bool)] to states of
type State = [Prp]. All three functions are shown in Figure 3.9.

evalViaBdd :: Scenario -> Form -> Bool
evalViaBdd (kns ,s) f = evaluateFun (bddOf kns f) (\n -> P n ‘elem ‘ s)

validViaBdd :: KnowStruct -> Form -> Bool
validViaBdd kns@(KnS _ lawbdd _) f = top == lawbdd ‘imp ‘ bddOf kns f

whereViaBdd :: KnowStruct -> Form -> [State]
whereViaBdd kns@(KnS props lawbdd _) f =
map (sort . map (toEnum . fst) . filter snd) $

allSatsWith (map fromEnum props) $ con lawbdd (bddOf kns f)

Figure 3.9: Functions to check truth and validity symbolically via BDDs.

94 Chapter 3. Implementing Symbolic DEL with BDDs

Figure 3.10 shows examples of how the functions evalViaBdd, validViaBdd
and whereViaBdd can be used with the knowledge structures from Example 3.3.1.

λ> statesOf mykns
[[P 1,P 2],[],[P 2]]
λ> evalViaBdd (mykns,[P 1]) (K "1" (PrpF $ P 1))
True
λ> evalViaBdd (mykns,[P 1]) (K "2" (PrpF $ P 1))
False
λ> validViaBdd mykns (Ck ["1","2"] (PrpF (P 1) ‘Impl‘ PrpF (P 2)))
True
λ> validViaBdd mykns (Ck ["1","2"] (PrpF (P 2) ‘Impl‘ PrpF (P 1)))
False
λ> whereViaBdd mykns (PrpF (P 2) ‘Impl‘ PrpF (P 1))
[[P 1,P 2],[]]

Figure 3.10: Usage examples for the _ViaBdd functions.

This completes our first symbolic model checker for S5 PAL. In the next
section we will give some more input and output examples, and after that we will
extend our implementation to belief structures and transformers.

3.4 S5 Input and Output Examples
In Figure 3.11 we show the function mudScnInit, which is the symbolic equivalent
of mudDemoKrpInit shown above in Figure 3.1. It takes the same parameters n and
m, but instead of a Kripke model generates a knowledge structure for SMCDEL.
The state law is simply > and each agent observes all but one proposition. Below
the function we again list the example output for n = m = 3 and include a
mathematical description of the structure. We can see that both the specification
and the output are much shorter than their Kripke equivalents on page 88.

mudScnInit :: Int -> Int -> Scenario
mudScnInit n m = (KnS vocab law obs , actual) where

vocab = [P 1 .. P n]
law = boolBddOf Top
obs = [(show i, delete (P i) vocab) | i <- [1..n]]
actual = [P 1 .. P m]

V = {p1, p2, p3}, θ0 = >,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

 , {p1, p2, p3}


Figure 3.11: Muddy Children input and output for SMCDEL.

3.4. S5 Input and Output Examples 95

To further simplify the usage of our model checker, we also provide an interface
in which knowledge structures can be specified using a simple text format. In
particular no knowledge of Haskell is needed here.

An example input file for the Dining Cryptographers which we will discuss
in the next chapter is shown in Figure 3.12. We first describe the vocabulary in
the VARS section. Then LAW contains a boolean formula, the state law. Under
OBS we list the observational variables for each agent. After this we use VALID?
and WHERE? followed by formulas. The former checks for validity while the latter
returns a list of states where the argument is true.

To read such text files, SMCDEL includes a simple parser based on the Haskell
parser generator Happy [GM17] and lexer alex [DM17]. Note that the indentation
is just for readability. The parser actually ignores all whitespace and Haskell style
comments marked by two dashes and a space. The output can be printed to the
command line as text (Figure 3.13) or as ready to use LATEX code (Figure 3.14).

VARS 0, -- the NSA paid
1,2,3, -- cryptographer i paid
4,5,6 -- shared bits/coins

-- exactly one cryptographer or the NSA paid
LAW AND (OR (0,1,2,3), ~(0&1), ~(0&2), ~(0&3), ~(1&2), ~(1&3), ~(2&3))

OBS alice: 1, 4,5
bob : 2, 4, 6
carol: 3, 5,6

VALID? (alice,bob,carol) comknow that (OR (0,1,2,3))

WHERE? alice knows whether 0

VALID? [?! XOR (1, 4, 5)] -- After everyone announces the
[?! XOR (2, 4, 6)] -- XOR of whether they paid and
[?! XOR (3, 5, 6)] -- the coins they see ...
AND (

-- if the NSA paid this is common knowledge:
0 -> (alice,bob,carol) comknow that 0,
-- if one of the agents paid, the others don’t know that:
1 -> AND (~ bob knows that 1, ~ carol knows that 1),
2 -> AND (~ alice knows that 2, ~ carol knows that 2),
3 -> AND (~ alice knows that 3, ~ bob knows that 3))

Figure 3.12: Three Dining Cryptographers in SMCDEL.

96 Chapter 3. Implementing Symbolic DEL with BDDs

Is Ck ["alice",...] (Disj [PrpF (P 0),...]) valid on the given structure?
True

Is Ck ["alice","bob","carol"] (Disj [...]) valid on the given structure?
True

At which states is Kw "alice" (PrpF (P 0)) true?
[1],[1,6],[1,5],[1,5,6],[1,4],[1,4,6],[1,4,5],[1,4,5,6]

Is PubAnnounceW (...) ... (Conj [...]) valid on the given structure?
True

Figure 3.13: Output of SMCDEL on the command line (shortened).

Given Knowledge Structure

F =


{p, p1, p2, p3, p4, p5, p6},

10

0

1

2

3

1

2

3

,
{p1, p4, p5}
{p2, p4, p6}
{p3, p5, p6}


Results

• Is Ck{alice,bob,carol}
∨
{p, p1, p2, p3} valid on F?

True.

• At which states is K?
alicep true?

{p1}, {p1, p6}, {p1, p5}, {p1, p5, p6}, {p1, p4}, {p1, p4, p6}, {p1, p4, p5},
{p1, p4, p5, p6}

• Is [?!
⊕
{p1, p4, p5}][?!

⊕
{p2, p4, p6}][?!

⊕
{p3, p5, p6}]

∧
{(p→

Ck{a,b,c}p), (p1 → (¬Kbp1 ∧ ¬Kcp1)), (p2 → (¬Kbp1 ∧ ¬Kcp3)), (p3 →
(¬Kbp1 ∧ ¬Kcp2))} valid on F?
True.

Figure 3.14: Output of SMCDEL in LATEX.

3.5. Type-Safe Vocabulary Management 97

3.5 Type-Safe Vocabulary Management

Before we generalize our implementation from knowledge to belief structures, we
need to find a good way to manage fresh vocabularies like V ′. In mathematical
notation, to get fresh variables we can just write p′ instead of p, p′2 instead of p2

and so on. In our implementation some more work is needed to manage copies of
propositional variables. If variables are represented by integers and we need fresh
propositions or copies, then we need to be careful not to create overlap: Say p was
represented by the integer 1, so we might want to use 2 for p′, but then we can no
longer use it for p2 etc. Finding a good mapping for fresh variables is similar to
solving the famous problem of “Hilbert’s Hotel” [Hil13, p. 730].

Moreover, for our BDDs we also have to choose a variable ordering in the
double vocabulary. The two obvious candidates are to interleave original and
primed variables or to stack all primed variables above or below all unprimed
ones. We choose the interleaving order because it has two advantages: First,
relations in epistemic models are often already decided by a difference in one
specific propositional variable. Hence p and p′ should be close to each other to
keep the BDD small. Second, we can write general functions to go back and forth
between the vocabularies, independent of how many variables we actually use.

Table 3.1 shows the first few variables in V ∪ V ′ and how they are represented
in SMCDEL. To switch between the normal and the double vocabulary, we use
the functions mv, cp and their inverses listed in Figure 3.15 and visualized in
Figure 3.16.

We now want to lift mv and cp from single variables to BDDs. It is tempting
to use the same Bdd type for observational BDDs as for laws. But θ and Ωi need
to use different variable mappings. For example, the BDD of p1 in the standard
vocabulary V uses the integer 1, but in the vocabulary of V ∪ V ′ proposition p1

is mapped to the integer 2 while p′1 is mapped to 3. Given these two different
mappings, taking a conjunction of the BDD of p1 in V and the BDD of p2 in
V ∪V ′ makes no sense. We first need to translate the first BDD to the vocabulary
of the other.

Variable Single vocabulary Double vocabulary

p P 0 P 0
p′ P 1
p1 P 1 P 2
p′1 P 3
p2 P 2 P 4
p′2 P 5
...

...
...

Table 3.1: Implementation of single and double vocabulary.

98 Chapter 3. Implementing Symbolic DEL with BDDs

mvP , cpP :: Prp -> Prp
mvP (P n) = P (2*n) -- represent p in the double vocabulary
cpP (P n) = P ((2*n) + 1) -- represent p’ in the double vocabulary

mv , cp :: [Prp] -> [Prp]
mv = map mvP
cp = map cpP

unmv , uncp :: [Prp] -> [Prp]
unmv = map f where -- Go from p in double vocabulary to p in single

vocabulary:
f (P m) | odd m = error "unmv failed: Number is odd!"

| otherwise = P $ m ‘div ‘ 2
uncp = map f where -- Go from p’ in double vocabulary to p in single

vocabulary:
f (P m) | even m = error "uncp failed: Number is even!"

| otherwise = P $ (m-1) ‘div ‘ 2

Figure 3.15: Helper functions mv, cp, unmv and uncp.

p ∈ V

p ∈ V ∪ V ′ p′ ∈ V ∪ V ′mv cp

unmv uncp

Figure 3.16: Visualization of mv, cp, unmv and uncp.

If RelBDD and Bdd were synonyms — as was actually the case in previous
versions of SMCDEL — then it would be up to us users to make sure that BDDs
for different vocabularies are not combined. As long as the types match, Haskell
would happily generate the chaotic meaningless conjunction.

The reader who got lost between all the fresh variables from V ′, V ◦ and
V ∗ in the previous chapter might fear that we now create even more confusion
by translating our theory to Haskell. But our implementation goal is exactly
the opposite: The worry that we forget a prime or a star somewhere should be
outsourced to the Haskell compiler.

To catch these problems at compile time we introduce a separate type for
BDDs in the double vocabulary: RelBDD. In principle RelBDD could be a newtype
of Bdd, as we want them to be isomorphic, but there are two problems with
newtype.

First, we want to separate different BDDs but also have a convenient way of
applying the standard BDD functions without converting back and forth. The
natural way to do this in Haskell is to use applicative functors and monads, for
which we would have to write the appropriate instances.

Second, looking ahead a bit, we will need even more different vocabularies for
factual change and symbolic bisimulations — recall the fresh sets V ◦ and V ∗ from
Definitions 2.8.2 and 2.11.1, respectively. Ideally, our design choice now should
already solve or at least anticipate these additions.

3.5. Type-Safe Vocabulary Management 99

Combining both problems, it would be tedious to repeat essentially the same
instances of Functor, Applicative and Monad each time we add a new vocabulary.

The good news is that the tagged library [Kme16] solves both problems and
minimizes the code we have to write ourselves.

import Data.Tagged

data Dubbel
type RelBDD = Tagged Dubbel Bdd

Now suppose we have a BDD representing a formula in the single vocabulary.
The following function relabels the BDD to represent the formula with primed
propositions in the double vocabulary. It also changes the type to reflect this
change.

cpBdd :: Bdd -> RelBDD
cpBdd b = pure $ case maxVarOf b of

Nothing -> b
Just m -> relabel [(n, (2*n) + 1) | n <- [0..m]] b

And similarly, mapping to the unprimed variables in the double vocabulary:

mvBdd :: Bdd -> RelBDD
mvBdd b = pure $ case maxVarOf b of

Nothing -> b
Just m -> relabel [(n, 2*n) | n <- [0..m]] b

Note that Dubbel is an empty type, isomorphic to (). We only use it as a
tag (also called label) on the type level, not to store actual data. Thanks to
Data.Tagged, our Tagged Dubbel automatically becomes an applicative functor.
Hence we can lift all Bdd functions to RelBDD using standard notation. For
example, the BDDs of > and ⊥ in the double vocabulary, which represent the
total and empty relation respectively, can also be defined using the generic pure
instead of mvBdd or cpBdd.

totalRelBdd , emptyRelBdd :: RelBDD
totalRelBdd = pure $ boolBddOf Top
emptyRelBdd = pure $ boolBddOf Bot

For another example, the BDD of the conjunction p′1 ∧ p′2 is now given by
λ> con <$> (cpBdd $ var 1) <*> (cpBdd $ var 2)
Tagged Var 3 (Var 5 Top Bot) Bot

On the other hand, the aforementioned “wrong” conjunction of p1 in V and
p2 in V ∪ V ′ would now be represented as follows and no longer has a valid type,
just like we wanted:
λ> con <$> (var 1) <*> (cpBdd $ var 3)
error: Couldn’t match expected type ‘Tagged Dubbel Bdd’

with actual type ‘Bdd’

This will prevent us from accidentally mixing up BDDs in different vocabularies.

100 Chapter 3. Implementing Symbolic DEL with BDDs

3.6 Belief Structures with BDDs

Given our preparation of the RelBdd type in the previous section, we can now
present the data type for belief structures. To increase efficiency and ensure
laziness we use Map Agent RelBDD instead of the isomorphic [(Agent,RelBDD)].

data BelStruct = BlS [Prp] -- vocabulary
Bdd -- state law
(Map Agent RelBDD) -- observation laws

deriving (Eq ,Show)

type BelScene = (BelStruct ,State)

3.6.1. Example. Consider the following belief structure from Example 2.6.6:

(V = {p, q}, θ = (q → p),Ωa = (q ↔ q′),Ωb = ¬q′)

In SMCDEL the three boolean formulas get replaced with BDDs:
V = {p, q}, θ =

q

p

> ⊥

, Ωa =

q

q′ q′

> ⊥

, Ωb =
q′

> ⊥


To evaluate formulas on belief structures symbolically, we again implement

the boolean translation, now from Definition 2.6.3. In Figure 3.17 we show the
cases for K and Ck. The other connectives are implemented exactly the same way
as for knowledge structures. Also the definitions of evalViaBdd etc. are exactly
the same as those shown in Figure 3.9 above, so we do not repeat them here.

bddOf kns@(BlS allprops lawbdd obdds) (K i form) = unmvBdd result where
result = forallSet ps ’ <$> (imp <$> cpBdd lawbdd

<*> (imp <$> omegai
<*> cpBdd (bddOf kns form)))

ps’ = map fromEnum $ cp allprops
omegai = obdds ! i

bddOf kns@(BlS voc lawbdd obdds) (Ck ags form) = lfp lambda top where
ps’ = map fromEnum $ cp voc
lambda z = unmvBdd $ forallSet ps’ <$>

(imp <$> cpBdd lawbdd
<*> (imp <$> (disSet <$> sequence [obdds ! i

| i <- ags])
<*> cpBdd (con (bddOf kns form) z)))

Figure 3.17: Boolean translation on belief structures.

3.7. Reduction and Optimization 101

3.7 Reduction and Optimization

In Section 2.12 we discussed ways in which our structures can be redundant and
provided methods to optimize them. We now describe and illustrate how this
optimization works concretely on BDDs.

3.7.1. Example. The belief structure (V = {p, q}, θ = (p ↔ q), Ωa = (p →
q) ∧ (p′ ↔ q′) ∧ p′ ∧ q′) from Example 2.12.3 with BDDs for the state law θ and
the observation law Ωa looks as follows:

V = {p, q}, θ =

p

q q

⊥ >

, Ωa =

p

p′ p′

q

q′

⊥ >


To remove the redundancy in Ωa we can use restrictLaw from the HasCacBDD

library as follows. Note that 0 is p, 1 is p′, 2 is q and 3 is q′.

λ> let theta = (var 0 ‘equ‘ var 2)
λ> let theta’ = (var 1 ‘equ‘ var 3)
λ> let orig = conSet [var 0 ‘imp‘ var 2, var 1 ‘equ‘ var 3, var 1, var 3]
λ> orig ‘restrictLaw‘ (theta ‘con‘ theta’)
Var 1 Top Bot

Hence F is equivalent to (V = {p, q}, θ = p↔ q, Ωa = p′), with these BDDs:
V = {p, q}, θ =

p

q q

⊥ >

, Ωa =

p′

⊥ >



102 Chapter 3. Implementing Symbolic DEL with BDDs

3.8 Transformers
We now describe our implementation of transformers, the general symbolic update
introduced in Section 2.8. The data type that we use to represent a transformer
X = (V +, θ+, V−, θ−,Ω

+) is shown with explanatory comments in Figure 3.18.

data Transformer = Trf [Prp] -- addprops , added vocabulary
Form -- addlaw , event law
[Prp] -- changeprops , modified subset
(M.Map Prp Bdd) -- changelaw , encoded

postconditions
(M.Map Agent RelBDD) -- eventObs , observation laws

deriving (Eq ,Show)

type Event = (Transformer ,State)

Figure 3.18: Types for transformers and events.

Figure 3.19 shows the source code of the transform function which applies a
transformer to a belief structure. More precisely, it works on pointed structures,
so the inputs are a scene (F , s), where F is a belief structure, and an event (X , x).
The implementation essentially consists of three parts.

First, we shift the variables in V + (addprops) to ensure that they are indeed
disjoint from the original vocabulary V . By doing this as part of the transform
function we do not have to manually change transformers if we want to apply
them to different knowledge structures with different vocabulary. We also need to
shift the variables in V− occurring in θ, and those in V− ∪ V ′− occurring in Ω. The
mapping is defined in the variables shiftrel and shiftrelMVCP, respectively.

Second, we make copies of the propositions which are to be modified. Similar
to the variable shifting, the copying has to be done from V to V ◦ (in copyrel)
and from V ∪ V ′ to (V ∪ V ′)◦ (in copyrelMVCP).

Third and last, we compute the new vocabulary, the new state law, the new
observation laws and the new actual state as in Definition 2.8.2.

3.8.1. Example. A transformer to publicly change p to ⊥ is shown in the first
part of Figure 3.20. This is an instance of the more general Example 2.8.4. The
second part implements a transformer which flips the truth value of a given
proposition, but only lets a given list of agents observe it.

3.8. Transformers 103

transform :: BelScene -> Event -> BelScene
transform (kns@(BlS props law obdds),s) (Trf addprops addlaw changeprops

changelaw eventObs , eventFacts) =
(BlS newprops newlaw newobs , news) where

-- PART 1: SHIFTING addprops to ensure props and newprops are disjoint
shiftaddprops = [(freshp props)..]
shiftrel = sort $ zip addprops shiftaddprops
relabelWith r = relabel (sort $ map (over both fromEnum) r)
-- apply the shifting to addlaw and changelaw:
addlawShifted = replPsInF shiftrel addlaw
changelawShifted = M.map (relabelWith shiftrel) changelaw
-- to apply the shifting to eventObs we need shiftrel for the double

vocabulary:
shiftrelMVCP = sort $ zip (mv addprops) (mv shiftaddprops)

++ zip (cp addprops) (cp shiftaddprops)
eventObsShifted = M.map (fmap $ relabelWith shiftrelMVCP) eventObs
-- the actual event:
x = map (apply shiftrel) eventFacts
-- PART 2: COPYING the modified propositions
copychangeprops = [(freshp $ props ++ map snd shiftrel)..]
copyrel = zip changeprops copychangeprops
copyrelMVCP = sort $ zip (mv changeprops) (mv copychangeprops)
-- PART 3: actual transformation
newprops = sort $ props ++ map snd shiftrel ++ map snd copyrel
newlaw = conSet $ relabelWith copyrel (con law (bddOf kns addlawShifted))

: [var (fromEnum q) ‘equ ‘ relabelWith copyrel (
changelawShifted ! q) | q <- changeprops]

newobs = M.mapWithKey (\i oldobs -> con <$> (relabelWith copyrelMVCP <$>
oldobs) <*> (eventObsShifted ! i)) obdds

news | bddEval (s ++ x) (con law (bddOf kns addlawShifted)) = sort $
concat

[s \\ changeprops
, map (apply copyrel) $ s ‘intersect ‘ changeprops
, x
, filter (\ p -> bddEval (s ++ x) (changelawShifted ! p))

changeprops]
| otherwise = error "Transformer is not applicable!"

Figure 3.19: The implementation of (F , s)× (X , x).

publicMakeFalse :: [Agent] -> Prp -> Event
publicMakeFalse agents p = (Trf [] Top [p] changelaw eventobs , []) where

changelaw = fromList [(p,boolBddOf Bot)]
eventobs = fromList [(i,totalRelBdd) | i <- agents]

flipOverAndShowTo :: [Agent] -> Prp -> Agent -> Event
flipOverAndShowTo everyone p i = (Trf [q] eventlaw [p] changelaw eventobs , [q

]) where
q = freshp [p]
eventlaw = PrpF q ‘Equi ‘ PrpF p
changelaw = fromList [(p, boolBddOf . Neg . PrpF $ p)]
eventobs = fromList $ (i, allsamebdd [q])

: [(j,totalRelBdd) | j <- everyone \\ [i]]

Figure 3.20: Two transformers in Haskell code.

104 Chapter 3. Implementing Symbolic DEL with BDDs

3.9 Module Overview
The following is an alphabetical list of the most important modules of SMCDEL
and a short summary of their content, as of SMCDEL version 1.0.0.

• Examples and submodules: Examples, partially discussed in Chapter 4.

• Explicit.DEMO_S5: A full copy of DEMO-S5 [Eij14a] for convenience.

• Explicit.K: Explicit model checking with general Kripke models.

• Explicit.K.Change: General action models with factual change.

• Explicit.S5: Explicit model checking with S5 Kripke models.

• Internal.Help: Helper functions, mainly for lists, sets and relations.

• Internal.Lex: Lexer for simple input files, made by alex [DM17].

• Internal.MyHaskCUDD: Wrapper functions for CUDD.

• Internal.Parse: Parser for simple input files, made by happy [GM17].

• Internal.TexDisplay: Type classes for LATEX and graphviz [Ell+04].

• Internal.Token: Parsing and Lexing tokens for alex and happy.

• Language: Types defining the DEL language, functions to simplify and print
formulas, methods to generate LATEX code.

• Other.BDD2Form: Translation of BDDs back to boolean formulas.

• Other.MCTRIANGLE: Implementation of [GS11], benchmarked in Section 4.1.

• Symbolic.K: Belief structures from Section 2.6, discussed in Section 3.5.

• Symbolic.K.Change: Transformers with factual change from Section 2.8.

• Symbolic.S5: Knowledge structures, boolean translation and symbolic
evaluation, discussed in Section 3.3.

• Symbolic.S5_CUDD: Same as Symbolic.S5, with CUDD replacing CacBDD.

• Symbolic.S5.Change: Knowledge transformers with factual change, imple-
menting Definition 2.8.5

• Translations.K and Translations.K.Change: Translations for the general
case. Implementing Definitions 2.6.8, 2.6.9, 2.9.1 and 2.9.2.

• Translations.S5: Translations between S5 Kripke models and knowledge
structures. Implementing Definitions 2.4.2, 2.4.5, 2.5.4 and 2.5.5.

3.10. Automated Testing 105

3.10 Automated Testing

It is good practice in modern software engineering to test implementations against
specifications: Write down the expected behavior of our program and then check
whether it actually does what you want. Especially for a model checker which
itself is meant to check specifications, we want to be sure that the implementation
is correct.

Some classes of mistakes can be excluded via type safety and we can sometimes
prove statements about Haskell code, but it is also very helpful during the devel-
opment to do randomized property-based testing. We use the famous QuickCheck
library [CH00] to test the main parts of our implementation.

For example, Figure 3.21 shows an instance of QuickCheck’s Arbitrary type
class for S5 Kripke models. This tells QuickCheck how to randomly generate
Kripke models with five agents and up to nine worlds, using random assignments
and random partitions. Moreover, we provide a shrink function which QuickCheck
uses to find smaller counterexamples that are easier to read and understand.

instance Arbitrary KripkeModelS5 where
arbitrary = do

let agents = map show [1..(5:: Int)]
let props = map P [0..4]
worlds <- sort . nub <$> listOf1 (elements [0..8])
val <- mapM (\w -> do

randomAssignment <- zip props <$> infiniteListOf (choose (True ,False))
return (w,randomAssignment)
) worlds

parts <- mapM (\i -> do
randomPartition <- randomPartFor worlds
return (i,randomPartition)
) agents

return $ KrMS5 worlds parts val
shrink m@(KrMS5 worlds _ _) =

[m ‘withoutWorld ‘ w | w <- worlds , length worlds > 1]

Figure 3.21: Generating random S5 Kripke models with QuickCheck.

To illustrate the usage of QuickCheck, consider the conjecture “All S5 Kripke
models get translated to a knowledge structure with the same vocabulary as the
original Kripke model”. This can be easily falsified using quickCheck:

λ> quickCheck (\m -> vocabOf (kripkeToKns (m, head (worldsOf m))) === vocabOf m)
*** Failed! Falsifiable (after 5 tests and 2 shrinks):
KrMS5 [5,7]

[("1",[[5],[7]]),("2",[[7],[5]]),("3",[[7],[5]])
,("4",[[7],[5]]),("5",[[5],[7]])]
[(5,[(P 0,False),(P 1,True),(P 2,False),(P 3,False),(P 4,False)])
,(7,[(P 0,True),(P 1,True),(P 2,False),(P 3,True),(P 4,False)])]

[P 0,P 1,P 2,P 3,P 4,P 5,P 6,P 7,P 8,P 9] /= [P 0,P 1,P 2,P 3,P 4]

106 Chapter 3. Implementing Symbolic DEL with BDDs

The opposite does not hold either, i.e. there are Kripke models which do get
translated to knowledge structures with the same vocabulary as the original Kripke
model, for example those models consisting of a single possible world:

λ> quickCheck (\m -> vocabOf (kripkeToKns (m, head (worldsOf m))) /= vocabOf m)
*** Failed! Falsifiable (after 1 test):
KrMS5 [1]

[("1",[[1]]),("2",[[1]]),("3",[[1]]),("4",[[1]]),("5",[[1]])]
[(1,[(P 0,True),(P 1,False),(P 2,True),(P 3,True),(P 4,False)])]

To further simplify the specification of tests and instead of writing our own
wrappers around QuickCheck, we use the Hspec library [Hen17] which allows us
to list properties and examples to be tested in a natural way. Figure 3.22 shows
part of a test module containing checks of both randomized (prop) and fixed (it)
examples.

During the development of SMCDEL we use the continuous integration service
travis to automatically run tests after every commit in our public git repository.
The results can be found at https://travis-ci.org/jrclogic/SMCDEL.

main :: IO ()
main = hspec $ do
describe "SMCDEL.Language" $ do

prop "simplifying a boolean formula yields something equivalent" $
\(BF bf) -> boolBddOf bf == boolBddOf (simplify bf)

prop "simplifying a boolean formula only removes propositions" $
\(BF bf) -> all (‘elem ‘ propsInForm bf) (propsInForm (simplify bf))

describe "SMCDEL.Symbolic.HasCacBDD" $
prop "boolEvalViaBdd agrees on simplified formulas" $

\(BF bf) props -> let truths = nub props in
boolEvalViaBdd truths bf == boolEvalViaBdd truths (simplify bf)

describe "SMCDEL.Explicit.S5" $
prop "generatedSubmodel preserves truth" $

\m f -> Exp.eval (m, head $ Exp.worldsOf m) f == Exp.eval (Exp.
generatedSubmodel (m, head $ Exp.worldsOf m)) f

describe "SMCDEL.Examples" $ do
it "Three Muddy Children" $

evalViaBdd mudScn0 (nobodyknows 3) &&
evalViaBdd mudScn1 (nobodyknows 3) &&
evalViaBdd mudScn2 (Conj [knows i | i <- [1..3]]) &&
length (SMCDEL.Symbolic.HasCacBDD.statesOf mudKns2) == 1

it "Thirsty Logicians: valid for up to 10 agents" $
all thirstyCheck [3..10]

it "Dining Crypto: valid for up to 9 agents" $
dcValid && all genDcValid [3..9]

it "Russian Cards: 102 solutions" $
length (filter checkSet allHandLists) == 102

it "Sum and Product: There is exactly one solution." $
length sapSolutions == 1

it "Sum and Product: (4,13) is a solution." $
validViaBdd sapKnStruct (Impl (Conj [xIs 4, yIs 13]) sapProtocol)

it "Sum and Product: (4,13) is the only solution." $
validViaBdd sapKnStruct (Impl sapProtocol (Conj [xIs 4, yIs 13]))

Figure 3.22: Automated testing with QuickCheck and HSpec.

https://travis-ci.org/jrclogic/SMCDEL

3.11. Further Development 107

3.11 Further Development
Our model checker SMCDEL provides both symbolic model checking methods for
DEL, based on BDDs. It is thus a symbolic alternative to DEMO and DEMO-S5.
In the next chapter we go through more examples to further illustrate the usage
of SMCDEL and to benchmark its performance in comparison with other model
checkers.

An alternative approach to symbolic model checking is so-called bounded model
checking which uses satisfiability (SAT) solvers instead of BDDs — see [Cla+01] for
an introduction. Bounded model checking has been successful for temporal logics,
and it would be interesting to see if the boolean reasoning needed in SMCDEL
could also be reduced to SAT solving in a similar way and what the performance
would be.

For the future, we also hope to make SMCDEL more accessible by not only
exposing the simple S5 functions via the command line and web interface, but
also the general methods for transformers. One of the challenges here is how
dynamic languages like LD and LS can be exposed to the user without making the
Form type too general, as discussed in Section 3.2. Embedding a domain-specific
language in Haskell such that it can easily be extended in different ways is a tricky
problem. An interesting solution which might also be used for SMCDEL in the
future are “Typed Tagless Final Interpreters” from [CKS09]. An example how to
embed propositional and basic modal logic into Haskell in this way can be found
at https://github.com/m4lvin/logic/.

Finally, during the development of SMCDEL other abstraction ideas appeared
in the DEL literature and should be implemented to compare their performance
to our approach. The authors of [CS17], for example, use mental programs [CS15]
to give a succinct representation of Kripke and action models.

https://github.com/m4lvin/logic/

Chapter 4

Examples and Benchmarks

Edurne: I need to tell you something.
Eduard: I don’t want to know it.
Edurne: But I want you to know.
Eduard: I already know it.

Oscar van den Boogaard: &Me (2013)

In this chapter, we look at several concrete examples of epistemic modeling and
the corresponding model checking tasks that can be solved by SMCDEL. We start
with classic logic puzzles from the literature on epistemic logic, but also cover
security protocols like the Dining Cryptographers.

We consider it a core feature of SMCDEL to be free software and thoroughly
documented. In particular, all results mentioned in this chapter can easily be
reproduced with the Haskell tool stack [Com18].

All experiments and benchmarks described in this chapter were done using
64-bit Debian GNU/Linux 9 with kernel 4.9.65–3, GHC8.2.2 and g++6.3.0 on an
Intel Core i3–2120 3.30GHz processor and 12GB of memory.

4.1 Muddy Children

In Section 2.3 we already introduced the Muddy Children example, which we will
now use for a comparison between existing explicit model checking methods and
our new symbolic methods.

We compared the performance of SMCDEL to DEMO-S5, the explicit model
checker optimized for multi-agent S5 [Eij14a]. As a benchmark we use the question
“For n children, all of them muddy, how many announcements of ‘Nobody knows
their own state.’ are needed until they do know their own state?”. We measured
how long each method takes to find and verify the correct answer (n − 1) by
iteratively evaluating DEL formulas saying that after this many announcements

109

110 Chapter 4. Examples and Benchmarks

nobody/everybody knows their own state. The exact input can be found in
the technical report [Gat18]. To get precise timing results we use the library
Criterion [OSu16].

Figure 4.1 shows the results on a logarithmic scale: Explicit model checking
with DEMO-S5 quickly becomes unfeasible for more than 12 agents, whereas our
symbolic model checker SMCDEL deals with scenarios up to 40 agents in less
than a second. We tested both the original SMCDEL using CacBDD [LSX13] and
an alternative version based on CUDD [Som12]. The performance is almost the
same, but CUDD is slightly faster for less than 20 agents while CacBDD is faster
for higher values. Note that we are measuring the performance not only of the
BDD packages, but at the same time the Haskell bindings.

0 5 10 15 20 25 30 35 40

10−5

10−4

10−3

10−2

10−1

100

101

102

103

no. of children (all muddy)

se
co
nd

s

DEMO-S5
SMCDEL.Trans (CacBDD)
SMCDEL.K (CacBDD)
SMCDEL (CUDD)
SMCDEL (CacBDD)

Number Triangle [GS11]

Figure 4.1: Muddy Children benchmark results (logarithmic scale).

Our benchmark is a comparison of different programs and representations at
the same time: DEMO-S5 uses a Kripke model, SMCDEL uses the knowledge
structure. The speedup could therefore arise at different steps: First at the
generation of the initial knowledge structure or Kripke model, second during the
update because the formula to be evaluated starts with an announcement, or
finally when a formula is evaluated on the result.

4.1. Muddy Children 111

To test in which of the steps our new implementation is faster we also bench-
marked a variant of SMCDEL which takes a Kripke model as input. It uses the
translation from Definition 2.2.6 to construct an equivalent knowledge structure
and checks the given formula on that structure. The results are “SMCDEL.Trans
(CacBDD)” in Figure 4.1. We can see that the performance of this method is
worse than DEMO-S5 for small instances but becomes slightly better for nine
or more agents. This reveals that the standard semantics are slow because the
generation of large Kripke models takes a long time, and not the evaluation of
updates and formulas afterwards.

In some sense this is where theory and practice of model checking part ways,
because only the evaluation of formulas is considered part of “model checking” itself,
not the time to generate or read in the description of the model. In particular, the
computational complexity of model checking is measured with the size of the model
as a parameter [AS13]. But this size will depend heavily on the representation:
The Kripke model for situations like the Muddy Children grows exponentially in
the number of agents, so even if model checking takes time polynomial in the size
of the model, it is exponential in the number of agents. In contrast, consider the
size of a knowledge structure: For n Muddy Children the initial model is given
by ({p1, . . . , pn},>, O1 = {p1}, . . . , On = {pn}) which we can write as a string
of length O(n2). Moreover, the BDDs describing intermediate state laws will
maximally have

⌈
n
2

⌉2 many nodes.

We also implemented and benchmarked an alternative modeling of Muddy
Children given in [GS11]. Inspired by the number triangle, the authors use models
without names or indices for agents. Only two kinds of agents, the muddy and
non-muddy children, are distinguished. Moreover, instead of epistemic relations
the model contains observational states, which describe the perspective of a type
of agents. This yields a model for n agents with only 2n+ 1 instead of 2n states,
as shown in Figure 4.2 for the case n = 3.

(0, 2) (1, 1) (2, 0)

(0, 3) (1, 2) (2, 1) (3, 0)

Figure 4.2: Triangle model for Muddy Children.

The authors of [GS11] do not provide a formal syntax and semantics and it is
impossible to evaluate the standard DEL language on such triangle models. For
our implementation we therefore defined the following new language

ϕ ::= ¬ϕ | ϕ ∧ ϕ | Q | Kb | Kb

where Q is a generalized quantifier, b is a bit for muddy or non-muddy, Kb means
that all agents of kind b know their own state and Kb means that all agents of kind

112 Chapter 4. Examples and Benchmarks

b do not know their own state. The knowledge operators do not take any further
formula arguments and the semantics of both operators start with a universal
quantifier. It is crucial to note that Kb is not the negation of Kb. In contrast,
¬Kb means that there is at least one agent not knowing their own state.

Also the updates need to be translated differently than to standard DEL: The
first announcement “At least one of you is muddy.” is the announcement of a
quantifier and for example removes the (0, 3) state at the left end of the lower
layer in Figure 4.2. After that, the announcements of “Nobody knows their own
state.” are given by K0 ∧K1 and each announcement of this formula removes
some of the observational states in the upper layer.

Figure 4.3 shows how this language and its semantics can be defined in Haskell.
For more details we refer to an appendix of the SMCDEL documentation in [Gat18].

The performance of this number triangle model is impressive, as shown in
Figure 4.1. However, the modeling is very specific to the Muddy Children, while
DEMO-S5 and SMCDEL are general DEL model checkers. Similar abstractions
and concise models might be found for other examples, but they need to be
constructed for each specific case. Still, the results are strong evidence that
additional abstraction methods such as agent kinds can improve the performance
of DEL model checking.

Muddy Children has also been used to benchmark MCMAS [LQR15] but the
formula checked there concerns correctness of behavior and not how many rounds
are needed. Moreover, the interpreted system semantics of model checkers like MC-
MAS are very different from DEL. Better suited for a direct comparison between
SMCDEL and MCMAS is the protocol for the Dining Cryptographers [Cha88]
which we discuss in detail in Section 4.3.

Ending this section, to check whether our more general belief structures have
similar computational advantages as knowledge structures, we repeated the muddy
children benchmark using the BDD encoding for relations instead of observational
variables. The runtime of this method is “SMCDEL.K (CacBDD)” in Figure 4.1.

As expected this worsens performance, but for the cases of ten or more agents,
model checking on belief structures is still faster than DEMO-S5 which uses
partitions. For example, it takes around 15 instead of 200 seconds to check the
case of 12 agents.

However, a better comparison would be with the original non-optimized DEMO
that can also handle non-S5 models, and should be done with other scenarios than
Muddy Children. We leave this as future work.

4.1. Muddy Children 113

data Kind = Muddy | Clean

type State = (Int ,Int)

data McModel = McM [State] [State] State deriving Show

mcModel :: State -> McModel
mcModel cur@(c,m) = McM ostates fstates cur where

total = c + m
ostates = [((total -1)-m’,m’) | m’<-[0..(total -1)]] -- observ. states
fstates = [(total -m’, m’) | m’<-[0.. total]] -- factual states

posFrom :: McModel -> State -> [State]
posFrom (McM _ fstates _) (oc ,om) =

filter (‘elem ‘ fstates) [(oc+1,om), (oc ,om+1)]

obsFor :: McModel -> Kind -> State
obsFor (McM _ _ (curc ,curm)) Clean = (curc -1,curm)
obsFor (McM _ _ (curc ,curm)) Muddy = (curc ,curm -1)

posFor :: McModel -> Kind -> [State]
posFor m status = posFrom m $ obsFor m status

type Quantifier = State -> Bool

some :: Quantifier
some (_,b) = b > 0

data McFormula = Neg McFormula -- negations
| Conj [McFormula] -- conjunctions
| Qf Quantifier -- quantifiers
| KnowSelf Kind -- all b agents DO know their status
| NotKnowSelf Kind -- all b agents DON ’T know their status

nobodyknows ,everyoneKnows :: McFormula
nobodyknows = Conj [NotKnowSelf Clean , NotKnowSelf Muddy]
everyoneKnows = Conj [KnowSelf Clean , KnowSelf Muddy]

eval :: McModel -> McFormula -> Bool
eval m (Neg f) = not $ eval m f
eval m (Conj fs) = all (eval m) fs
eval (McM _ _ s) (Qf q) = q s
eval m@(McM _ _ (_,curm)) (KnowSelf Muddy) = curm ==0 ||

length (posFor m Muddy) == 1
eval m@(McM _ _ (curc ,_)) (KnowSelf Clean) = curc ==0 ||

length (posFor m Clean) == 1
eval m@(McM _ _ (_,curm)) (NotKnowSelf Muddy) = curm ==0 ||

length (posFor m Muddy) == 2
eval m@(McM _ _ (curc ,_)) (NotKnowSelf Clean) = curc ==0 ||

length (posFor m Clean) == 2

update :: McModel -> McFormula -> McModel
update (McM ostates fstates cur) f =

McM ostates ’ fstates ’ cur where
fstates ’ = filter (\s -> eval (McM ostates fstates s) f) fstates
ostates ’ = filter (not . null . posFrom (McM [] fstates ’ cur)) ostates

step :: State -> Int -> McModel
step s 0 = update (mcModel s) (Qf some)
step s n = update (step s (n-1)) nobodyknows

Figure 4.3: Part of the SMCDEL.Other.MCTRIANGLE module.

114 Chapter 4. Examples and Benchmarks

4.2 Drinking Logicians
Another entertaining example for epistemic reasoning among multiple agents is
the story of the Drinking Logicians. Figure 4.4 shows a comic version of this
scenario, published in [Spi11].

Figure 4.4: Drinking Logicians. CC-BY-NC-SA SpikedMath.com [Spi11].

Recall that in the Muddy Children example each child can observe the status
— whether they are muddy — of everyone else, but not their own. The Drinking
Logicians example is exactly the dual situation: Here each agent observes/knows
their own status — whether they want a beer — but cannot observe the state of
the other agents.

Let p1 mean that agent a wants a beer, p2 that agent b wants a beer and p3

that agent c wants a beer. The knowledge structure for three drinking logicians is

(V = {p1, p2, p3}, θ = >, Oa = {p1}, Ob = {p2}, Oc = {p3})

and the actual state in which everyone is thirsty is {p1, p2, p3}. Figure 4.5 shows an
input file for the command line version of SMCDEL. It describes the initial knowl-
edge structure with three drinking logicians and the three following specifications
to be checked.

First, agent a says “I don’t know”. We model this as an announcement that a
does not know whether p1 ∧ p2 ∧ p3 holds. After this announcement, it is common
knowledge among all three agents that p1 is true:

[!¬K?
a(p1 ∧ p2 ∧ p3)]Ca,b,cp1

Second, after two announcements, c knows whether everyone wants beer:

[!¬K?
a(p1 ∧ p2 ∧ p3)][!¬K?

b (p1 ∧ p2 ∧ p3)]K?
c (p1 ∧ p2 ∧ p3)

4.2. Drinking Logicians 115

VARS 1, 2, 3

LAW Top

OBS a: 1
b: 2
c: 3

VALID? [! ~ a knows whether (1 & 2 & 3)]
(a,b,c) comknow that 1

VALID? [! ~ a knows whether (1 & 2 & 3)]
[! ~ b knows whether (1 & 2 & 3)]
c knows whether (1 & 2 & 3)

VALID? (< ! ~ a knows whether (1 & 2 & 3) >
< ! ~ b knows whether (1 & 2 & 3) >
< ! c knows that (1 & 2 & 3) > Top)

iff (1 & 2 & 3)

Figure 4.5: Input for three Drinking Logicians.

Third, the three announcements can be made in this order iff everyone wants beer:

(〈!¬K?
a(p1 ∧ p2 ∧ p3)〉〈!¬K?

b (p1 ∧ p2 ∧ p3)〉〈!Kc(p1 ∧ p2 ∧ p3)〉>)↔ (p1 ∧ p2 ∧ p3)

Just like the Muddy Children example, the Drinking Logicians can be general-
ized to any number of agents. In Table 4.1 we show how long it takes SMCDEL
to generate and check the model for up to 400 agents.

n seconds

3 0.12
10 0.14
100 0.22
200 0.61
400 2.87

Table 4.1: Runtime results for larger numbers of Drinking Logicians.

116 Chapter 4. Examples and Benchmarks

4.3 Dining Cryptographers
A scenario which fits nicely into both the framework of Dynamic Epistemic Logic
and that of epistemic temporal logics (see Section 1.5), is the story of the dining
cryptographers, first described in a well-known paper by David Chaum:

“Three cryptographers are sitting down to dinner at their favorite
three-star restaurant. Their waiter informs them that arrangements
have been made with the maître d’hôtel for the bill to be paid anony-
mously. One of the cryptographers might be paying for the dinner,
or it might have been NSA (U.S. National Security Agency). The
three cryptographers respect each other’s right to make an anonymous
payment, but they wonder if NSA is paying.” [Cha88]

They can accomplish this with the following protocol: Every pair of cryptogra-
phers flips a coin in such a way (e.g. under the table) that only those two see the
result. Then everyone announces whether the two coins they saw were different.
But, there is an exception: If one of them paid, then this person says the opposite.
After these announcements are made, the cryptographers can infer that the NSA
paid iff the number of people saying that they saw the same result on both coins
is 1 or 3. Figure 4.6 shows an example of how the agents could reason.

More formally, we use boolean variables and the XOR function as follows.
Let p0 mean that the NSA paid, pi for i ∈ {1, 2, 3} that i paid and let pk for
k ∈ {4, 5, 6} represent the shared coins. The scenario can then be modeled by the
knowledge structure

F =

(
V = {p0, . . . , pk}, θ =

∨
{pi v {p0, . . . , p3} | i ∈ {0, . . . , 3}},

O1 = {1, 4, 5}, O2 = {2, 4, 6}, O3 = {3, 5, 6}

)

where intuitively the state law θ is saying that someone must have paid but not
two of the agents or the NSA at the same time.

For an analysis using Kripke models, see [EO07], which discusses explicit model
checking of the Dining Cryptographers with DEMO.

Recall the abbreviations for announcing whether [!?ϕ] from Definition 1.2.1 and
exclusive disjunction

⊕
from Definition 1.0.1. The announcements made by the

three dining cryptographers can then be formalized as three public announcements:

[?!(⊕{p1, p4, p5})] [?!(⊕{p2, p4, p6})] [?!(⊕{p3, p5, p6})]

For the protocol to work it is actually enough to broadcast the XOR of all
announcements made by the agents (though this reveals less information). Hence
for efficiency we can also replace them with a single announcement:

[?!⊕ {(⊕{p1, p4, p5}), (⊕{p2, p4, p6}), (⊕{p3, p5, p6})}]

4.3. Dining Cryptographers 117

Figure 3.12 in the previous chapter shows the input for the command line
interface of SMCDEL for the case of three agents.

The following goal of the protocol was translated to an epistemic temporal
logic and then model checked in [LQR15]:

“If cryptographer 1 did not pay, then after the announcements are
made, 1 either knows that no cryptographers paid, or that someone
paid, but in this case 1 does not know who did.”

Following the translation ideas in [Ben+09; DHR13] we can formalize the same
statement in LP as

¬p1 → [. . .](K1(
n∧
i=1

¬pi) ∨ (K1(
n∨
i=2

pi) ∧
n∧
i=2

(¬K1pi)))

where pi says that agent i paid and [. . .] is the announcement from above.
The protocol can be generalized for any finite number of Dining Cryptographers.

Table 4.2 shows how many propositions we need to model the situation for n agents
and how long SMCDEL needs to run to check the above statement. In the next
section we provide more runtime results, also using the Dining Cryptographers
example, but with a ring topology instead of the complete graph.

n Propositions Seconds

10 56 0.0017
20 211 0.0092
40 821 0.0739
80 3241 0.9751
120 7261 3.2806
160 12881 8.1046

Table 4.2: Dining Cryptographers runtime (complete graph, single announcement).

Figure 4.6: The Dining Cryptographers. Drawings from [Cha85] c© 1985 Associa-
tion for Computing Machinery, Inc. Reprinted by permission.

118 Chapter 4. Examples and Benchmarks

4.4 Comparing DEL and ETL model checkers

In Section 3.1 above we gave an overview of various model checking tools for both
temporal and dynamic epistemic logics. Given different implementations, it is
natural to model the same problems and examples in each of them to compare
their performance in benchmarks. In this section we both summarize previous
results and present new benchmark results based on the Dining Cryptographers
example from the previous section.

It should be noted that we are comparing many things at the same time:
the different languages and logics in which we formalize a protocol, different
representations of their semantics, different model checking algorithms and finally
different implementations. Our benchmarks are therefore to be taken with a grain
of salt, because by design the different programs do not solve exactly the same
task. However, we can argue that for specific protocols and scenarios DEL can
serve as an alternative to ETL. Concretely, the translations between dynamic and
temporal logics discussed in Section 1.6 give a systematic way to prove that we
can check the same property of the same protocol in both frameworks. We can
then meaningfully compare the performance of SMCDEL with that of temporal
model checkers like MCK, MCTK and MCMAS.

In fact, model checking was the motivation in [DHR13] to explore the relation
between temporal and dynamic epistemic logics. Based on previous experience
with different model checkers, the authors wanted a canonical way to translate and
thereby reduce DEL model checking to ETL model checking. To our knowledge
this method has not been implemented yet, hence the complexity and performance
are not known. SMCDEL is not an implementation of the translation strategy,
but works by checking DEL formulas on symbolic structures directly.

In the first publication on MCTK [SSL07] the authors showed that it outper-
forms MCK and MCMAS in two benchmarks based on the Dining Cryptographers
and Russian Cards examples (see Section 4.3 and 4.5, respectively). However, this
comparison used MCMAS in version 0.7 and MCK in version 0.1.0 which by now
are both outdated.

A more recent comparison between MCMAS in version 1.2.2, MCK and
MCTK was done in [LQR15]. Unfortunately the authors do not state which
version of MCK and MCTK they used, but based on the time of publication it
should have been MCK 1.0.0 and MCTK 1.0.1. We repeated this benchmark
to compare the newer versions of MCK, MCTK and MCMAS with SMCDEL.
A script to automatically run all four model checkers can be found at https:
//github.com/m4lvin/dining-benchmark. In Table 4.3 we both show our own
benchmark results using newer versions of the model checkers, and quote the older
results from [LQR15]. Note that “t/o” stands for timeout. Besides SMCDEL 1.0.0
released with this thesis we used MCK 1.1.0, MCMAS 1.3.0 and MCTK 1.0.2.1

1Special thanks to Xiangyu Luo for providing a compiled version of MCTK.

https://github.com/m4lvin/dining-benchmark
https://github.com/m4lvin/dining-benchmark

4.4. Comparing DEL and ETL model checkers 119

results from [LQR15] reproduced results SMCDEL
n MCK MCTK MCMAS MCK MCTK MCMAS single separate

3 — — — 1.40 0.00 0.00 0.14 0.14
4 — — — 1.83 0.00 0.00 0.14 0.14
5 1.4 0.024 0.017 11.59 0.00 0.02 0.14 0.14
10 74.7 0.128 0.091 — 0.04 0.22 0.14 0.37
15 — — — — 0.09 0.87 0.14 26.92
20 47937 34.790 0.667 — 0.37 3.63 0.14 —
30 t/o 2.946 1.476 — 1.70 16.19 0.14 —
40 t/o 20.786 5.053 — 4.30 54.13 0.15 —
50 t/o 72.444 13.437 — 6.23 20.73 0.15 —
60 t/o t/o 14.180 — 8.80 49.71 0.16 —
70 — — — — 20.44 80.37 0.18 —
80 — — — — 37.83 465.17 0.19 —

Table 4.3: Dining Cryptographers runtime in seconds (ring topology).

Note that the runtime for SMCDEL with a single announcement is much lower
than in the previous chapter. This is to be expected, because we now use the
ring topology where each cryptographer only shares bits with two other agents —
intuitively their left and right neighbors on the round dinner table. This variant
of the protocol is also checked by the other programs and reduces the number of
shared bits from n(n−1)

2
to n.

The “separate” column shows the results from an alternative check in which
the public announcements are not combined into one step of broadcasting their
XOR, but in a sequence of n separate announcements.

We think that this benchmark shows both the strengths and weaknesses of our
implementation and maybe Dynamic Epistemic Logic in general: Reasoning about
knowledge and its dynamics can be done fast. But if we want to be more precise
about time and our model contains a long sequence of events such as different
announcements, then the model checkers for temporal logics are faster.

When comparing the different temporal model checkers to each other, we were
unable to reproduce the results from [LQR15]. This could be due to improvements
in newer versions, the fact that we used a newer processor, or different parameters
and options to fine-tune each model checker and BDD package. In general, our
new results show that MCTK is faster than MCMAS, while they are both clearly
faster than MCK. Two peculiar results are the one for MCTK with 30 agents in
the statistics from [LQR15] and the one for MCMAS with 50 agents. These two
are outliers in the sense that the runtime is lower than for the instance with less
agents. Usually the model checking task becomes harder with more agents and
we would expect runtime to increase monotonically. As our main focus here is not
temporal logic, we did not explore these “gaps” further.

120 Chapter 4. Examples and Benchmarks

Besides in their performance, model checkers also differ in their usability. A
comparison between MCK, MCMAS and DEMO in [Dit+06] also assessed the
time it took to write models and specifications. Their conclusion was that given
familiarity with the language and tool, it takes about the same time to formalize
a given scenario in DEMO as in MCK and thereby in DEL as in ETL.

They also argue that MCK has a more succinct and intuitive input syntax
which is better suited to specify protocols than the syntax of DEMO. Currently
also SMCDEL provides no direct way to specify a protocol or the behavior of
agents. However, we can use wrapper functions for protocols and epistemic
planning problems, as we will show in the following sections with further examples.
In general, SMCDEL should provide the same level of usability as DEMO, with
much better performance thanks to symbolic representation. Additionally, the
command line and web interfaces make the main functions of SMCDEL usable
without any knowledge of Haskell, using a syntax that is more similar to the
languages SMV and ISPL that are used by temporal model checkers.

4.5 Russian Cards
As another case study, we applied our symbolic model checker to the Russian
Cards Problem. One of its first logical analyses is [Dit03]. The problem has
since gained notable attention as an intuitive example of cryptography that is
information-theoretically secure and does not rely on computational hardness
assumptions [FG16; Cor+15; LF17]. The basic version of the problem is this:

Seven cards, enumerated from 0 to 6, are distributed between Anne,
Bob and Crow such that Anne and Bob both receive three cards and
Crow one card. It is common knowledge which cards exist and how
many cards each agent has. Everyone knows their own but not the
others’ cards. The goal of Anne and Bob now is to learn each others
cards without Crow learning them. They can only communicate via
public announcements.

The initial situation can easily be modeled in a knowledge structure. We use
a vocabulary with 21 atomic propositions, each saying that a specific agent has a
specific card. In the state law we then say that each card must be with exactly
one of the agents. Finally, each agent gets 7 observational variables to encode
that they see their own cards.

We do not include a figure of the full knowledge structure here, because the
BDD of the state law has 129 nodes. Still, it is generated within a second and
can easily be shown with the command disp rusSCN after loading the module
SMCDEL.Examples.RussianCards of SMCDEL.

Many different solutions exist but here we will focus on the so-called five-hands
protocols (and their extensions with six or seven hands): First Anne makes an

4.5. Russian Cards 121

announcement of the form “My hand is one of these: . . . ”. If her hand is 012 she
could for example take the set {012, 034, 056, 135, 246}. It can be checked that
this announcement does not tell Crow anything, independent of which card it
has. In contrast, Bob will be able to rule out all but one of the hands in the list
depending on his own hand. Hence the second and last step of the protocol is an
announcement by Bob about which card Crow has. For example, if Bob’s hand is
345 he would finish the protocol with “Crow has card 6.”.

Verifying this protocol for the fixed deal 012|345|6 with our symbolic model
checker takes less than a second. Compared to that, the first DEMO implementa-
tion [Dit+06] needed nine seconds to check one protocol, and similar specifications
for MCK and MCMAS took more than 100 seconds. Optimized specifications also
given in [Dit+06] got this down to four seconds for DEMO and less than a second
for MCK with CUDD.

These results are not directly comparable, as these benchmarks were done on
older computers. For now we only conjecture that newer versions of MCK, MCTK
and MCMAS will also be much faster, and leave it as future work to repeat the
whole study of [Dit+06].

An advantage of the BDD representation is that checking multiple protocols
in a row does not take much longer than checking only one protocol, because the
BDD package caches results and the BDD for the state law is only generated once.
We can use this to not just verify but find all 5/6/7-hands protocols, with the
following combination of manual reasoning and brute-force.

By Proposition 32 in [Dit03], safe announcements from Anne never contain
two hands with multiple cards in common. If we also assume that the hands are
lexicographically ordered, this leaves us with 1290 possible lists of five, six or
seven hands. Only some of them are safe announcements which can be used by
Anne. We can find them by checking the corresponding 1290 formulas expressing
that an announcement works as part of a successful protocol. Our model checker
can filter out the 102 safe announcements within 1.6 seconds, generating and
verifying the same list as in [Dit03] where it was manually generated. Out of the
102 announcements, there are 60 in which Alice announces a set of five cards, 36
with six cards and six with seven cards.

Going further, suppose we do not know any shortcuts like Proposition 32
from [Dit03] to restrict the search space. This perspective was adopted in [Eng+15]
and turns the puzzle into an epistemic planning problem. If we only fix that
Alice will announce five hands, including her own which w.l.o.g. is 012, then
she has to pick four other hands of three cards each. The number of possible
actions is then 46376. It takes our model checker about 160 seconds to find the
60 safe announcements among them. Finally, if we relax the condition that Bob
will answer with “Crow has card 6” but instead consider “Crow has card n” for
any card n, the search space grows by a factor of 7 to 324632. It then takes
SMCDEL around 20 minutes to find the solutions. None of the additional plans
are successful, hence the same 60 plans are generated.

122 Chapter 4. Examples and Benchmarks

4.6 Sum and Product
Maybe the most famous example in the DEL literature after the Muddy Children
is the Sum and Product puzzle [Fre69, translated from Dutch]:

A says to S and P: “I chose two numbers x, y such that 1 < x < y and
x+ y ≤ 100. I will tell s = x+ y to S alone, and p = xy to P alone.
These messages will stay secret. But you should try to calculate the
pair (x, y)”. He does as announced. Now follows this conversation: P
says: “I do not know it.” S says: “I knew that.” P says: “Now I know
it.” S says: “Now I also know it.” Determine the pair (x, y).

An overview of the literature on this puzzle and a solution using standard DEL
with explicit models can be found in [DRV08].

Our model checker can also solve this classic and we can improve upon the
results of existing implementations. However, this comes with a trade-off in
convenience. In DEMO-S5 [Eij14a] Kripke models are parameterized with a type,
as illustrated in Example 3.1.1. This allows the user to encode information in
possible worlds directly. For example, the worlds in a model for Sum and Product
can be pairs of integers. In contrast, because of the underlying BDD representation,
knowledge structures have to be completely propositional and we have to use an
encoding like the following manual translation.

To represent numbers we use binary encodings for x, y, s := x+ y and p := xy.
Recall that d·e denotes the smallest natural number not less than the argument.
We need dlog2Ne propositions for every variable that should take values up to
N . For example, suppose to represent x ≤ 100 we use p1, . . . , p7. The statement
x = 5 is then encoded as p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5 ∧ p6 ∧ ¬p7, corresponding to
the bit-string 0000101 for 5. We map 1 to negations because this is easier to
implement using the powerset function that is already part of SMCDEL, but the
opposite mapping would work just as well.

Altogether we need seven variables for each of x, y and s, and twelve variables
for p because it can take values up to 2500. We will get back to this way of
encoding numeric variables and define a general version of it more formally in
Section 5.1. Figure 4.7 shows how to implement the encoding for Sum and Product.
We also implement am abbreviation xyAre to say that (x, y) is the actual pair.

Given this encoding, we have propositional formulas for x = n etc. and can
use them to formalize the puzzle as usual [DHK07, Section 4.11]. The state law
for Sum and Product is a big disjunction over all possible pairs of x and y with
the given restrictions. It is here where we ensure that s and p are actually the
sum and the product of n and m:∨
{x = n∧y = m∧s = n+m∧p = n·m | 2 ≤ n < m ≤ 100, n+m ≤ 100} (4.1)

To let the agents S and P know the values of s and p respectively, we define
the observational variables OS := {s1, . . . , s7} and OP := {p1, . . . , p7}. Now we

4.6. Sum and Product 123

pairs :: [(Int , Int)]
pairs = [(x,y) | x< -[2..100] , y< -[2..100] , x<y, x+y <=100]

xProps , yProps , sProps , pProps :: [Prp]
xProps = [(P 1)..(P 7)]
yProps = [(P 8)..(P 14)]
sProps = [(P 15)..(P 21)]
pProps = [(P 22)..(P 33)]

sapAllProps :: [Prp]
sapAllProps = xProps ++ yProps ++ sProps ++ pProps

xIs , yIs , sIs , pIs :: Int -> Form
xIs n = booloutofForm (powerset xProps !! n) xProps
yIs n = booloutofForm (powerset yProps !! n) yProps
sIs n = booloutofForm (powerset sProps !! n) sProps
pIs n = booloutofForm (powerset pProps !! n) pProps

xyAre :: (Int ,Int) -> Form
xyAre (n,m) = Conj [xIs n, yIs m]

sapExplainState :: [Prp] -> String
sapExplainState truths = concat

["x = ", explain xProps , ", y = ", explain yProps , "
, x+y = ", explain sProps , " and x*y = ", explain pProps] where

explain = show . nmbr truths

nmbr :: [Prp] -> [Prp] -> Int
nmbr truths set = fromMaybe (error "Value not found") $

elemIndex (set ‘intersect ‘ truths) (powerset set)

Figure 4.7: Encoding Sum and Product with boolean propositions.

can use the usual formulas to say that an agent knows a variable and that the
statements of the dialogue can be truthfully announced. The solutions to the
puzzle are those states where this conjunction holds. Both the knowledge structure,
the statements and the protocol are specified in code in Figure 4.8.

We can then ask in which states the formula characterizing a solution holds
and use sapExplainState from Figure 4.7 to translate the state back to numbers:

λ> whereViaBdd sapKnStruct sapProtocol
[[P 1,P 2,P 3,P 4,P 6,P 7,P 8,P 9,P 10,P 13,P 15,P 16,P 18,

P 19,P 20,P 22,P 23,P 24,P 25,P 26,P 27,P 30,P 32,P 33]]

λ> map sapExplainState (whereViaBdd sapKnStruct sapProtocol)
["x = 4, y = 13, x+y = 17 and x*y = 52"]

It takes less than two seconds to find this unique solution. In particular this
is faster than the implementation in [Luo+08] which is also based on BDDs.
However, it is still slower than an optimized version of explicit model checking
with DEMO-S5 which can do it in less than one second. As SMCDEL includes
a full copy of DEMO-S5, it is easy to compare the two directly. We provide a
simple benchmark that outputs Figure 4.9.

124 Chapter 4. Examples and Benchmarks

sapKnStruct :: KnowStruct
sapKnStruct = KnS sapAllProps law obs where

law = boolBddOf $ Disj [Conj [xyAre (x,y), sIs (x+y), pIs (x*y)]
| (x,y) <- pairs]

obs = [(alice , sProps), (bob , pProps)]

sapKnows :: Agent -> Form
sapKnows i = Disj [K i (xyAre p) | p <- pairs]

sapForm1 , sapForm2 , sapForm3 :: Form
sapForm1 = K alice $ Neg (sapKnows bob) -- Sum: I knew that you didn ’t know
sapForm2 = sapKnows bob -- Product: Now I know the numbers
sapForm3 = sapKnows alice -- Sum: Now I also know the numbers

sapProtocol :: Form
sapProtocol = Conj [sapForm1

, PubAnnounce sapForm1 sapForm2
, PubAnnounce sapForm1 (PubAnnounce sapForm2 sapForm3)]

Figure 4.8: Sum and Product knowledge structure and formulas.

Our specification is based on that given in [DRV08] where the Sum and Product
puzzle was solved using the original DEMO. That is, we adopted the files from
http://www.cs.otago.ac.nz/staffpriv/hans/sumpro/ to define a model for
DEMO-S5 instead of DEMO and used the same formulas and updates. It is clear
that DEMO-S5 is much faster than the original DEMO.

The authors of [DRV08] use a trick to speed up model checking: To state that
an agent knows the values of x and y we usually use a big disjunction∨

{Ki(x = n ∧ y = m) | n,m ∈ {1, . . . , 100}}

but evaluating the more complex conjunction∧
{(x = n ∧ y = m)→ Ki(x = n ∧ y = m) | n,m ∈ {1, . . . , 100}}

which given factivity is equivalent on our model, is faster in DEMO. Intuitively,
this is because for the first formula DEMO computes the list of reachable worlds

$ stack bench smcdel:bench:bench-sumandproduct
[...]
Benchmarking the complete run.
*** Running DEMO_S5 ***
Mo [(4,13)] [Ag 0,Ag 1] [] [(Ag 0,[[(4,13)]]),(Ag 1,[[(4,13)]])] [(4,13)]
This took 0.77287063s seconds.

*** Running SMCDEL ***
The solution is:
x = 4, y = 13, x+y = 17 and x*y = 52
This took 1.2729152s seconds.

Figure 4.9: Benchmark results for Sum and Product.

http://www.cs.otago.ac.nz/staffpriv/hans/sumpro/

4.6. Sum and Product 125

before starting to check if they agree on the numbers and repeats this process for
all possible n and m. With the guarded version, DEMO first checks if n and m
are the values at the actual world. Only if that is the case will DEMO go on and
compute the reachable set of worlds.

The same trick does not speed up our symbolic algorithm. In fact, using the
original big disjunction is faster, probably because less calls to the BDD package
are made. We therefore use the original disjunction, as defined in the function
sapKnows in Figure 4.8.

One may be surprised that the symbolic approach is slower here. This is
probably due to a well-known problem already mentioned in [Bry86]: BDD
representations of products tend to be large. Concretely, the BDD of the state law
formula 4.1 given above on page 122 including the restriction p = n ·m has 21258
nodes (computed using the sizeOf function from HasCacBDD). Interestingly,
an interleaving variable order which places bits of the same significance near to
each other leads to a smaller state law BDD with only 5273 nodes. However, it
does not speed up the whole process of generating and checking. The reader will
understand that we do not include drawings of either BDD here.

Our program thus spends most of its time to build the BDD of the state law
before it can actually check any given formula. We can also see this by running an
alternative benchmark. Using the criterion library [OSu16] we compare only the
actual model checking processes, excluding the time it takes to generate the Kripke
model or knowledge structure in the beginning. Figure 4.10 show the output of
this alternative benchmark where SMCDEL is almost as fast as DEMO-S5.

$ stack bench :bench-sumandproduct --benchmark-arguments checkingOnly
[...]
Benchmarking only the checking, without model generation.
benchmarking checkingOnly/DEMO-S5
time 788.4 ms (787.8 ms .. 788.8 ms)

1.000 R2 (1.000 R2 .. 1.000 R2)
mean 787.9 ms (787.6 ms .. 788.1 ms)
std dev 280.9 µs (0.0 s .. 321.4 µs)
variance introduced by outliers: 19% (moderately inflated)

benchmarking checkingOnly/SMCDEL
time 859.3 ms (748.0 ms .. 967.9 ms)

0.998 R2 (0.992 R2 .. 1.000 R2)
mean 832.8 ms (809.4 ms .. 846.1 ms)
std dev 20.79 ms (0.0 s .. 22.88 ms)
variance introduced by outliers: 19% (moderately inflated)

Figure 4.10: Alternative Sum and Product benchmark using criterion [OSu16].

126 Chapter 4. Examples and Benchmarks

4.7 Sally and Anne

Most of our examples so far were clearly about knowledge and thus modeled with
S5. They also did not involve factual change. To show how our implementation of
belief structures and transformers works and performs, we now consider a classic
example from the literature in which both false beliefs and factual change play an
important role.

The Sally-Anne false belief task is a famous example from Psychology used to
illustrate and test for a theory of mind. The basic version goes as follows (adapted
from [BLF85]):

Sally has a basket, Anne has a box. Sally also has a marble and puts it
in her basket. Then Sally goes out for a walk. Anne moves the marble
from the basket into the box. Now Sally comes back and wants to get
her marble. Where will she look for it?

We also show a comic version which was used in experiments in Figure 4.11.
To answer the question where Sally will look for her marble correctly, one needs

to realize that Sally did not observe that the marble was moved. She will thus
look for it in the basket. Our choice to implement this example is also motivated
by a recent interest in the computational complexity of theory of mind [Pol15;
PRS15] where our symbolic representation might provide a new perspective.

Figure 4.11: Sally and Anne. Drawing by Axel Scheffler used with permission.

4.7. Sally and Anne 127

We now translate a DEL modeling from [Bol14] to our framework. For
simplicity we adopt the first naive modeling given there, leaving it as future work
to adopt the refinement with edge-conditions and other improvements.

We use the vocabulary V = {p, t} where p means that Sally is in the room
and t that the marble is in the basket. In the initial scene Sally is in the room,
the marble is not in the basket and both of this is common knowledge:

(F0, s0) = ((V = {p, t}, θ = (p ∧ ¬t), ΩS = >, ΩA = >), {p})

The sequence of events is:

X1: Sally puts the marble in the basket: ((∅,>, {t}, θ−(t) = >,>,>),∅).

X2: Sally leaves: ((∅,>, {p}, θ−(p) = ⊥,>,>),∅).

X3: Anne puts the marble in the box, not observed by Sally:
(({q},>, {t}, θ−(t) = (¬q → t) ∧ (q → ⊥),¬q′, q ↔ q′), {q}).
Here q is a fresh proposition to distinguish two possible events, namely
whether Anne moves the marble or not. The change law θ− then updates t,
depending on the actual event: If q is false, then t stays as it is. If q is true,
then t is set to false.

X4: Sally comes back: ((∅,>, {p}, θ−(p) = >,>,>),∅).

We calculate the result in Figure 4.12, using Lemma 2.12.2 to remove superflu-
ous variables after the updates.

(({p, t}, (p ∧ ¬t),>,>), p) F0

× ((∅,>, {t}, θ−(t) = >,>,>),∅) X1

= (({p, t, t◦}, (p ∧ ¬t◦) ∧ t,>,>), {p, t})

× ((∅,>, {p}, θ−(p) = ⊥,>,>),∅) X2

= (({p, t, t◦, p◦}, (p◦ ∧ ¬t◦) ∧ t ∧ ¬p,>,>), {t, p◦})
≡V (({p, t}, t ∧ ¬p,>,>), {t})

× (({q},>, {t}, θ−(t) = (¬q → t) ∧ (q → ⊥),¬q′, q ↔ q′), {q}) X3

= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t↔ ((¬q → t◦) ∧ (q → ⊥))),¬q′, q ↔ q′), {q})
= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t↔ ¬q),¬q′, q ↔ q′), {q})
≡V (({p, t, q},¬p ∧ (t↔ ¬q),¬q′, q ↔ q′), {q})

× ((∅,>, {p}, θ−(p) = >,>,>),∅) X4

= (({p, t, q, p◦},¬p◦ ∧ (t↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q})
≡V (({p, t, q}, (t↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q}) F4

Figure 4.12: Sally-Anne on belief structures and transformers.

128 Chapter 4. Examples and Benchmarks

Finally, we can check that Sally believes that the marble is in the basket:

(F4, {p, q}) � 2St ⇐⇒ {p, q} � ∀V ′(θ′ → (ΩS → t′))
⇐⇒ {p, q} � ∀{p′, t′, q′}((t′ ↔ ¬q′) ∧ p′ → (¬q′ → t′))
⇐⇒ {p, q} � >

Due to the small structure, running SMCDEL on this example is almost instant:
The computation including the transformation takes 0.25 seconds.

4.8 Epistemic Planning
Planning problems in general are given by an initial state, a set of available actions
and a goal that should be reached. Strategic planning is a field which expanded
throughout the last three centuries, with the first standardization of the Planning
Domain Definition Language (PDDL) in 1998 [McD+98], which has since been
revised and extended regularly [Kov11].

All three parts of a planning problem can have epistemic aspects: An agent
can be uncertain about the initial state, the actions might generate uncertainty,
and the goal might be that an agent should (not) know something. Official
versions of PDDL do not include operators for knowledge or belief, but recently
variants of DEL have been used to describe epistemic planning problems, for
example in [BA11; WL12; Eng+15]. While epistemic planning is often done using
knowledge bases, combining this work with our symbolic methods for DEL could
bring logic back in the game.

In particular, some epistemic planning problems can be reduced to the DEL
model checking problem. Hence we can also use SMCDEL as a tool for epistemic
planning. The Russian cards example above in Section 4.5 was already an example
for this, and the following definition provides a general method. We adopt a
common distinction from the literature, between online and offline plans.

4.8.1. Definition. A planning problem is a tuple (F ,X, ϕ) where F is a knowl-
edge or a belief structure, X is a set of transformers, and ϕ is a formula from the
epistemic language L. We call the first component the initial situation, the second
the available moves and the third the goal.

An offline plan for a planning problem is a finite sequence of available moves.
We say that it succeeds iff applying the elements to the initial situation in the
given order yields a model or structure in which the goal holds.

Recall how we found the working protocols in the Russian Cards puzzle by
checking a formula for each possible protocol saying that this protocol is successful.
This reduction of plan-success to model checking can be generalized as follows.

4.8.2. Fact. An offline plan X1, . . . , Xk succeeds on a planning problem (F ,X, ϕ)
iff we have F � [X1] . . . [Xk]ϕ.

4.8. Epistemic Planning 129

We note that this is similar to the definition of a puzzle used in the logic of agent-
types, utterances and questions in [LW13] and the model checking implementation
of the “Hardest Logic Puzzle Ever” in [Gat16].

4.8.3. Example. The Dining Cryptographers from Section 4.3 can be modeled as
a planning problem where the initial situation is given by the knowledge structure
from page 116, the set of available moves are all public announcements and the
goal is (K1(

∧n
i=1 ¬pi) ∨ (K1(

∨n
i=2 pi) ∧

∧n
i=2(¬K1pi))) as explained on page 117.

The sequence of “whether” announcements

[?!(⊕{p1, p4, p5})][?!(⊕{p2, p4, p6})][?!(⊕{p3, p5, p6})]
is a successful offline plan for it.

Such plans are called “offline” because the sequence of moves to be made is
fixed in advance and not changed during the execution of the plan. An online plan
in contrast, may use “If-Then-Else” to evaluate formulas while being executed and
use the result to decide between different moves on the spot.

Formally, an online plan can be defined as a directed acyclic graph: Nodes are
labeled formulas to be tested and edges are similar to those in binary decision
diagrams. Every non-terminal node should have two outgoing edges, one dashed
and one solid, labeled with the action to be made and leading to the remaining
plan. The success of an online plan can then be defined by recursion and again is
equivalent to the truth of a formula describing its success. For the formal details
we refer to the similar definition of a solution in [LW13].

In the module SMCDEL.Other.Planning we implement offline and online plans
with public announcements, and a succeeds function to generate the DEL formula
expressing that a given plan is successful. We show the important types and
functions in Figure 4.13.

class Plan a where
succeeds :: a -> Form

type OfflinePlan = [(Form ,Form)] -- list of (announcement ,goal) tuples

instance Plan OfflinePlan where
succeeds [] = Top
succeeds ((step ,goal):rest) =

Conj [step , PubAnnounce step goal , PubAnnounce step (succeeds rest)]

data OnlinePlan = Stop | DoAnnounce Form OnlinePlan | IfThenElse Form
OnlinePlan OnlinePlan

instance Plan OnlinePlan where
succeeds Stop = Top
succeeds (DoAnnounce step next) =

Conj [step , PubAnnounce step (succeeds next)]
succeeds (IfThenElse check planA planB) =

Conj [check ‘Impl ‘ succeeds planA , Neg check ‘Impl ‘ succeeds planB]

Figure 4.13: Part of the SMCDEL.Other.Planning module.

130 Chapter 4. Examples and Benchmarks

4.9 Conclusion and Future Work
We saw that SMCDEL can be used to model and check various examples from
the literature on epistemic logic, protocol verification and epistemic planning.
Some examples that we have modeled in SMCDEL are not part of this chapter.
This includes the “What Sum” puzzle as studied in [VR07], and multiple different
versions of the “Hundred Prisoners and a Lightbulb” from [DEW10]. We also
plan to check more examples of epistemic planning with SMCDEL in the future.
Suitable examples are spatial reasoning as modeled in [WL12], variations of the
classical problem of the Wolf, Goat and Cabbage as solved in [GV17] and small
instances of the card game Hanabi as discussed in [Bar+17, Section 4.1.3.4].

As expected, SMCDEL performs better than the previously existing explicit
model checkers DEMO and DEMO-S5. Moreover, for examples where a temporal
and a dynamic modeling are equivalent, SMCDEL can also compete with temporal
model checkers.

Admittedly, most of the models in this chapter are puzzles and toy examples.
But there are two exceptions. First, the Dining Cryptographers example from
Sections 4.3 and 4.4, in its general form of “DC-nets” has been implemented many
times and is used in practice [GJ04; CF10]. Second, the Russian Cards scenario,
discussed in Section 4.5, is a simple version of information-based cryptography
and can be generalized to protocols for the secure aggregation of distributed
information (SADI) as described in [FG16].

For temporal logic model checkers, other real world applications are mainly the
analysis of circuits and programs. For DEL, we think that future applications will
focus on protocol analysis and epistemic planning. We hope that SMCDEL will
be useful for this research, both when it is used as a tool and when it is further
developed and extended to other logics with different semantics, as discussed in
Section 2.13.

Chapter 5

Knowing and Inspecting Values

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

Ludwig Wittgenstein: Tractatus logico-philosophicus, § 5.6

Standard epistemic logic studies propositional knowledge expressed by “knowing
that”. However, in everyday life we talk about knowledge in many other ways, such
as “knowing what the password is”, “knowing how to swim”, “knowing why he was
late” and so on. Also in the philosophical literature it is debated whether these
various kinds of knowledge can be reduced to “knowing that” or are fundamentally
different, see for example [Fan17]. Recently the epistemic logics of such “knowing
X” expressions are drawing more and more attention (see [Wan18] for a survey).

In this chapter we investigate a specific “knowing X” construction, namely
“knowing what” or “knowing the value”. Both intuitively and formally, this
epistemic modality can also be seen as a generalization of “knowing what the
truth-value is”.

We discuss and compare three different approaches to modeling the knowledge
of values in variants of Dynamic Epistemic Logic. First, in Section 5.1 we discuss
the binary encoding for numeric values that we also used in Section 4.6. Second,
in Section 5.2 we present register models, an abstraction method to represent
Kripke models with numeric variables in a compact way. Third, the main part of
this chapter presents Public Inspection Logic (PIL) in Sections 5.3 to 5.6.

For simplicity we assume that all values are numeric, but of course the natural
language “knowing what” is more general and not always about numbers — see
e.g. the password example above. The binary encoding and register models are
limited to finite domains which can be enumerated, but the models for Public
Inspection Logic are more general. PIL and its variants can be interpreted on any
domain, including infinite sets.

For the whole chapter we use the following simple running example.

131

132 Chapter 5. Knowing and Inspecting Values

5.0.1. Example. Suppose we have two agents, Alice and Bob, and two numeric
variables x and y which both can take values from the set {0, . . . , 7}. Alice knows
the value of x but not that of y and Bob knows the value of y but not that of x
and the actual values are x = 5 and y = 7.

While this is a very small toy example, it will suffice to highlight the differences
between the three approaches we present here. In practice, the range for x and
y might be much larger. The variables could for example be private keys in a
security protocol involving encryption or signatures.

5.1 Binary Encoding
A simple method to represent numbers in standard, propositional Kripke models
is a binary encoding which maps each numeric variable with a finite range to
multiple boolean variables. We already used such an encoding to check the Sum
and Product example in Section 4.6 above. The following definition generalizes
the example to all numeric variables with a finite range. Essentially, we map all
values of a variable to their bit-string representation, with negations taking the
role of ones.

5.1.1. Definition. Consider a numeric variable x such that 0 ≤ x ≤ M for
some M ∈ N. Let Px := {px0 , . . . , pxk−1} be k := dlog2Me many fresh variables
and enumerate (a part of) the powerset of Px with the following map:

fx : {0, . . . ,M} → P(Px)
n 7→ {pxn ∈ Px | x− (x rem(2n)) ≡ 0 mod 2n+1}

The binary encoding of x is then defined by the boolean formula fx(n) v Px for
each n ≤M which we abbreviate as x = n.

5.1.2. Example. Suppose we want to encode the variable 0 ≤ x ≤ 100 with the
actual value x = 42. We need dlog2 100e = 7 boolean variables and the bit-string
representation of 42 is 0101010. Hence we have fx(42) = {0, 2, 4, 6} and encode
x = 42 with {p0, p2, p4, p6} v {p0, . . . , p6}, which by definition is equivalent to
p6 ∧ ¬p5 ∧ p4 ∧ ¬p3 ∧ p2 ∧ ¬p1 ∧ p0. Note that the BDD of this formula has 7
non-terminal nodes.

Using a function for the powerset and the standard Haskell operator !! for
elements of a list, it is easy to implement the binary encoding — see Figure 4.7
on page 123.

If we have k many numeric variables x1, . . . , xk which each have values from
0 to corresponding maxima M1, . . . ,Mk, then we can encode all combinations of
their values with

∑
1≤i≤k dlog2Mie many boolean variables.

5.1. Binary Encoding 133

Given Definition 5.1.1 to write x = n as a boolean formula, we can then define
the statement that a knows the value of x by

Kvax :=
∨
{Ki(x = n) | n ∈ {0, . . . ,M}}

as done in Section 4.6. This formula has the advantage that it is independent of
how equalities are translated. The downside is that it becomes much longer for
larger ranges. To be precise, its length is O(M log(M)).

If we use binary encoding in the S5 setting, we can do better with an equivalent
shorter formula, because knowing the value of a numeric variable is the same
as knowing the value of all its bits, i.e. observing all the corresponding boolean
variables. Formally, with the above definition we have the equivalence

Kvax ↔ K?
ap
x
0 ∧ · · · ∧K?

ap
x
k−1

where K?
a is the knowing-whether operator from Definition 1.1.1. Note that the

right part of this equivalence only grows with the numbers of bits needed and not
with M directly, so its length is O(log(M)).

5.1.3. Example. Recall that in Example 5.0.1 Alice knows that x = 5 and Bob
knows that y = 7, and that both variables could take values up to 7. We need 3
boolean variables for each numeric variable, and thus get a Kripke model with
26 = 64 many possible worlds. We show part of it in Figure 5.1, with solid lines
for the accessibility relation for Alice and dashed lines for Bob. To save space, we
do not encircle each world and mark the actual world with a simple rectangle.

¬px2 , px1 ,¬px0
¬py2, p

y
1,¬p

y
0

(x = 5, y = 5)

¬px2 , px1 ,¬px0
¬py2,¬p

y
1, p

y
0

(x = 5, y = 6)

¬px2 , px1 ,¬px0
¬py2,¬p

y
1,¬p

y
0

(x = 5, y = 7)

¬px2 ,¬px1 , px0
¬py2, p

y
1,¬p

y
0

(x = 6, y = 5)

¬px2 ,¬px1 , px0
¬py2,¬p

y
1, p

y
0

(x = 6, y = 6)

¬px2 ,¬px1 , px0
¬py2,¬p

y
1,¬p

y
0

(x = 6, y = 7)

¬px2 ,¬px1 ,¬px0
¬py2, p

y
1,¬p

y
0

(x = 7, y = 5)

¬px2 ,¬px1 ,¬px0
¬py2,¬p

y
1, p

y
0

(x = 7, y = 6)

¬px2 ,¬px1 ,¬px0
¬py2,¬p

y
1,¬p

y
0

(x = 7, y = 7)

...
...

...

. . .

. . .

. . .

Figure 5.1: Part of a Kripke model with binary encoding for Example 5.0.1.

134 Chapter 5. Knowing and Inspecting Values

More compact than the Kripke model is this equivalent knowledge structure:

((V = {px0 , px1 , px2 , p
y
0, p

y
1, p

y
2}, θ = >, Oa = {px0 , px1 , px2}, Ob = {py0, p

y
1, p

y
2}) , {px1})

Note that because the range is exactly what can be represented with three boolean
variables, the state law is just >. If not all bit-strings were allowed, θ is where
the upper bound would be defined. For example, if the maximum for both x and
y was 6, at least one bit of each numeric variable would have to be true, so the
state law would be (px0 ∨ px1 ∨ px2) ∧ (py0 ∨ p

y
1 ∨ p

y
2).

A clear advantage of the binary encoding is that after translating everything
to boolean variables, we can use the whole standard machinery for DEL based
on propositional logic. In particular, the symbolic methods we presented in the
previous chapters can be used to model numeric knowledge in this way.

Finally, note that theoretically the finite range is not needed, for we could also
map each numeric variable x to an infinite set of boolean variables that could
encode all bit-strings. While this is well-defined in theory, it cannot directly be
implemented and used for model checking in practice. We could model potential
infinity, by only adding additional boolean variables when they are needed for
actual values, but in any Kripke model the current upper bounds will still be
common knowledge among all the agents.

To really work with infinite models, finite representations using automata
such as discussed in [CGP99, Chapter 9 and 15] are more suited, but those are
outside the scope of this thesis. We leave it as future work to adapt such methods
to model numeric knowledge in DEL and now move on to a second method of
representing knowledge about variables with finite ranges.

5.2 Register Models
We saw in the previous section that ignorance about large numbers — agent a
does not know the value of x — is not feasible in standard Kripke semantics
because it leads to very large models. The binary encoding together with our
symbolic knowledge structures mitigate the blow-up somewhat, but working with
such models is often counter-intuitive as we have to translate back and forth
between numeric and boolean statements.

In this section we discuss register models, another version of Kripke models to
represent ignorance about numbers. Register models can be seen as compressed
versions of Kripke models where possible worlds that play the same role were
merged into one world.

We summarize the main results from [Gat14; EG15] where we also presented a
sound and complete logic for number guessing games based on register models
and discussed applications to cryptographic protocols. We adapt the definitions
to fit the notation of previous chapters, hence there are some differences to the
original publications.

5.2. Register Models 135

5.2.1. Definition. A register model for agents I and vocabulary V is a tuple
M = (W,R, π) where (W,R) is a frame as per Definition 1.1.2 and π is a function
that maps each possible world w ∈ W to a tuple π(w) = (Pw, fw, C

+
w , C

−
w) where

• Pw ⊆ V is the set of atomic propositions true at w,

• fw : V → N× N× P(N) assigns to each variable a register (n,m,X) such
that if q ∈ Pv ∩Pw, then fv(p) = fw(q) = (n,m,X) with n = m and X = ∅.

• C+
w ⊆ V 2 and C−w ⊆ V 2 are relations over V such that no (p, q) ∈ C−w is in

the transitive symmetric reflexive closure of C+
w .

We say that an assignment h : V → N agrees with the world w iff we have for all
variables p, q ∈ V that (i) fw(p) = (n,m,X) implies n ≤ h(p) ≤ m and h(p) 6∈ X,
(ii) (p, q) ∈ C+

w implies h(p) = h(q), and (iii) (p, q) ∈ C−w implies h(p) 6= h(q).

Registers (n,m,X) in Definition 5.2.1 limit the values a variable can take. In
the most simple case only one value might be allowed. For example, if we have
fw(x) = (5, 5,∅) then x = 5 must hold at w. Alternatively, an interval might be
allowed: fw(x) = (0, 7,∅) says that x must take a value from 0 to 7 at w. The
third part excludes values: fw(x) = (1, 20, {3}) means that x must take a value
from 1 to 20, but not 3 at w. Parts C+

w and C−w are relations between variables
describing equality and inequality constraints that should hold at world w.

We use the same vocabulary for boolean and numeric variables. The constraint
on Pw and fw connects boolean and numeric semantics: Whenever an atomic
proposition is true, its numeric variable must be fixed to a single value.

The following is a simple language to be interpreted on register models. For
more complex languages with dynamic operators, see [Gat14; EG15].

5.2.2. Definition. The register language extends L(V) and is defined by:

ϕ ::= > | p | p = p | p = N | ¬ϕ | ϕ ∧ ϕ | Kiϕ

where i is an agent and N ∈ N.

5.2.3. Definition. For a register modelM = (W,R, ρ), a possible world w ∈ W
and a numeric assignment h agreeing with w we define the following interpretation
of the register language:

M, w, h |= > always
M, w, h |= p iff p ∈ Pw
M, w, h |= p1 = p2 iff h(p1) = h(p2)
M, w, h |= p = N iff h(p) = N
M, w, h |= ¬ϕ iff notM, w, h |= ϕ
M, w, h |= ϕ ∧ ψ iff M, w, h |= ϕ andM, w, h |= ψ
M, w, h |= Kiϕ iff Riww

′ and h′ agreeing with w′ impliesM, w′, h′ |= ϕ

We say that ϕ is true at a world w and writeM, w |= ϕ iff for all assignments h
agreeing with w we haveM, w, h |= ϕ.

136 Chapter 5. Knowing and Inspecting Values

One might wonder why we keep the assignment h separate and do not make
it part of the worlds. This would indeed be equivalent, but make the models
much larger. The point of register models is exactly not to make all possible
assignments part of the model. Instead, possible worlds only provide a way to
check or generate assignments that agree with them. Register models can thus be
seen as an application of abstraction as discussed in [CGP99, Section 13.2].

5.2.4. Example. Figure 5.2 shows Example 5.0.1 as a register model, again with
solid lines for Alice and dashed lines for Bob. Note that the two variables x and
y are now used as numeric and propositional variables at the same time. Our
visualization is slightly different from the formal definition of register models.
For example, in the top right world we do not show the register of y as a tuple
(0, 7, {7}) but instead use the more standard notation 0 ≤ y ≤ 7 and y 6∈ {7}.
Moreover, there are no equality or inequality constraints in this model, i.e. both
C+
w and C−w are empty, for all w.
We again assume that variables are in the range {0, . . . , 7}. But note that the

register model would not become larger for a bigger range. In fact, no matter
what the maximum for both variables is, it will always consist of only 4 worlds.
The register model is thus much smaller than the Kripke model using the binary
encoding, which needs 64 worlds and becomes bigger for larger maxima.

x, y
x = 5
y = 7

x
x = 5

0 ≤ y ≤ 7
y 6∈ {7}

y
0 ≤ x ≤ 7
x 6∈ {5}
y = 7

0 ≤ x ≤ 7
x 6∈ {5}

0 ≤ p ≤ 7
p 6∈ {7}

Figure 5.2: Register model for Example 5.0.1.

It is clear that register models are smaller than standard Kripke models. We
developed a model checker for register models in [Gat14] and used Monte Carlo
methods to speed it up. However, the results of such methods are probabilistic.
If we want absolute certainty about register models, any general explicit model
checking method has to unravel them to much larger standard Kripke models in
which every assignment of values is a separate possible world. Also the symbolic
methods developed in Chapter 2 are not applicable to register models without
adding again a binary encoding. Given that knowledge structures are already
much smaller and more efficient to use than Kripke models, we conclude that for
large examples a binary encoding, though less intuitive, is the better tool.

5.3. Public Inspection 137

For further details on register models we refer to [Gat14], which includes a
sound and complete axiomatization of Guessing Game Logic (GGL) based on
register models. Extending Definition 5.2.2, GGL has dynamic operators to create
new registers with secret values only known to the creating agent. To give a formal
example, a validity in this framework is [p

i← 42]Ki(p = 42).
Even more expressive is Epistemic Crypto Logic (ECL), also introduced

in [Gat14] and summarized in [EG15]. It includes operators for modular arith-
metic. Combined with locally listening agents, similar to [Dit+13], this language
is expressive enough to formalize cryptographic protocols such as the famous
Diffie-Hellman key exchange.

However, on register models all agents are logically omniscient and not compu-
tationally bounded as one would like them to be in cryptography. Defining and
checking security properties, such as the secrecy of a shared key established via the
Diffie-Hellman protocol, is possible in ECL, but it relies on syntactic restrictions
which terms an agent is allowed to compute.

5.3 Public Inspection
Reasoning about static knowledge is important, but it is also interesting to
study changes of knowledge. Recall from the previous chapters that in Public
Announcement Logic (PAL) we can update the propositional knowledge of agents
with public propositional announcements. Fact 1.2.6 lists the reduction axioms to
completely describe the interplay of “knowing that” and “announcing that”. Given
this, we can also ask: What are natural dynamic counterparts for the knowledge
expressed by other expressions such as knowing what, knowing how etc.? How
can we formalize “announcing what”?

In the rest of this chapter we study a basic dynamic operation that updates
the knowledge of the values of certain variables. The action of public inspection
is the knowing value counterpart of a public announcement and we will see that
it fits well with the logic of knowing value. As an example, consider a sensor to
measure the current temperature of a room. It is reasonable to say that after
using the sensor you will know the temperature of the room. But it is not feasible
to encode this with a standard public announcement since it results in a possibly
infinite formula:

[!t = 27.1 ◦C]K(t = 27.1 ◦C) ∧ [!t = 27.2 ◦C]K(t = 27.2 ◦C) ∧ . . .

Moreover, if we use action models instead of simple public announcements, the
inspection action itself may require an infinite action model in the standard DEL
framework introduced in Section 1.3, with a separate event for each possible
value. Hence public inspection can be viewed as a public announcement of the
actual value, but new techniques are required to express it formally. In our
simple framework we define knowing and inspecting values as primitive operators.

138 Chapter 5. Knowing and Inspecting Values

The main design choices we make is to leave the actual values out of our logical
language, thereby avoiding infinite formulas like above.

The notions of knowing and inspecting values have a natural connection
with dependencies in databases. This will play a crucial role in the technical
development of this section. In particular, our completeness proofs employ the
famous set of axioms from [Arm74]. For now, consider the following example.

5.3.1. Example. Suppose a university course has been evaluated using anony-
mous questionnaires, which besides an assessment for the teacher also asked the
students for their main subject. See Table 5.1 for the results.

Student Subject Assessment

1 Mathematics good
2 Mathematics very good
3 Logic good
4 Computer Science bad

Table 5.1: Evaluation Results.

Now suppose a student tells you, the teacher, that his major is Computer
Science. Then clearly you know how that student assessed the course, since there
is some dependency between the two columns. More precisely, in the cases of
students 3 and 4, telling you the value of “Subject” effectively also tells you the
value of “Assessment”. In practice, a better questionnaire would only ask for
combinations of questions that do not allow the identification of students.

Other examples abound. For instance, the author of [Swe15] gives an account
of how easily so-called ‘de-identified data’ produced from medical records could
be ‘re-identified’, by matching patient names to publicly available health data.

These examples illustrate that reasoning about knowledge of values in isolation,
i.e. separated from knowledge that, is both possible and informative. It is such
knowledge and its dynamics that we will study here.

5.4 Richer Languages
Our work relates to a collection of papers on epistemic logics with other operators
than the standard “knowing that” Kϕ. We are particularly interested in the Kv
operator expressing that an agent knows the value of a variable. This operator
was already mentioned in the seminal work [Pla07] which introduced public
announcement logic (PAL). However, a complete axiomatization of PAL together
with Kv was only given in [WF13; WF14] using the relativized operator Kv(ϕ, c)
for the single and multi-agent cases. It has been shown in [GW16] that by treating

5.4. Richer Languages 139

the negation of Kv as a primitive diamond-like operator, the logic can be seen as
a normal modal logic in disguise with binary modalities.

Inspired by a talk that was partly based on an earlier version of this chapter,
Baltag proposed the very expressive Logic of Epistemic Dependency (LED) [Bal16],
where knowing that, knowing value, announcing that, announcing value can all be
encoded in a general language which also includes equalities like c = 4 to facilitate
the axiomatization.

In the following sections we go in the other direction: Instead of extending
the standard PAL framework with Kv, we study knowing-the-value in isolation,
together with its dynamic counterpart [c] for public inspection. In general, the
motto of our work here is to see how far one can get in formalizing knowledge
and inspection of values without going all the way to or even beyond PAL. In
particular, we do not include values in the syntax and do not have any nested
epistemic modalities.

As one would expect, our simple language is accompanied by simpler models
and the proofs are less complicated than those for existing logics. Still, we consider
our Public Inspection Logic (PIL) more than a toy logic. Our completeness
proof includes a novel construction which we call “canonical dependency graph”
(Definition 5.5.11). We also establish the precise connection between our axioms
and the Armstrong axioms widely used in database theory [Arm74].

Table 5.2 shows how PIL fits into the family of existing languages. LED
from [Bal16] is the most expressive language. It encodes all the other operators
using Kt1,...,tn

i t, which expresses that given the current values of t1 to tn, agent i
knows the value of t. Moreover, to obtain a complete proof system for LED one
also needs to include equality and rigid constants in the language. As far as we
know, it is an open question to find axiomatizations for languages between PIL
and LED, like PIL +K.

Language Available operators References

PAL p Kϕ [!ϕ]ϕ [Pla07]
PAL+Kv p Kϕ Kv(c) [!ϕ]ϕ [Pla07]
PAL+Kvr p Kϕ Kv(c) Kv(ϕ, c) [!ϕ]ϕ [WF13; WF14; GW16]
PIL Kv(c) [c]ϕ Sections 5.5 and 5.6
PIL+K Kϕ Kv(c) [c]ϕ open, see Section 5.7
LED p Kϕ Kv(c) Kv(ϕ, c) [c]ϕ [!ϕ]ϕ c = c [Bal16]

Table 5.2: Comparison of Languages.

All languages include the standard boolean operators >, ¬ and ∧ which we do
not list in Table 5.2. We will discuss other related work in Section 5.7.

140 Chapter 5. Knowing and Inspecting Values

5.5 Single-Agent PIL

We first consider a simple single-agent language to talk about knowing and
inspecting values. Throughout the rest of this chapter we assume a fixed set of
variables C.

5.5.1. Definition. Let c range over C. The language L1 for Public Inspection
Logic (PIL) is given by:

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | Kv(c) | [c]ϕ

Besides standard interpretations of the boolean connectives, the intended
meanings are as follows: Kv(c) reads “the agent knows the value of c” and the
formula [c]ϕ is meant to say “after revealing the actual value of c, ϕ is the case”. We
also use the standard abbreviations ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and ϕ→ ψ := ¬ϕ ∨ ψ.

Notably, the PIL language L1 is not an extension of the standard epistemic
language L from Definition 1.1.1, because it has neither atomic propositions
nor Kiϕ for “knowing that ϕ”. Leaving out the latter is crucial to simplify
our framework. We will get back to the more expressive language PIL + K in
Section 5.7.

5.5.2. Definition. A PIL model for L1 is a tupleM = 〈S,D, V 〉 where S is a
non-empty set of worlds (also called states), D is a non-empty domain and V is a
valuation V : (S × C)→ D. To denote V (s, c) = V (t, c), i.e. that c has the same
value at s and t according to V , we write s =c t. If this holds for all c ∈ C ⊆ C
we write s =C t. The semantics are as follows:

M, s � > always
M, s � ¬ϕ ⇔ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇔ M, s � ϕ andM, s � ψ
M, s � Kv(c) ⇔ for all t ∈ S : s =c t
M, s � [c]ϕ ⇔ M|sc, s � ϕ

where M|sc is the new model 〈S ′,D, V |S′×C〉 based on the new set of states
S ′ = {t ∈ S | s =c t}. This is the result of publicly inspecting c at s.

If for a set of formulas Γ and a formula ϕ we have that whenever a modelM
and a state s satisfyM, s � Γ then they also satisfyM, s � ϕ, then we say that
ϕ follows semantically from Γ and write Γ � ϕ. If this holds for Γ = ∅ we say
that ϕ is semantically valid and write � ϕ.

Note that the actual state s plays an important role in the last clause of our
semantics: Public inspection of c at s reveals the local actual value of c at s to
the agent. The model is restricted to those worlds which agree with s on c. This

5.5. Single-Agent PIL 141

is different from PAL and other DEL variants based on action models, where
updates are usually defined on models directly and not on pointed models.

We employ the usual abbreviation 〈c〉ϕ for ¬[c]¬ϕ. Note however, that public
inspection of c can always take place and is deterministic. Hence the determinacy
axiom 〈c〉ϕ↔ [c]ϕ is semantically valid and we include it in the following system.

5.5.3. Definition. The proof system SPIL1 for PIL in the language L1 consists
of the following axiom schemata and rules. If a formula ϕ is provable from a set
of premises Γ, we write Γ ` ϕ. If this holds for Γ = ∅, we write ` ϕ.

Axiom Schemata

TAUT all instances of propositional tautologies
DIST [c](ϕ→ ψ)→ ([c]ϕ→ [c]ψ)
LEARN [c]Kv(c)
NF Kv(c)→ [d]Kv(c)
DET 〈c〉ϕ↔ [c]ϕ
COMM [c][d]ϕ↔ [d][c]ϕ
IR Kv(c)→ ([c]ϕ→ ϕ)

Rules

MP
ϕ, ϕ→ ψ

ψ

NEC
ϕ

[c]ϕ

Intuitively, LEARN captures the effect of the inspection; NF says that the
agent does not forget; DET says that inspection is deterministic; COMM says that
inspections commute; finally, IR expresses that inspection does not bring any new
information if the value is known already. Note that DET says that [c] is a function.
It also implies seriality which we list in the following lemma.

5.5.4. Lemma. The following schemes are provable in SPIL1:

• 〈c〉> (seriality)

• Kv(c)→ (ϕ→ [c]ϕ) (IR’)

• [c](ϕ ∧ ψ)↔ [c]ϕ ∧ [c]ψ (DIST’)

• [c1] . . . [cn](ϕ→ ψ)→ ([c1] . . . [cn]ϕ→ [c1] . . . [cn]ψ) (multi-DIST)

• [c1] . . . [cn](ϕ ∧ ψ)↔ [c1] . . . [cn]ϕ ∧ [c1] . . . [cn]ψ (multi-DIST’)

• [c1] . . . [cn](Kv(c1) ∧ . . .Kv(cn)) (multi-LEARN)

• (Kv(c1) ∧ · · · ∧Kv(cn))→ [d1] . . . [dn](Kv(c1) ∧ · · · ∧Kv(cn)) (multi-NF)

• (Kv(c1) ∧ · · · ∧Kv(cn))→ ([c1] . . . [cn]ϕ→ ϕ) (multi-IR)

Moreover, the multi-NEC rule is admissible: If ` ϕ, then ` [c1] . . . [cn]ϕ.

142 Chapter 5. Knowing and Inspecting Values

Proof:
We only prove three of the items and leave the others as an exercise for the reader.
For IR’, we use IR, DET and TAUT:

(IR)
Kv(c)→ ([c]¬ϕ→ ¬ϕ)

(DET)
Kv(c)→ (¬[c]ϕ→ ¬ϕ)

(TAUT)
Kv(c)→ (ϕ→ [c]ϕ)

To show multi-NEC, we use DIST, NEC and TAUT. For simplicity, consider the case
where C = {c1, c2}.

(DIST)
[c2](ϕ→ ψ)→ ([c2]ϕ→ [c2]ψ)

(NEC)
[c1]([c2](ϕ→ ψ)→ ([c2]ϕ→ [c2]ψ))

(DIST, TAUT)
[c1][c2](ϕ→ ψ)→ [c1]([c2]ϕ→ [c2]ψ)

(DIST, TAUT)
[c1][c2](ϕ→ ψ)→ ([c1][c2]ϕ→ [c1][c2]ψ)

For multi-LEARN, we use LEARN, NEC, COMM, DIST’ and TAUT:

(LEARN)
[c1]Kv(c1)

(NEC)
[c2][c1]Kv(c1)

(COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2)

(NEC)
[c1][c2]Kv(c2)

(DIST’, TAUT)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2))

(DIST’, TAUT)
[c1][c2](Kv(c1) ∧Kv(c2))

2

5.5.5. Definition. We use the following abbreviations for any two finite sets of
variables C = {c1, . . . , cm} and D = {d1, . . . , dn}.

• Kv(C) := Kv(c1) ∧ · · · ∧Kv(cm)

• [C]ϕ := [c1] . . . [cm]ϕ

• Kv(C,D) := [C]Kv(D).

Note that by multi-DIST’ and COMM the exact enumeration of C and D in
Definition 5.5.5 do not matter modulo logical equivalence.

In particular, these abbreviations allow us to shorten the “multi” items from
Lemma 5.5.4 to Kv(C,C), Kv(C) → Kv(D,C) and Kv(C) → ([C]ϕ → ϕ). The
abbreviation Kv(C,D) allows us to define dependencies and it will be crucial in
our completeness proof. We have that:

M, s � Kv(C,D)⇔ for all t ∈ S : if s =C t then s =D t

5.5. Single-Agent PIL 143

5.5.6. Definition. Let L2 be the language given by:

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | Kv(C,C)

Note that the language L2 is a fragment of L1, due to the above definition
of Kv(·, ·) as an abbreviation. In L2 the dynamic [c] operators can only occur in
front of Kv operators or conjunctions thereof. The next lemma might count as a
small surprise.

5.5.7. Lemma. L1 and L2 are equally expressive.

Proof:
As Kv(·, ·) was just defined as an abbreviation, we already know that L1 is at least
as expressive as L2, i.e. L2 ⊆ L1.

We can also translate in the other direction by pushing all dynamic operators
through negations and conjunctions. Formally, let t : L1 → L2 be defined by

Kv(d) 7→ Kv(∅, {d})
¬ϕ 7→ ¬t(ϕ)
ϕ ∧ ψ 7→ t(ϕ) ∧ t(ψ)
[c]¬ϕ 7→ ¬t([c]ϕ)
[c](ϕ ∧ ψ) 7→ t([c]ϕ) ∧ t([c]ψ)
[c]> 7→ >
[c1] . . . [cn]Kv(d) 7→ Kv({c1, . . . , cn}, {d})

This translation preserves and reflects truth because determinacy and distribution
are valid (determinacy allows us to push [c] through negations; distribution to push
[c] through conjunctions). Note that we have not yet established completeness,
but determinacy is also an axiom. Hence ϕ↔ t(ϕ) is provable and the translation
t preserves and reflects provability and consistency. 2

5.5.8. Example. The translation of formulas of the form [c]ϕ depends on the
top connective within ϕ. For example, we have

t([c](¬Kv(d) ∧ [e]Kv(f))) = t([c]¬Kv(d)) ∧ t([c][e]Kv(f))
= ¬Kv({c}, {d}) ∧Kv({c, e}, {f})

The language L2 allows us to connect PIL to the maybe most famous axioms
in database theory and dependence logic, from [Arm74].1

1 It is baffling that this classic paper from 1974 with more than 1200 citations was still not
available online in 2018. This probably helped to create quite some confusion and disagreement
on what exactly the Armstrong axioms are. Here we follow the original paper which first uses
the rather technical axioms F1 to F4 to prove the main characterization result, but later (in
Section 9) argues that the axioms DC1, DC3 and DC4 are sufficient. These three are projectivity,
transitivity and additivity which we use here.

https://is.gd/armstrong1974dependency

144 Chapter 5. Knowing and Inspecting Values

5.5.9. Lemma. Armstrong’s axioms are semantically valid and derivable in SPIL1:

• Kv(C,D) for any D ⊆ C (projectivity)

• Kv(C,D) ∧Kv(D,E)→ Kv(C,E) (transitivity)

• Kv(C,D) ∧Kv(C,E)→ Kv(C,D ∪ E) (additivity)

Proof:
The semantic validity is easy to check, hence we focus on the derivations.

For projectivity, take any two finite sets C and D such that D ⊆ C. If D = C,
then we only need a derivation like the following, which basically generalizes
learning to finite sets.

(LEARN)
[c1]Kv(c1)

(NEC)
[c2][c1]Kv(c1)

(COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2)

(NEC)
[c1][c2]Kv(c1)

(DIST)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2))

(DIST)
[c1][c2](Kv(c1) ∧Kv(c2))

If D (C, continue by applying NEC for all elements of C \D to get Kv(C,D).
Transitivity follows from IR and NF as follows. For simplicity, we first only

consider the case where C, D and E are singletons.

(NF)
Kv(e)→ [c]Kv(e)

(NEC)
[d](Kv(e)→ [c]Kv(e))

(DIST)
[d]Kv(e)→ [d][c]Kv(e)

(COMM)
[d]Kv(e)→ [c][d]Kv(e)

(IR)
Kv(d)→ ([d]Kv(e)→ Kv(e))

(NEC)
[c](Kv(d)→ ([d]Kv(e)→ Kv(e)))

(DIST)
[c]Kv(d)→ [c]([d]Kv(e)→ Kv(e))

(DIST)
[c]Kv(d)→ ([c][d]Kv(e)→ [c]Kv(e))

(TAUT)
[c]Kv(d)→ ([d]Kv(e)→ [c]Kv(e))

Now consider any three finite sets of variables C, D and E. Using the
abbreviations from Definition 5.5.5 and the “multi” rules given in Lemma 5.5.4, it
is easy to generalize the proof. In fact, the proof is exactly the same with capital
letters.

Similarly, additivity follows immediately from multi-DIST’. 2

We can now use Armstrong’s axioms to prove completeness of our logic. The
crucial idea is a new definition of a canonical dependency graph.

5.5.10. Theorem (Strong Completeness). For all sets of formulas ∆ ⊆ L1 and
all formulas ϕ ∈ L1, if ∆ � ϕ, then also ∆ ` ϕ.

5.5. Single-Agent PIL 145

Proof:
By contraposition using a canonical model. Suppose ∆ 0 ϕ. Then ∆ ∪ {¬ϕ} is
consistent and there is a maximally consistent set Γ ⊆ L1 such that Γ ⊇ (∆∪{¬ϕ}).
We now build a modelMΓ in which worlds are subsets of C and the value of each
c ∈ C at world w reflects whether we have c ∈ w. Then we use the full set C as
the actual world, so that all non-actual worlds v are the set of variables that at v
have the actual value. We can then showMΓ,C � Γ, which implies ∆ 2 ϕ.

5.5.11. Definition. Given Γ, we define the canonical graph GΓ := (P(C),→)
where A → B iff Kv(A,B) ∈ Γ. By Lemma 5.5.9 this graph has properties
corresponding to the Armstrong axioms: projectivity, transitivity and additivity.
We call a set of variables s ⊆ C closed under GΓ iff whenever A ⊆ s and A→ B
in GΓ, then also B ⊆ s. We define the canonical model asMΓ := (S,D, V) where

• S := {s ⊆ C | s is closed under GΓ}

• D := {0, 1}

• V (s, c) =

{
0 if c ∈ s
1 otherwise

Note that our domain is just {0, 1}. This is possible because we do not have
to find a model where the dependencies hold globally. Instead, Kv(C, d) only says
that given the values of all elements of C at the actual world, also the values
of d are the same at all other worlds. The dependency does not have to hold
between two non-actual worlds. This distinguishes our models from relationships
as discussed in [Arm74] where no actual world or state is used, see Example 5.5.16
below.

We can now state and prove our Truth Lemma. Before doing so, let us
emphasize two peculiarities: First, the states in our canonical model are not
maximally consistent sets of formulas but sets of variables. Second, we only claim
the Truth Lemma at one specific state, namely at C where all variables have value
0. As our language does not include nested epistemic modalities, we actually never
evaluate formulas at other states of the canonical model.

5.5.12. Lemma (Truth Lemma). MΓ,C � ϕ iff ϕ ∈ Γ.

Proof:
It suffices to show this for all ϕ in L2: Given some ϕ ∈ L1, by Lemma 5.5.7 we
have thatMΓ,C � ϕ ⇐⇒ MΓ,C � t(ϕ) because the translation preserves and
reflects truth. Moreover, we have ϕ ∈ Γ ⇐⇒ t(ϕ) ∈ Γ, because ϕ ↔ t(ϕ) is
provable in SPIL1. Hence it suffices to show thatMΓ,C � t(ϕ) iff t(ϕ) ∈ Γ, i.e. to
show the Truth Lemma for L2. Again, negation and conjunction are standard —
the crucial case are dependencies.

146 Chapter 5. Knowing and Inspecting Values

Suppose Kv(C,D) ∈ Γ. By definition C → D in GΓ. To show MΓ,C �
Kv(C,D), take any t such that C =C t inMΓ. Then by definition of V we have
C ⊆ t. As t is closed under GΓ, this implies D ⊆ t. Now by definition of V we
have C =D t.

For the converse, suppose Kv(C,D) 6∈ Γ. Then by definition C 6→ D in GΓ.
Now we define the set t := {c′ ∈ C | C → {c′} in GΓ}. This gives us C ⊆ t.
But we also have D 6⊆ t because otherwise additivity would imply C → D in GΓ.
Moreover, because GΓ is transitive it is enough to “go one step” in GΓ to get a set
that is closed under GΓ. This means that t is closed under GΓ and therefore a
state in our model, i.e. we have t ∈ S. Now by definition of V and projectivity,
we have C =C t but C 6=D t. Thus t is a witness forMΓ,C 2 Kv(C,D). 2

This also finishes the completeness proof. Note that we used all three properties
corresponding to the Armstrong axioms. 2

5.5.13. Example. To illustrate the idea of the canonical dependency graph, let
us study a concrete example of what the graph and model look like. Consider a
maximally consistent set Γ ⊇ {¬Kv(c),¬Kv(d),Kv(e),Kv(c, d), . . . }.

The interesting part of the canonical graph GΓ then looks as follows, where
the nodes are subsets of {c, d, e}. For clarity we only draw → ∩ 6⊇, i.e. we omit
edges given by inverse inclusions. For example, all nodes will also have an edge
going to the ∅ node.

{c, d, e}{e, c}

{c, d}

{d, e}

{c}{d}∅

{e}

To get a model out of this graph, note that there are exactly three subsets of
C closed under following the edges. Namely, let S := {s := {e}, t := {d, e}, u :=
{c, d, e}} and use the binary valuation which says that a variable has value 0 iff it
is an element of the state. It is then easy to check thatM, u � Γ.

s t u

c 1 1 0
d 1 0 0
e 0 0 0

It is straightforward to define an appropriate notion of bisimulation for our
logic and to obtain the usual characterization results for it.

5.5. Single-Agent PIL 147

5.5.14. Definition. Two pointed PIL models ((S,D, V), s) and ((S ′,D′, V ′), s′),
are bisimilar iff the following two conditions are fulfilled:

(i) Forth: For all finite C ⊆ C and all d ∈ C: If there is a t ∈ S such that
s =C t and s 6=d t, then there is a t′ ∈ S ′ such that s′ =C t

′ and s′ 6=d t
′.

(ii) Back: For all finite C ⊆ C and all d ∈ C: If there is a t′ ∈ S ′ such that
s′ =C t

′ and s′ 6=d t
′, then there is a t ∈ S such that s =C t and s 6=d t.

Note that we do not need the bisimulation to link non-actual worlds. This
is because all formulas are evaluated at the same world. In fact, the following
characterization theorem only holds because we do not link non-actual worlds.

5.5.15. Theorem. Two pointed PIL models satisfy the same formulas iff they
are bisimilar.

Proof:
By Lemma 5.5.7 we only have to consider formulas of L2. Moreover, it suffices to
consider formulas Kv(C, d) with a singleton in the second set, because Kv(C,D) is
equivalent to

∧
d∈D Kv(C, d). Then it is straightforward to show that ifM, s and

M′, s′ are bisimilar thenM, s � ¬Kv(C, d) ⇐⇒ M′, s′ � ¬Kv(C, d) by definition
of our bisimulation. The other way around is also obvious since the two conditions
for bisimulation are based on the semantics of ¬Kv(C, d). 2

Note that a bisimulation characterization for a language without the dynamic
operator [c] can be obtained by restricting Definition 5.5.14 to C = ∅. We leave
it as an exercise for the reader to use this and Theorem 5.5.15 to show that [c] is
not reducible, which distinguishes it from [!ϕ] in PAL.

5.5.16. Example (Pointed Models Make a Difference). It seems that the follow-
ing theorem of our logic does not translate to Armstrong’s system from [Arm74].

[c](Kv(d) ∨Kv(e))↔ ([c]Kv(d) ∨ [c]Kv(e))

First, to see that this is provable, note that it follows from determinacy and
seriality. Second, it is valid because we consider pointed models which convey
more information than a simple list of possible values. Consider the following
table which represents four possible worlds.

w1 w2 w3 w4

c 1 1 2 2
d 1 1 2 3
e 3 2 1 1

148 Chapter 5. Knowing and Inspecting Values

Here we would say that “After learning c we know d or we know e.”, i.e. the
antecedent of above formula holds. However, the consequent only holds if we
evaluate formulas while pointing at a specific world/row: It is globally true that
given c we will learn d or that given c we will learn e. But none of the two
disjuncts holds globally, which would be needed for a dependency in Armstrong’s
sense. Note that this is more a matter of expressiveness than of logical strength.
In Armstrong’s system there is just no way to express [c](Kv(d) ∨Kv(e)).

5.6 Multi-Agent PIL
We now generalize Public Inspection Logic to multiple agents. In the language,
we use Kvi to say that agent i knows the value of c and in the models, we add
an accessibility relation for each agent to describe their knowledge. To obtain a
complete proof system, we can leave most axioms as above but have to restrict
the irrelevance axiom. Again the completeness proof uses a canonical model
construction and a truth lemma for a restricted but equally expressive syntax.
The only change is that we now define a dependency graph for each agent in order
to define accessibility relations instead of restricted sets of worlds.

5.6.1. Definition (Multi-Agent PIL). We fix a non-empty set of agents I. The
language LI1 of multi-agent Public Inspection Logic (PIL) is given by

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | Kvic | [c]ϕ

where i ∈ I. We interpret it on models 〈S,D, V, R〉 where S, D and V are as
before and R assigns to each agent i an equivalence relation ∼i over S. The
semantics are standard for the boolean operators and as follows for Kvi and [c]:

M, s � Kvic :⇐⇒ ∀t ∈ S : s ∼i t⇒ s =c t
M, s � [c]ϕ :⇐⇒ M|sc, s � ϕ

whereM|sc is the new model 〈S ′,D, V |S′×C, R|S′×S′〉 with S ′ = {t ∈ S | s =c t}.
Analogous to Definition 5.5.5 we define the following abbreviation to express

dependencies known by agent i and note its semantics:

Kvi(C,D) := [c1] . . . [cn](Kvi(d1) ∧ · · · ∧Kvi(dm))

M, s � Kvi(C,D)⇔ for all t ∈ S : if s ∼i t and s =C t then s =D t

The proof system SPIL for PIL in the language LI1 is obtained by replacing
each Kv in the axioms of SPIL1 by Kvi, and replacing IR by the following restricted
version:

RIR Kvic→ ([c]ϕ→ ϕ) for any ϕ not mentioning any agent besides i

5.6. Multi-Agent PIL 149

Before summarizing the completeness proof for the multi-agent setting, let us
highlight some details of this definition. As before, the actual state s plays an
important role in the semantics of [c]. To make the update less local we can use
an alternative but equivalent definition: Instead of deleting states, only delete
the ∼i links between states that disagree on the value of c. Then the update no
longer depends on the actual state.

For traditional reasons we define ∼i to be an equivalence relation. This is not
necessary, because our language cannot tell whether the relations are actually
equivalences. Removing the constraint and extending the class of models would
thus not make any difference.

For the proof system, the original irrelevance axiom IR is not valid in the
multi-agent setting, because ϕ might talk about agents for which [c] does matter.

5.6.2. Theorem (Strong Completeness for SPIL). For all sets of formulas ∆ ⊆
LI1 and all formulas ϕ ∈ LI1, if ∆ � ϕ, then also ∆ ` ϕ.

Proof:
By the same methods as for Theorem 5.5.10. Given a maximally consistent set
Γ ⊆ LI1, we want to build a modelMΓ such that for the world C in that model
we haveMΓ,C � Γ.

First, for each agent i ∈ I, let Gi
Γ be the graph given by A→i B :⇐⇒ Γ `

Kvi(A,B). Given that SPIL was obtained by indexing the axioms of SPIL1, it is
easy to check that indexed versions of all the Armstrong axioms are provable and
therefore all the graphs Gi

Γ for i ∈ I will have the corresponding properties. In
particular, RIR suffices for this.

Second, define the canonical model MΓ := (S,D, V, R) where S := P(C),
D := {0, 1}, V (s, c) := 0 if c ∈ s and V (s, c) := 1 otherwise, and s ∼i t iff s and t
are either both closed or both not closed under Gi

Γ.

5.6.3. Lemma (Multi-Agent Truth Lemma). MΓ,C � ϕ iff ϕ ∈ Γ.

Proof:
Again it suffices to consider a restricted language and we proceed by induction on
ϕ. The crucial case is when ϕ is of the form Kvi(C,D).

Suppose Kvi(C,D) ∈ Γ. Then by definition C → D in Gi
Γ. To showMΓ,C �

Kvi(C,D), take any t such that C ∼i t and C =C t inMΓ. Then by definition
of V we have C ⊆ t. Moreover, C is closed under Gi

Γ. Hence by definition of ∼i,
also t must be closed under Gi

Γ, which implies D ⊆ t. Now by definition of V we
have C =D t.

For the converse, suppose Kvi(C,D) 6∈ Γ. Then by definition C 6→ D in Gi
Γ.

Now, let t := {c′ ∈ C | C → {c′} in Gi
Γ}. This gives us C ⊆ t. But we also

have D 6⊆ t, because otherwise additivity would imply C → D in Gi
Γ. Moreover,

because Gi
Γ is transitive, it is enough to “go one step” in Gi

Γ to get a set that is
closed under Gi

Γ. This means that t is closed under Gi
Γ and therefore, by definition

150 Chapter 5. Knowing and Inspecting Values

of ∼i, we have C ∼i t. Moreover, by definition of V and using projectivity, we
have C =C t but C 6=D t. Thus t is a witness forMΓ,C 2 Kvi(C,D). 2

Again the Truth Lemma also finishes the completeness proof. 2

5.6.4. Example. Analogously to Example 5.5.13, the following illustrates the
multi-agent version of our canonical model construction. Consider a maximally
consistent set Γ extending this set:

{¬Kv1(c),¬Kv1(d),Kv1(c, d),¬Kv1(d, c),¬Kv2(c),¬Kv2(d),¬Kv2(c, d),Kv2(d, c)}

Note that agents 1 and 2 do not differ in which values they know right now, but
there is a difference in what they will learn from inspections of c and d.

Two canonical dependency graphs generated from Γ are shown in Figure 5.3.
Again, for clarity we omit superset edges. The subsets of C = {c, d} closed
under the graphs are thus {{c, d}, {d},∅} and {{c, d}, {c},∅} for agent 1 and 2
respectively, inducing the equivalence relations as shown in Figure 5.3.

{c, d}

{c} {d}

∅

G1
Γ (omitting ⊆)

{c, d}

{c} {d}

∅

G2
Γ (omitting ⊆)

{c, d}
c = 0
d = 0

{c}
c = 0
d = 1

{d}
c = 1
d = 0

∅
c = 1
d = 1

2 1

2

2

1

1

Figure 5.3: Two canonical dependency graphs and the resulting canonical model.

Just like for SPIL1 we can also give a notion of bisimulation for SPIL.

5.6.5. Definition. Two pointed models ((S,D, V, R), s) and ((S ′,D′, V ′, R′), s′)
for multi-agent PIL are bisimilar iff the following two conditions are fulfilled:

(i) Forth: For all finite C ⊆ C, all d ∈ C and all agents i: If there is a t ∈ S
such that s ∼i t and s =C t and s 6=d t, then there is a t′ ∈ S ′ such that
s′ ∼i t′ and s =C t and s′ 6=d t

′.

(ii) Back: For all finite C ⊆ C, all d ∈ C and all agents i: If there is a t′ ∈ S ′
such that s′ ∼i t′ and s′ =C t

′ and s′ 6=d t
′, then there is a t ∈ S such that

s ∼i t and s′ =C t
′ and s 6=d t.

5.6. Multi-Agent PIL 151

5.6.6. Theorem. Two pointed multi-agent models satisfy the same formulas of
the multi-agent language LI1 iff they are bisimilar.2

Proof:
Similar to the proof of Theorem 5.5.15. First, note that we can again consider
a restricted but equally expressive language with atoms of the form Kvi(C, d).
Second, it is easy to check ifM, s andM′, s′ are bisimilar, then we haveM, s �
¬Kvi(C, d) ⇐⇒ M′, s′ � ¬Kvi(C, d) for all i. The converse also holds, because
the forth and back conditions are now based on the semantics of ¬Kvi(C, d). 2

Finally, we can show what our running example for this chapter looks like as a
model for Public Inspection Logic.

5.6.7. Example. Example 5.0.1 looks almost the same as the Kripke model from
Figure 5.1 above if we model it in PIL in the obvious way, with the same number of
worlds. But there is a much smaller model which is equivalent from the perspective
of PIL, i.e. it satisfies exactly the same formulas.

We show it in Figure 5.4 and note the similarity to the register model in
Figure 5.2 which also needed only four worlds. But in contrast to the register
models, in PIL the values and the range of the variables do not matter, because
the language never refers to them. Replacing both 5 and 7 with 1 in Figure 5.4
would not change the truth value of any PIL formula.

x = 5
y = 7

x = 5
y = 0

x = 0
y = 7

x = 0
y = 0

Figure 5.4: PIL model for Example 5.0.1.

2Unfortunately, in the original paper [EGW17] which this chapter is based on, the definition
of multi-agent bisimulation contains an error. In [EGW17, Definition 9, page 88] we also linked
non-actual worlds. This is too restrictive, because multi-agent PIL does not have any nested
modalities. Definition 5.6.5 here is the corrected version.

152 Chapter 5. Knowing and Inspecting Values

5.7 Conclusion and Future Work

We compared three different ways to model the knowledge of numeric variables,
starting with binary encodings, then treating register models, and finally focusing
on a new logic for knowing values and public inspection. Table 5.3 gives a
comparison of the three languages we discussed in this chapter. For each language
we show whether and how certain statements can be expressed. It is clear
that Public Inspection Logic uses the most succinct but also the least expressive
language. The language for register models still provides succinct formulas and can
also refer to concrete values. For Kripke models with binary encodings we use the
language of epistemic logic with public announcements, LP from Definition 1.2.1,
which leads to rather long formulas — especially if “whether” is spelled out.

Statement Binary Encoding Register PIL

x has value 5 ¬px2 ∧ px1 ∧ ¬px0 x = 5 n/a
x and y are equal

∧
i(p

x
i ↔ pyi) x = y n/a

a knows the value of x K?
ap

x
2 ∧K?

ap
x
1 ∧K?

ap
x
0 Kax Kvax

given x, a knows y [!?px0] . . . [!?px2](
∧
jK

?
ap

y
j) [!x]Kay [x]y or Kva(x, y)

Table 5.3: Three ways to model numeric knowledge.

Besides syntax we can also compare the semantics of the three logics. First,
note that the models for the situation with Alice and Bob from Example 5.0.1
differ in size. The Kripke model with binary encoding in Example 5.1.3 has 64
worlds and the equivalent knowledge structure only has length 47 if seen as a
simple string. The register model in Example 5.2.4 has 4 worlds, but there are 64
agreeing assignments which might have to be generated when a formula is checked
on the model. The PIL model from Example 5.6.7 is the smallest, with only 4
worlds and no additional memory needs during the checking of formulas.

More relevant in practice is how the models grow for larger numbers. Suppose
that instead of {0, . . . , 7}, we would use a different range with M different values.
The binary encoding then needs O(M2) worlds whereas the register model still
only needs 4 worlds, though a tiny amount of additional memory might be needed
to represent larger bounds. The number of agreeing assignments is O(M2). Clearly
beating those representations, the PIL model has a constant size of 4 worlds. In
fact, the same model represents all variations of the example with a bigger range.

Does this mean that PIL is the best representation? Only if it is expressive
enough for the particular use case. In settings where “who knows what” and
dependencies between variables are all we want to check, PIL is an optimal
abstraction method. But as soon as we need more expressivity or relations
between propositional and numeric knowledge are of interest, PIL will no longer
be expressive enough.

5.7. Conclusion and Future Work 153

Between our specific approach and the general language of [Bal16], a lot can
still be explored. An advantage of having a weaker language with explicit operators,
instead of encoding them in a more general language, is that we can clearly see
the properties of those operators showing up as intuitive axioms.

The framework of PIL can be extended in different directions. We could for
example add equalities c = d to the language, together with knowledge K(c = d)
and announcement [c = d]. No changes to the models are needed, but axiomatizing
these operators seems not straightforward. Alternatively, just like Plaza added
Kv to PAL in [Pla07], we can also add K to PIL. The next language to be studied
is thus PIL + K from Table 5.2 above, and given by

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | Kvic | Kiϕ | [c]ϕ.

While the language from [Bal16] also includes this language, to our knowledge, it
is an open question whether and how PIL +K without any further additions can
be axiomatized.

It is easy to check that the standard axioms for multi-agent S5 are sound on
multi-agent PIL models from Definition 5.6.1. We can also add introspection
axioms for the interplay between Kv and K. That is, Kvic → KiKvic and
¬Kvic→ KiKvic are both valid. But we do not know which other axioms might
have to be added for a complete axiomatization. In particular, the simple proof
via Armstrong axioms no longer works for PIL + K.

We note that PIL + K can also express knowledge of dependency in contrast
to de facto dependency. For example, Ki[c]Kvid expresses that agent i knows that
d functionally depends on c, while [c]Kvid expresses that the value of d (given
the information state of i) is determined by the actual value of c de facto. In
particular the latter does not imply that i knows this. The agent can still consider
other values of c possible that would not determine the value of d. To see the
difference technically, we can spell out the truth condition for Ki[c]Kvi(d) under
standard Kripke semantics for Ki on S5 models:

M, s � Ki[c]Kvi(d) ⇐⇒ for all t1 ∼i s, t2 ∼i s : t1 =c t2 implies t1 =d t2

Now consider Example 5.5.16: [c]Kv(d) holds in the first row, but K[c]Kv(d) does
not hold since the semantics of K require [c]Kv(d) to hold at all worlds considered
possible by the agent. This also shows that [c]Kv(d) is not positively introspective
(i.e. the formula [c]Kv(d) → Ki[c]Kv(d) is not valid), and it is essentially not a
subjective epistemic formula.

In this way, K[c]Kv(d) can also be viewed as the atomic formula = (c, d) in
dependence logic (DL) from [Vää07]. A team model of DL can be viewed as
the set of epistemically accessible worlds, i.e., a single-agent model in our case.
The connection with dependence logic also brings PIL closer to the first-order
variant of epistemic inquisitive logic by [CR15], where knowledge of entailment of
interrogatives is the knowledge of dependency. For a detailed comparison with
our approach, see [Cia16, Section 6.7.4].

154 Chapter 5. Knowing and Inspecting Values

Another approach is to make the dependency more explicit and include func-
tions in the syntax. In [Din16] a functional dependency operator Kfi is added to
the epistemic language with Kvi operators: Kfi(c, d) := ∃fKi(d = f(c)) where f
ranges over a pool of functions.

Finally, there is an independent but related line of work on (in)dependency
of variables using predicates, see for example [MN10; Nau12; NN14; HN16]. In
particular [NN14] also uses a notion of dependency as the epistemic implication
“Knowing c implies knowing d.”, similar to our formula Kv(c, d). A “dependency
graph” is also used in [HN16] to describe how different variables, in this case
payoff functions in strategic games, may depend on each other. Note however,
that these graphs are not the same as our canonical dependency graphs from
Definition 5.5.11. Our graphs are directed and describe determination between
sets of variables. In contrast, the graphs in [HN16] are undirected and consist of
singleton nodes for each player in a game. We leave a more detailed comparison
for another occasion.

Chapter 6

Dynamic Gossip

Liaisons were supposed to be announced when
they were formed and when they were dissolved.
It was a way to curtail gossip and intrigue,
which could so easily run rampant in a math.

Neal Stephenson: Anathem

The so-called gossip problem is a problem about peer-to-peer information sharing:
A number of agents each start with some private information, and the goal is to
share this information among all agents, using only peer-to-peer communication
channels [Tij71]. For example, the agents could be autonomous sensors that
need to pool their individual observations in order to obtain a composite group
observation. Or the agents could be distributed copies of a database that can
each be edited separately, and that need to synchronize with each other [Eug+04;
Hae+16; Irv16].

The example that is typically used in the literature, however, is a bit more
frivolous: as the name suggests, the gossip problem is usually represented as a
number of people gossiping [HHL88; Dit+15; Dit+17]. This term goes back to the
oldest sources on the topic, such as [BS72]. The gossip scenario gives us not only
the name of the gossip problem, but also the names of some of the other concepts
that are used: the private information that an agent starts out with is called that
agent’s secret, the communication between two agents is called a telephone call
and an agent a is capable of contacting another agent b if a knows b’s telephone
number.

These terms should not be taken too literally. Results on the gossip problem
can, in theory, be used by people that literally just want to exchange gossip by
telephone. But we model information exchange in general and ignore all other
social and fun aspects of gossip among humans — though they also can be modeled
in epistemic logic [Kle17].

155

156 Chapter 6. Dynamic Gossip

For our framework, applications where artificial agents need to synchronize
their information are much more likely. For example, recent ideas to improve
cryptocurrencies like bitcoin and other blockchain applications focus on the peer-to-
peer exchange (gossip) happening in such networks [SLZ16] or even aim to replace
blockchains with directed graphs storing the history of communication [Bai17].
Epistemic logic can shed new light on the knowledge of agents participating in
blockchain protocols [HP17; BFS17].

There are many different sets of rules for the gossip problem [HHL88]. For
example, calls may be one-on-one, or may be conference calls. Multiple calls may
take place in parallel, or must happen sequentially. Agents may only be allowed
to exchange one secret per call, or exchange everything they know. Information
may go both ways during a call, or only in one direction. We consider only the
most commonly studied set of rules: calls are one-on-one, calls are sequential, and
the callers exchange all the secrets they know. So if a call between a and b is
followed by a call between b and c, then in the second call agent b will also tell
agent c the secret of agent a.

Our goal is to ensure that every agent knows every secret. An agent who
knows all secrets is called an expert, so the goal is to turn all agents into experts.

The classical gossip problem, studied in the 1970s, assumed a total commu-
nication network (anyone could call anyone else from the start), and focused on
optimal call sequences, i.e. schedules of calls which spread all the secrets with a
minimum number of calls, which happens to be 2n− 4 for n ≥ 4 agents [Tij71;
Hur00]. Later, this strong assumption on the network of the gossiping agents was
dropped, giving rise to studies on different network topologies (see [HHL88] for a
survey), with 2n− 3 calls sufficing for most networks.

Unfortunately, these results about optimal call sequences only show that such
call sequences exist. They do not provide any guidance to the agents about how
to achieve an optimal call sequence. Effectively, these solutions assume a central
scheduler with knowledge of the entire network, who will come up with an optimal
schedule of calls, to be sent to the agents, who will eventually execute it in the
correct order. Most results also rely upon some notion of synchronicity so that
agents can execute their calls at the appropriate time (i.e. after some calls have
been made, and before some other calls are made).

The requirement that there be a central scheduler that tells the agents exactly
what to do is against the spirit of the peer-to-peer communication that we want to
achieve. Computer science has shifted towards the study of distributed algorithms
for the gossip problem [HLL99; Kar+00]. Indeed, the gossip problem becomes
more natural without a central scheduler; the gossiping agents try to do their
best with the information they have when deciding whom to call. Unfortunately,
this can lead to sequences of calls that are redundant because they contain many
calls that are uninformative in the sense that neither agent learns a new secret.
Additionally, the algorithm may fail, i.e., it may deadlock, get stuck in a loop or
terminate before all information has been exchanged.

157

For many applications it is not realistic to assume that every agent is capable
of contacting every other agent. So we assume that every agent has a set of agents
of which they “know the telephone number”, their neighbors, so to say, and that
they are therefore able to contact. We represent this as a directed graph, with an
edge from agent a to agent b if a is capable of calling b.

In classical studies, this graph is typically considered to be unchanging. In
more recent work on dynamic gossip the agents exchange both the secrets and
the numbers of their contacts, therefore increasing the connectivity of the net-
work [Dit+15]. We focus on dynamic gossip. In distributed protocols for dynamic
gossip each agent decides on their own whom to call, depending on their current
information [Dit+15], or also depending on the expectation for knowledge growth
resulting from the call [Dit+17]. The latter requires agents to represent each
other’s knowledge, and thus epistemic logic.

Different protocols for dynamic gossip are successful in different classes of
gossip networks. The main challenge in designing such a protocol is to find a good
level of redundancy: we do not want superfluous calls, but the less redundant a
gossip protocol, the easier it fails in particular networks. Another challenge is to
keep the protocol simple. After all, a protocol that requires the agents to solve a
computationally hard problem every time they have to decide whom to call next
would not be practical. There is also a trade-off between the content of the message
of which a call consists and the expected duration of gossip protocols. A nice
example of that is [HM17], wherein the complexity of gossip protocol termination is
reduced from n log n to linear n, however at the price of more ‘expensive’ messages,
not only exchanging secrets but also knowledge about secrets.

A well-studied protocol is “Learn New Secrets” (LNS), in which agents are
allowed to call someone if and only if they do not know the other’s secret. This
protocol excludes redundant calls in which neither participant learns any new
secrets. As a result of this property, all LNS call sequences are finite. For small
numbers of agents, it therefore has a shorter expected execution length than
the “Any Call” (ANY) protocol that allows arbitrary calls at all times and thus
allows infinite call sequences [DKS17]. Additionally, it is easy for agents to check
whom they are allowed to call when following LNS. However, LNS is not always
successful. On some graphs it can terminate unsuccessfully, i.e. when some agents
do not yet know all secrets. In particular there are graphs where the outcome
depends on how the agents choose among allowed calls [Dit+15].

Fortunately, it turns out that failure of LNS can often be avoided with some
forethought by the calling agents. That is, if some of the choices available to the
agents lead to success and other choices to failure, it is often possible for the agents
to determine in advance which choices are the successful ones. This leads to the
idea of strengthening a protocol. Suppose that P is a protocol that, depending on
the choices of the agents, is sometimes successful and sometimes unsuccessful. A
strengthening of P is an addition to P that gives the agents guidance on how to
choose among the options that P gives them.

158 Chapter 6. Dynamic Gossip

The idea is that such a strengthening can leave good properties of a protocol
intact, while reducing the chance of failure. For example, any strengthening of
LNS will inherit the property that there are no redundant calls: It will still be
the case that agents only call other agents if they do not know their secrets.

Let us illustrate this with a small example, also featuring as a running example
in the technical sections (see Figure 6.1 on page 169). There are three agents
a, b, c. Agent a knows the number of b, and b and c know each other’s number.
Calling agents exchange secrets and numbers, which may expand the network,
and they apply the LNS protocol, wherein you may only call another agent if you
do not know its secret. If a calls b, it learns the secret of b and the number of c.
All different ways to make further calls now result in all three agents knowing
all secrets. If the first call is between b and c (and there are no other first calls
than ab, bc, and cb), they learn each other’s secret but no new number. The only
possible next call now is ab, after which a and b know all secrets but not c. But
although a now knows c’s number, she is not permitted to call c, as she already
learned c’s secret by calling b. We are stuck. So, some executions of LNS on this
graph are successful and others are unsuccessful.

Suppose we now strengthen the LNS protocol into LNS′ such that b and c have
to wait before making a call until they are called by another agent. This means
that b will first receive a call from a. Then all executions of LNS′ are successful on
this graph. In fact, there is only one remaining execution: ab; bc; ac. The protocol
LNS′ is a strengthening of the protocol LNS.

The main contributions of this chapter are as follows. We prove that with
enough agents, all gossip graphs are constructible as subgraphs. We define what
it means for a gossip protocol to be common knowledge between all agents. To
this end we propose a logical semantics with an individual knowledge modality
for such protocol knowledge. We then define various strengthenings of gossip
protocols, both in the logical syntax and in the semantics. This includes a
strengthening called uniform backward induction, a form of backward induction
applied to (imperfect information) gossip protocol execution trees. We give some
general results for strengthenings, but mainly apply our strengthenings to the
protocol LNS: we investigate some basic gossip graphs (networks) on which we
gradually strengthen LNS until all its executions are successful on that graph.
However, no such strengthening will work for all gossip graphs. This is proved
by a counterexample consisting of a six-agent gossip graph, that requires fairly
detailed analysis. Some of our results involve the calculation and checking of large
numbers of call sequences. For this we use an implementation in Haskell. While
this implementation is an explicit state model checker, we also show how symbolic
transformers can be used to model gossip calls.

In Section 6.1 we give the basic definitions to describe gossip graphs and calls.
In Section 6.2 we prove that all gossip graphs are constructible as a subgraph.
We then introduce a variant of epistemic logic to be interpreted on gossip graphs

6.1. Gossip graphs and calls 159

in Section 6.3. In particular we introduce a new operator for protocol-dependent
knowledge. In Section 6.4 we define semantic and — using the new operator
— syntactic ways to strengthen gossip protocols. We investigate how successful
those strengthenings are and study their behavior under iteration. Section 6.5
contains our main result, that strengthening LNS to a strongly successful protocol
is impossible. In Section 6.6 we discuss different ways how model checking can be
used to automate the analysis of gossip. In Section 6.7 we wrap up and conclude.

6.1 Gossip graphs and calls
Gossip graphs are used to keep track of who knows which secrets and which
telephone numbers.

6.1.1. Definition. Given a finite set of agents A, let idA be the identity relation
on A. A gossip graph G is a triple (A,N, S) where N and S are binary relations
on A such that idA ⊆ S ⊆ N . An initial gossip graph is a gossip graph where
S = idA. for all agents a we write Na for {b ∈ A | Nab}, and similarly Sa for
{b ∈ A | Sab}. The set of all initial gossip graphs is denoted by G.

The relations model the basic knowledge of the agents. Agent a knows the
number of b iff Nab and a knows the secret of b iff Sab. If we have Nab and not
Sab we also say that a knows the pure number of b.

6.1.2. Definition. A call is an ordered pair of agents (a, b) ∈ (A × A). We
usually write ab instead of (a, b). Given a gossip graph G, a call ab is possible
iff Nab. Given a possible call ab, Gab is the graph (A′, N ′, S ′) such that A′ := A,
N ′a := N ′b := Na ∪ Nb, S ′a := S ′b := Sa ∪ Sb, and N ′c := Nc, S ′c := Sc for c 6= a, b.
For a sequence of calls ab; cd; . . . we write σ or τ . The empty sequence is ε. We
extend the notation Gab to sequences of calls: Gε := G, (Gσ)ab := Gσ;ab.

To visualize gossip graphs we draw N with dashed and S with solid arrows.
When making calls, the property S ⊆ N is preserved [Dit+15], so we omit the
dashed N arrow if there already is a solid S arrow.

6.1.3. Example. Consider the following initial gossip graph G in which a knows
the number of b, and b and c know each other’s number:

a b c

Suppose that a calls b. We obtain the gossip graph Gab in which a and b know
each other’s secret and a now also knows the number of c:

a b c

160 Chapter 6. Dynamic Gossip

6.2 Constructible Graphs and Subgraphs

Given the rules of dynamic gossip, some situations or graphs are unreachable
from initial gossip graphs. For example, if we only consider two agents Alice and
Bob, then it cannot happen that Alice knows the secret of Bob but not vice versa.
However, this situation changes if we consider configurations of subgraphs. Among
three agents the asymmetric situation can occur, depending on calls involving the
third one.

This raises the question which graphs can occur as subgraphs in a situation
with more agents. This is particularly relevant if the number of agents is unknown
or their reasoning power limited. In this section we give a simple answer: All
finite gossip graphs can be constructed as parts of bigger graphs with more agents.
Our proof is constructive and shows how to find an appropriate initial graph and
which calls to make to construct any given subgraph.

We start with a formal definition of what it means that a graph is reachable
from an initial graph and then give two examples to show that some, but not all
graphs have this property.

6.2.1. Definition. A gossip graph G = (A,N, S) is reachable from an initial
graph iff there is a number relationN0 ⊆ N and a call sequence σ such that applying
σ to the initial graph based on N0 leads to the graph G, i.e. (A,N0, idA)σ = G.

6.2.2. Example. Is the gossip graph below reachable from an initial graph?

a

b c

The answer is yes. We have G = G0
ab;cb where G0 is the following graph on the

left.

a

b c
ab
⇒ a

b c
cb
⇒ a

b c

6.2.3. Example. This graph is not reachable from an initial graph with two
agents:

ab

For any number of agents there are similar examples of graphs that are
unreachable. But this changes, if we consider subgraphs.

6.2. Constructible Graphs and Subgraphs 161

6.2.4. Definition. A gossip graph G = (A,N, S) is called a subgraph of another
gossip graph G′ = (A′, N ′, S ′) iff (i) A ⊆ A′ and (ii) for all a, b ∈ A, we have Nab
iff N ′ab, and Sab iff S ′ab. We then write G ⊆ G′. A gossip graph G is constructible
as a subgraph, short caas, iff there is an initial gossip graph G0 = (A0, N0, S0) and
a calling sequence σ over A0 such that G ⊆ (G0)σ.

It is easy to see that at least some unreachable graphs are caas.1

6.2.5. Example. The graph from Example 6.2.3 is not reachable from a subgraph.
But it is caas because we can start with the left graph below and do σ := (cb); (ac)
to construct it as a subgraph.

c

b a
cb
⇒ c

b a
ac
⇒ c

b a

Our next question is, which gossip graphs are constructible as a subgraph?
One motivation to investigate this question is multi-agent reasoning. Consider

a scenario where the number of agents is not known to some of the agents, or their
reasoning power is limited so they cannot think about all agents at the same time.
Then agents can no longer do reasoning like “There are only two other agents
besides me and a call happened, so now they must have each other’s secret.”

A second motivation is that it can tell us something about formal approaches to
the dynamic gossip problem: For any language that talks about gossip graphs with
a formal syntax and semantics we can ask for its logic, i.e. validities. Those will
depend on the class of graphs that we consider, which could include “unreachable”
graphs or not. Does it matter if we include them?

The result that we will prove says that if agents do not know the total number
of agents, then they have to consider more, and in fact all, subgraphs; and that
if a language cannot express the number of agents then its validities will be the
same with respect to the class of all gossip graphs as with respect to only the
reachable ones.

6.2.6. Theorem. Every gossip graph is caas.

We prove this by induction on the size of gossip graphs, defined as follows.

6.2.7. Definition. For any gossip graph G = (A,N, S), we define the size of G
by Size(G) := |A|+ |N \ S|+ |S \ idA|.

Intuitively, Definition 6.2.7 defines the size of a gossip graph as the number
of things we draw: Each agent is a node, and we draw dashed (N \ S) or solid
(S \ idA) arrows, but never both in the same direction.

1We invite the reader to pronounce ‘caas’ like ‘kaas’, the Dutch word for cheese.

162 Chapter 6. Dynamic Gossip

6.2.8. Example. For graph G in Example 6.2.3 we have Size(G) = 2 + 0 + 1 = 3.

Our proof idea for Theorem 6.2.6 is to show that whenever all graphs with a
certain size can be constructed as a subgraph starting from an initial graph, then
we can also construct any graph that is one size bigger. For this we modify the
initial graph and the sequence. In particular, we can use extra agents to build the
relations we want. Per Definition 6.2.7 the size can only grow in three ways. First,
if the new graph just has one more disconnected agent, then we can just add it to
the initial constructing graph as well. Second, to add an N \ S-edge from a to b,
we add a new agent c who knows numbers of a and b and then calls a:

c

b a
ca
⇒ c

b a

Third, to add an S ∩N -edge from a to b, we add a new agent c who knows the
number of b and whose number is known by a. Then we first let c call b and at
the end let a call c. In fact, this is exactly Example 6.2.5.
Proof of Theorem 6.2.6:
By induction on Size(G). For any set X, let idX denote the identity relation on X.

For the base case, suppose we have G = (A,N, S) such that Size(G) = 0. Then
A = N = S = ∅ and it is easy to fulfill the claim with G0 := (∅,∅,∅) and σ := ε.

As an induction hypothesis, suppose any gossip graph G with Size(G) = k is
caas. For the induction step, take any G′ such that Size(G′) = k + 1. We want to
show that G′ is caas.

For this, let G be a proper subgraph of G′ such that either (i) G′ has one
disconnected agent more than G, (ii) G′ has one N \ S edge more than G, or
(iii) G′ has one S ∩ N edge more than G. One of these must be the case by
Definition 6.2.7.

In all cases Size(G) = k, so by induction hypothesis G is caas. Hence there
is an initial graph G0 = (A0, N0, idA) and a call sequence σ such that G ⊆ (G0)σ.
Now consider the three cases:

(i) If G′ has one disconnected agent more than G, say c, then let G′0 :=
(A0 ∪ {c}, N0 ∪ {(c, c)}, idA0∪{c}) and σ′ := σ.

(ii) If G′ has one N \ S edge more than G, say (a, b) ∈ (N \ S), let c be a fresh
agent, let G′0 := (A0 ∪ {c}, N0 ∪ {(c, a), (c, b)}, idA0∪{c}) and σ′ := σ; (ca).

(iii) If G′ has one S ∩N edge more than G, say (a, b) ∈ (N ∩ S), let c be a fresh
agent, let G′0 := (A0∪{c}, N0∪{(a, c), (c, b)}, idA0∪{c}) and σ′ := (cb);σ; (ac).

In each case we can check that G′ ⊆ (G′0)σ
′ . Hence G′ is caas. 2

6.3. Epistemic Logic for Dynamic Gossip Protocols 163

An informal corollary of Theorem 6.2.6 is the following. Suppose a logic
describing dynamic gossip cannot “count” agents, i.e. the language it uses cannot
express that there are n agents. Then any axiomatization of this logic is sound
and complete for the class of all gossip graphs iff it is sound and complete for the
class of reachable gossip graphs.

6.3 Epistemic Logic for Dynamic Gossip Protocols

6.3.1 Syntax and Protocols

We now introduce a language which we will interpret on gossip graphs. Atomic
propositional variables Nab and Sab stand for “agent a knows the number of agent
b” and “agent a knows the secret of agent b” and will be interpreted in the obvious
way, using the N and S relations. Definitions 6.3.1 and 6.3.2 are simultaneous, as
language construct KP

a ϕ is with respect to a protocol P .

6.3.1. Definition. We consider the language L given by

ϕ ::= > | Nab | Sab | ¬ϕ | (ϕ ∧ ϕ) | KP
a ϕ | [π]ϕ

π ::= ?ϕ | ab | (π ; π) | (π ∪ π) | π∗

where a, b ∈ A and P is a protocol.

6.3.2. Definition. A protocol condition Pab is a family of formulas in the lan-
guage L, indexed by two agents a, b ∈ A. Given a protocol condition Pab, the
corresponding syntactic protocol P is a program defined by

P :=

(⋃
a6=b∈A

(?(Nab ∧ Pab); ab)

)∗
; ?

∧
a6=b∈A

¬ (Nab ∧ Pab)

We require our protocols to be epistemic and symmetric. A protocol P is epistemic
iff, for every a, b ∈ A, the protocol condition Pab is equivalent to KP

a Pab (using
the logical semantics of Definition 6.3.8 below). A protocol P is symmetric iff,
for every permutation J of agents, we have PJ(a)J(b) = J(Pab), where J(Pab) is the
natural extension of J to formulas.

Other logical connectives and program constructs are defined by abbreviation
as follows. Let π0 := ?> and for all n ∈ N let πn := πn−1; π. Moreover, Nabcd
stands for Nab ∧Nac ∧Nad, and NaB for

∧
b∈B Nab. Similarly, we use Sabcd and

SaB as abbreviations. If A is the set of all agents, we also write Ex a for SaA to
say that agent a is an expert. We write ExB for

∧
b∈B Ex b and Ex for ExA to say

that everyone is an expert. For program modalities, we use the standard definition
for diamonds: 〈π〉ϕ := ¬[π]¬ϕ.

164 Chapter 6. Dynamic Gossip

Our new operator KP
a ϕ reads as “given protocol P , agent a knows that ϕ.”

Informally, this means that agent a knows that ϕ on the assumption that the
agents have common knowledge that they all use protocol P . The simultaneous
induction of formulas and programs in the language definition guarantees that
KP
a ϕ is well-defined. This can be easily explained. Although P is the parameter in

KP
a ϕ, this might as well be its protocol condition Pab (as this is the only variable

part in the protocol definition), which is of type formula. In other words, the
knowledge construct is inductively typed Kϕ

a ϕ. We tend to use either the name
of the protocol or the protocol condition to index the knowledge modality. The
standard epistemic modality is an abbreviation Kaϕ := KANY

a ϕ, where ANY is the
“make any call” protocol with protocol condition >. The epistemic dual is defined
as K̂P

a ϕ := ¬KP
a ¬ϕ and can be read as “given protocol P , agent a considers it

possible that ϕ.”
We do not take Nab to be part of the protocol condition. It is rather a generic

condition: a has to know b’s number in order to call b, no matter which protocol
is used. If Nab we say that call ab is possible.

We do not include, as in other works [Dit+15; AW17], the success condition ?Ex
in the protocol definition. We can therefore distinguish unsuccessful termination
(not all agents know all secrets) from successful termination.

6.3.3. Definition. A terminating protocol execution is successful (or succeeds)
iff afterwards all agents are experts. We say that a protocol P is strongly successful
on G iff all terminating executions of P succeed: [P]Ex . A protocol is weakly
successful on G iff some terminating execution of P succeeds: 〈P 〉Ex . The protocol
is unsuccessful on G iff no terminating execution succeeds: [P]¬Ex . A protocol is
strongly successful iff it is strongly successful on all gossip graphs G, and similarly
for weakly successful and unsuccessful.

All our protocols can always be executed. If this is without making any calls,
the protocol (extension) is called empty. Being empty is different from [P]⊥,
which never holds.

Strong success implies weak success, but not vice versa. Formally, we have
that [P]ϕ→ 〈P 〉ϕ is valid for all protocols P , but we do not have 〈P 〉ϕ→ [P]ϕ,
because our protocols are typically non-deterministic.

Intuitively, a protocol is epistemic if callers always know when to make a
call, without being given instructions by a central scheduler. If a protocol is
symmetric the names of the agents are irrelevant and therefore interchangeable.
So a symmetric protocol is not allowed to “hard-code” agents to perform certain
roles. This means that, for example, we cannot tell agent a to call b, as opposed
to c, just because b comes before c in the alphabet. But we can tell a to call b, as
opposed to c, on the basis that, say, a knows that b knows five secrets while c only
knows two secrets. Epistemic and symmetric protocols capture the distributed
peer-to-peer nature of the gossip problem.

6.3. Epistemic Logic for Dynamic Gossip Protocols 165

6.3.4. Example. The “Learn New Secrets” protocol (LNS) says: You are allowed
to call any agent whose secret you do not know yet. This is described by the
protocol condition LNSab := ¬Sab and LNS is therefore the protocol(⋃

a6=b∈A

(?(Nab ∧ ¬Sab); ab)

)∗
; ?

∧
a6=b∈A

¬ (Nab ∧ ¬Sab)

It is easy to see that this protocol is symmetric. We will later explain why ¬Sab is
equivalent to KLNS

a ¬Sab, which means that LNS is also epistemic.

We want to discuss strengthenings of gossip protocols in general, and of LNS
in particular. As we discussed in the introduction, a strengthening of a protocol
helps the agents to make a smart choice among the options left open to them by
the protocol. However, which choices are smart often depends on what you expect
the other agents to do. A particular choice may, for example, be smart if the other
agents are following LNS but not if the other agents use another protocol.

It is therefore important to consider what the agents know about the protocol
that the others follow, and in particular, what it means to have common knowledge
among the agents that a certain protocol is being followed. As such common
knowledge is of a given protocol, we will parameterize the epistemic relation in our
models with that protocol, and can therefore use that protocol in the knowledge
modality.

Which protocol is common knowledge between the agents determines the
epistemic relations in our models, that in turn, via the KP

a operators used in
formulas, determine which calls are allowed. To prevent circularity, knowledge is
initially interpreted only for simple protocols, i.e., protocols without knowledge
and call operators, such as LNS above or the protocol ANY (make any call), with
protocol condition >.

The meaning of [ab]ϕ in our framework is “after call ab, ϕ holds”, without
reference to a protocol. We can syntactically enforce protocol P for this call by
[?Pab; ab]ϕ, for “after the call ab that is permitted according to protocol P , it will
be the case that ϕ.” The order of ?Pab; ab is crucial here, because already a simple
protocol like LNS only makes what we could call “Moore calls”: Immediately after
making the call ab, it is no longer allowed.

6.3.2 Protocol-Dependent Knowledge

We now define how to interpret our language on gossip graphs. For this we will
use the standard tool from epistemic logic, namely Kripke models. The possible
worlds of these Kripke models will be pairs of initial gossip graphs and histories.
This way of modeling is in fact similar to the usage of type variables in DEMO-S5,
as we discussed in Section 3.1.

We assume that the initial gossip graph is common knowledge to all agents and
that time is synchronous, meaning that all agents know how many calls happened.

166 Chapter 6. Dynamic Gossip

In the continuation we will show that even under these strong assumptions
we cannot always strengthen our protocols to guarantee successful termination.
Weaker assumptions are quite possible, but make it even harder to guarantee
success, see Section 6.7.

Given a set of agents A and an initial gossip graph G, we will define the
corresponding gossip model for G as a history-based Kripke model consisting of
all gossip states (G, σ) where G is the initial gossip graph and σ is a sequence of
calls possible on G. Epistemic relations between gossip states are parameterized
by protocols, and the valuation is determined by the numbers and secrets known
by the agents in the gossip state. As the gossip model is uniquely determined by
G, we do not use any separate notation for gossip models and it suffices to know
the point of evaluation (G, σ).

Our gossip states (G, σ) will always contain the complete call history and G is
always an initial graph. We also want to refer to the gossip graph after the calls
were made. To each gossip state (G, σ) we therefore associate the current gossip
graph Gσ = (A,Nσ, Sσ). The current gossip graph alone is not enough to model
the knowledge of our agents, because different gossip states may correspond to
the same gossip graph: as usual in modal logic, different modal properties may be
satisfied by worlds with the same valuation.

The semantics for the novel epistemic operator KP
a makes the background

assumption of a protocol P explicit. With each agent we associate a whole family of
epistemic equivalence relations, indexed by protocols. Those protocols in turn refer
to the knowledge of our agents. Hence the following Definitions 6.3.5, 6.3.6, 6.3.7
and 6.3.8 are done simultaneously. We note that the ∼Pa defined below are indeed
equivalence relations, which can be seen by an induction on the length of the call
sequences.

6.3.5. Definition. If (G, σ) � Pab we say that ab is P -permitted at (G, σ). A
P -permitted call sequence consists of P -permitted calls.

6.3.6. Definition. The epistemic equivalence relation ∼Pa over gossip states for
agent a, given that protocol P is common knowledge, is defined as:

1. (G, ε) ∼Pa (G, ε);

2. if (G, σ) ∼Pa (G, τ), Nσ
b = N τ

b , Sσb = Sτb , and ab is P -permitted at (G, σ)
then (G, σ; ab) ∼Pa (G, τ ; ab);
if (G, σ) ∼Pa (G, τ), Nσ

b = N τ
b , Sσb = Sτb , and ba is P -permitted at (G, σ)

then (G, σ; ba) ∼Pa (G, τ ; ba);

3. if (G, σ) ∼Pa (G, τ) then for all c, d, e, f 6= a for which cd and ef are P -
permitted at (G, σ) and (G, τ) respectively, let (G, σ; cd) ∼Pa (G, τ ; ef).

6.3.7. Definition. Given a set of agents A and an initial gossip graph G, the
corresponding gossip model for G is the history-based Kripke model consisting

6.3. Epistemic Logic for Dynamic Gossip Protocols 167

of all gossip states (G, σ) where G is the initial gossip graph and σ is a sequence
of calls possible on G, with equivalence relations ∼Pa between gossip states. The
execution tree of a protocol P given G is the submodel of the gossip model restricted
to the set of those (G, σ) where σ is P -permitted and to the relation ∼Pa .

6.3.8. Definition. We inductively define the interpretation of a formula ϕ ∈ L
on a gossip state (G, σ) where G = (A,N, S) is an initial graph, σ a history and
Gσ = (A,Nσ, Sσ) the associated current gossip graph.

G, σ |= > always
G, σ |= Nab iff Nσ

a b
G, σ |= Sab iff Sσa b
G, σ |= ¬ϕ iff G, σ 6|= ϕ
G, σ |= ϕ ∧ ψ iff G, σ |= ϕ and G, σ |= ψ
G, σ |= KP

a ϕ iff G′, σ′ |= ϕ whenever (G′, σ′) ∼Pa (G, σ)
G, σ |= [π]ϕ iff G′, σ′ |= ϕ whenever (G′, σ′) ∈ JπK(G, σ)

where J·K is the following interpretation of programs:

J?ϕK(G, σ) := {(G, σ) | G, σ |= ϕ}
JabK(G, σ) := {(G, (σ; ab)) | (G, σ) � Nab}

Jπ; π′K(G, σ) :=
⋃
{Jπ′K(G′, σ′) | (G′, σ′) ∈ JπK(G, σ)}

Jπ ∪ π′K(G, σ) := JπK(G, σ) ∪ Jπ′K(G, σ)
Jπ∗K(G, σ) :=

⋃
{JπnK(G, σ) | n ∈ N}

Let us first explain why the interpretation of knowledge is well-defined. As
before, to facilitate the explanation, let ψ be the protocol condition of protocol
P . The interpretation of KP

a ϕ in state (G, σ) is a function of the truth of ϕ in all
(G, τ) accessible via ∼Pa . This is standard. Non-standard is that the equivalence
relation ∼Pa is a function of the truth of ψ in gossip states (G, τ ′) for strict prefixes
τ ′ of τ . Hence knowledge can never be self-referential.

In our semantics all calls can be evaluated, no matter which protocol is common
knowledge. That is, in case agent a does not know the number of agent b, then
[ab]ϕ is trivially true for all ϕ, and if ab is a possible call, i.e., if a knows the
number of b, then [ab]ϕ is true if ϕ is true after the call ab, independently from
whether ab is P -permitted or not. Our semantics reflects that agents are free to
consider whatever calls they want.

For protocol-dependent knowledge however, the epistemic alternatives given by
∼Pa are restricted according to protocol P . Hence the relation for P will be empty
at states that cannot be reached by it. This leads to a strange but, after some
reflection, unsurprising fact that if a call happens that is not permitted according
to a protocol P but some agent a still assumes that P is common knowledge,
then this agent will turn insane, i.e. believe everything, including contradictions:
¬Pab → [ab]KP

c ⊥.

168 Chapter 6. Dynamic Gossip

A direct consequence of our semantics is that agents always know which
numbers and secrets they know. Recalling that K>a ϕ equals Kaϕ (the protocol
ANY has condition >), it is elementary that Nab ↔ KaNab, ¬Nab ↔ Ka¬Nab,
Sab↔ KaSab, and ¬Sab↔ Ka¬Sab are all valid.

We need a little bit more. From the properties of the relation ∼Pa and the
semantics, it follows that KANY

a ϕ → KP
a ϕ is valid for any protocol P . This

expresses that ANY is the weakest of all protocols, see also Lemma 6.4.3 below.
Hence we also have Nab→ KP

a Nab. It is also easy to see that protocol dependent
knowledge has the standard properties of knowledge, such as truthfulness, KP

a ϕ→
ϕ, from which we obtain Nab↔ KP

a Nab etc. The validity of ¬Sab↔ KLNS
a ¬Sab

means that LNS is an epistemic protocol.
These equivalences are a common feature of many gossip settings. We also

assume common knowledge of the initial gossip graph, from which individual
knowledge is derivable. To illustrate this, in Example 6.1.3, where a knows the
number of b and b and c know each other’s number, a knows all that prior to
having made any call. So G, ε |= KLNS

a Nbc, etc. Of course, knowledge about other
agents not having a number or a secret is not preserved after calls.

6.3.9. Definition. For any initial gossip graph G and any protocol P we define
the extension of P on G by

P0(G) := {ε}
Pi+1(G) := {σ; ab | σ ∈ Pi(G) a, b ∈ A, (G, σ) � Pab}
P (G) :=

⋃
i<ω Pk(G)

The extension of P is then P (G) :=
⋃
G∈G P (G).

We recall that G is the set of all initial gossip graphs. For P (G) we often write P
unless confusion results. In other words, we tend to identify a protocol with its
extension. So, P ⊆ P ′ means P (G) ⊆ P ′(G), etc. Given a set X of call sequences,
sequence σ ∈ X is terminal iff for all calls ab, we have σ; ab /∈ X. For the subset
of the terminal sequences of X we write X.

Not all protocols discussed in this work are definable in the logical language.
We therefore need the additional notion of a semantic protocol, defined by its
extension.

6.3.10. Definition. A semantic protocol is a function P : G → P((A× A)∗)
mapping initial gossip graphs to sets of call sequences.

We also require that semantic protocols are epistemic and symmetric, adapting
the definitions of these two properties as follows. Let J be a permutation. Let
J(ε) = ε and J(σ; ab) = J(σ); J(a)J(b). Then a semantic protocol P is symmetric
iff P = J(P) (seen as extensions) for any permutation J , where J(P) is the
set of all J(σ) with σ ∈ P . To determine whether P is epistemic we replace
all conditions “ab is P -permitted at (G, σ)” in Definition 6.3.6 of the epistemic
relation by “σ; ab ∈ P (G)” and then proceed as before.

6.3. Epistemic Logic for Dynamic Gossip Protocols 169

6.3.11. Example. We continue with Example 6.1.3. The execution tree of LNS
on this graph is shown in Figure 6.1. We denote calls with gray arrows and the
epistemic equivalence relation with dotted lines. For example, agent a cannot
distinguish whether call bc or cb happened. At the end of each branch the
termination of LNS is denoted with X if successful, and × if unsuccessful.

a b c

a b c a b c a b c

a b c a b c a b c a b c a b c

a b c a b c a b c

ab bc cb

ac bc cb ab ab

bc ac ac
a

a

a

a

X X X

× ×

Figure 6.1: Example of an execution tree for LNS.

To illustrate our semantics, for this graph G we have:

• G, ε � Nab ∧ ¬Sab — the call ab is LNS-permitted at the start.

• G, ε � [ab](Sab ∧ Sba) — after the call ab the agents a and b know each
other’s secret

• G, ε � [ab]〈ac〉> — after the call ab the call ac is possible.

• G, ε � [ab][LNS]Ex — after the call ab the LNS protocol will always termi-
nate successfully.

• G, ε � [bc ∪ cb][LNS]¬Ex — after the calls bc or cb the LNS protocol will
always terminate unsuccessfully.

• G, ε � [bc ∪ cb]KLNS
a (Sbc ∧ Scb) — after the calls bc or cb, agent a knows

that b and c know each others secret.

• G, ab; bc; ac �
∧
i∈{a,b,c}K

LNS
i Ex — after the call sequence ab; bc; ac everyone

knows that everyone is an expert.

Note that here we only have epistemic edges for agent a, and that those are
between states that are isomorphic. In synchronous gossip with three agents, if
you are not involved in a call, you know that the other two agents must have called.
You may only be uncertain about the direction of that call. But the direction of

170 Chapter 6. Dynamic Gossip

the call does not matter for the numbers and secrets being exchanged. Hence all
agents always know the current situation. We will see a more interesting epistemic
relation later, in Figure 6.4.

In Example 6.3.11 we have three successful and two unsuccessful LNS sequences.
To ensure success, agent a has to make the first call. This can be achieved by
strengthening LNS. In the next section we will define what it means to strengthen
a protocol and then give syntactic and semantic ways to do so.

6.4 Strengthening of Protocols

6.4.1 What is strengthening?

In our semantics it is common knowledge among the agents that they follow a
certain protocol, for example LNS. Can they use this information to prevent
making “bad” calls that lead to an unsuccessful sequence?

If we look at the execution graph given in Figure 6.1, then it seems easy to
fix the protocol. Agents b and c should wait and not make the first call. Agent b
should not make a call before he has received a call from a. We cannot say this in
our logic as we have no converse modalities to reason over past calls. In this case
however, there is a different way to ensure the same result. We can ensure that b
and c wait before calling by a strengthening of LNS that only allows a first call
from i to j if j does not know the number of i. To determine that a call is not
the first call we need another property: after at least one call happened there is
an agent who knows another agent’s secret.

We can define this new protocol by protocol condition Pij := LNSij ∧ (¬Nji ∨∨
k 6=l Skl). It is important to observe that this new protocol is again symmetric

and epistemic. In particular, agents always know whether (¬Nji∨
∨
k 6=l Skl), even

though each of the disjuncts alone would not be an epistemic protocol condition.
Because of synchronicity, not only the callers but also all other agents know that
there are agents k and l such that k knows the secret of l.

This is an ad-hoc solution specific to this initial gossip graph. Could we also
give a general definition to improve LNS which works on more or even all initial
graphs? The answer to that is: more, yes, but all, no.

We will now discuss different ways to improve protocols by making them
more restrictive. Our goal is to rule out unsuccessful sequences while keeping at
least some successful ones. Doing this can be difficult because we still require
the strengthened protocols to be epistemic and symmetric. Hence we are not
allowed to arbitrarily rule out specific calls using the names of agents, for example.
Whenever a call is removed from the protocol, we also have to remove all calls to
other agents that the caller cannot distinguish: it has to be done uniformly. But
before we discuss specific ideas for strengthening, let us define it.

6.4. Strengthening of Protocols 171

6.4.1. Definition. A protocol P ′ is a syntactic strengthening of a protocol P iff
P ′ab → Pab is valid for all agents a 6= b. A protocol P ′ is a semantic strengthening
of a protocol P iff P ′ ⊆ P .

In the case of a syntactic strengthening, P and P ′ are implicitly required to
be syntactic protocols. Vice versa however, syntactic protocols can be semantic
strengthenings of each other. In fact, we have the following.

6.4.2. Proposition. Every syntactic strengthening is a semantic strengthening.

Proof:
Let P ′ be a syntactic strengthening of a protocol P . Let a gossip graph G be
given. We show by induction on the length of σ that σ ∈ P ′(G) implies σ ∈ P (G).
The base case where σ = ε is trivial.

For the induction step, consider any σ = τ ; ab. As τ ; ab ∈ P ′(G), we also
have τ ∈ P ′(G) and G, τ |= P ′ab. From τ ∈ P ′(G) and the inductive hypothesis,
it follows that τ ∈ P (G). From G, τ |= P ′ab and the validity of P ′ab → Pab
follows G, τ |= Pab. Finally, by Definition 6.3.9, τ ∈ P (G) and G, τ |= Pab imply
τ ; ab ∈ P (G). 2

6.4.3. Lemma. Suppose P is a strengthening of Q. Then KQϕ → KPϕ and
K̂Pϕ→ K̂Qϕ are both valid.

Proof:
This follows immediately from the semantics of knowledge (Definition 6.3.8). 2

Although strengthening is a relation between two protocols P and Q, it is
typically the case for a strengthening Q of P that Q is defined by a restricting
transformation of P , i.e., Q = P♥ for some operation ♥ as defined in the next
sections. We will use ♥ to denote arbitrary strengthenings.

6.4.2 Syntactic Strengthening: Look-Ahead and One-Step

We will now present concrete examples of syntactic strengthening.

6.4.4. Definition. Let P be a protocol. We define four kinds of syntactic
strengthening of P :

hard look-ahead strengthening : P�ab := Pab ∧KP
a [ab]〈P 〉Ex

soft look-ahead strengthening : P �ab := Pab ∧ K̂P
a [ab]〈P 〉Ex

hard one-step strengthening : P�ab := Pab ∧KP
a [ab](Ex ∨

∨
i,j(Nij ∧ Pij))

soft one-step strengthening : P ♦ab := Pab ∧ K̂P
a [ab](Ex ∨

∨
i,j(Nij ∧ Pij))

172 Chapter 6. Dynamic Gossip

The hard look-ahead strengthening allows agents to make a call iff the call is
allowed by the original protocol and moreover they know that making this call
yields a situation where the original protocol can still succeed.

For example, consider LNS�. Informally, its condition is that a is permitted to
call b iff a does not have the secret of b and a knows that after making the call to
b, it is still possible to follow LNS in such a way that all agents become experts.

The soft look-ahead strengthening allows more calls than the hard look-ahead
strengthening because it only demands that a considers it possible that the protocol
can succeed after the call. This can be interpreted as a good faith or lucky draw
assumption that the previous calls between other agents have been made “in a
good way”. Soft look-ahead strengthening allows agents to take a risk.

Both the soft and the hard look-ahead strengthening include a diamond 〈P 〉
with the original protocol, which contains a Kleene star. To evaluate this, we need
to compute the execution tree of P for the initial gossip graph G. In practice this
can make it hard to check the precondition of the new protocol.

The one-step strengthenings, in contrast, only use the protocol condition Pij
in their formalization and not the entire protocol P . This means that they provide
an easier to compute, but less reliable alternative to full look-ahead, namely by
looking only one step ahead. We only demand that agent a knows (or, in the
soft version, considers it possible) that after the call, everyone is an expert or the
protocol can still go on for at least one more step — though it might be that
all continuation sequences will eventually be unsuccessful and thus this next call
would already have been excluded by both look-ahead strengthenings.

An obvious question now is, can these or other strengthenings get us from weak
to strong success? Do these strengthenings only remove unsuccessful sequences,
or will they also remove successful branches, and maybe even return an empty
and unsuccessful protocol? In our next example everything still works fine.

6.4.5. Example. Consider Example 6.3.11 again. It is easy to see that both the
soft and the hard look-ahead strengthening rule out the two unsuccessful branches
in this execution tree and keep the successful ones.

Protocol LNS� only preserves alternatives that are all successful and LNS�

only eliminates alternatives if they are all unsuccessful. In the execution tree in
Figure 6.1, the effect is the same for LNS� and LNS�, because at any state the
agents always know which calls lead to successful branches.

This is typical for gossip scenarios with three agents: if a call happened, the
agent not involved in the call might be unsure about the direction of the call, but
it knows who the callers are.

The one-step strengthenings are not enough to rule out the unsuccessful
sequences. This is because the unsuccessful sequences are of length 2 but the
one-step strengthenings can only remove the last call in a sequence. In this case,
the protocols LNS� and LNS♦ both rule out the call ab after bc or cb happened.

6.4. Strengthening of Protocols 173

6.4.3 Semantic Strengthening:
Uniform Backward Defoliation

We now present two semantic strengthenings. They are inspired by the notion of
backward induction, a well-known solution concept in decision theory and game
theory [OR94]. We will discuss this at greater length when defining the arbitrary
iteration of these semantic strengthenings and in Section 6.7.

In backward induction, given a game tree or search tree, a parent node is
called bad if all its children are loosing or bad nodes. Similarly, in trees with
information sets of indistinguishable nodes, a parent node can be called bad if all
its children are bad and if also all children from indistinguishable nodes are bad.
Similar notions were considered in [BSZ09; Per14]. Again, we have a soft and a
hard version.

We define uniform backward defoliation on the execution trees of dynamic
gossip as follows to obtain two semantic strengthenings. We choose the name
“defoliation” here because a single application of this strengthening only removes
leaves and not whole branches of the execution tree. The iterated versions we
present later are then called uniform backward induction.

6.4.6. Definition. Suppose we have a protocol P and an initial gossip graph G.
We define the Hard Uniform Backward Defoliation (HUBD) and Soft Uniform
Backward Defoliation (SUBD) of P as follows.

PHUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∀(G, τ ′) ∼Pa (G, τ)

such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}
P SUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∃(G, τ ′) ∼Pa (G, τ)

such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}

In this definition, ∀(G, τ ′) ∼Pa (G, τ) implicitly stands for “for all τ ′ ∈ P (G)
such that (G, τ ′) ∼Pa (G, τ)”, because for (G, τ ′) to be in ∼Pa relation to another
gossip state, τ ′ must be P -permitted; similarly for the existential quantification.

The HUBD strengthening keeps the calls which must lead to a non-terminal
state or a state where everyone is an expert and SUBD keeps the calls which might
do so. Equivalently, we can say that HUBD removes calls which may go wrong
and SUBD removes those calls which will go wrong — where going wrong means
leading to a terminal node where not everyone is an expert.

We can now prove that for any gossip protocol Hard Uniform Backward
Defoliation is the same as Hard One-Step Strengthening, in the sense that their
extensions are the same on any gossip graph, and that Soft Uniform Backward
Defoliation is the same as Soft One-Step Strengthening.

6.4.7. Theorem. P� = PHUBD and P ♦ = P SUBD

174 Chapter 6. Dynamic Gossip

Proof:
Note that ε is an element of both sides of both equations. For any non-empty
sequence we have the following chain of equivalences for the hard versions of UBD
and one-step strengthening:

(σ; ab) ∈ P�(G)

⇐⇒ G, σ � P�ab

⇐⇒ G, σ � Pab ∧KP
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)
⇐⇒ (σ; ab) ∈ P (G) and (G, σ) � KP

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

⇐⇒ (σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) �
∨
i,j(Nij ∧ Pij) ∨ Ex

⇐⇒ (σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) � Ex

⇐⇒ (σ; ab) ∈ PHUBD(G)

And we have a similar chain of equivalences for the soft versions:

(σ; ab) ∈ P ♦(G)

⇐⇒ G, σ � P ♦ab

⇐⇒ G, σ � Pab ∧ K̂P
a [ab]

(∨
i,j(Nij ∧ Pij) ∨ Ex

)
⇐⇒ (σ; ab) ∈ P (G) and (G, σ) � K̂P

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

⇐⇒ (σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) �
∨
i,j(Nij ∧ Pij) ∨ Ex

⇐⇒ (σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) � Ex

⇐⇒ (σ; ab) ∈ P SUBD(G) 2

Similarly to backward induction in perfect information games, uniform back-
ward defoliation is rational. If you know that a move (call) that you could make
is losing (unsuccessful) then it is clearly irrational to make it. So a rational agent
should rule out those moves. This yields SUBD. The strengthening HUBD is even
stricter: If you consider it possible that the move/call might be losing, then do
not make it.

6.4.4 Iterated Strengthenings

The syntactic strengthenings we looked at are all defined in terms of the original
protocol. In P�ab := Pab ∧KP

a [ab]〈P 〉Ex the given P occurs in three places. Firstly,
in the protocol condition Pab requiring that the call is permitted according to the
old protocol P — this ensures that the new protocol is a strengthening of the
original P . Secondly, as a parameter to the knowledge operator, in KP

a , which
means that agent a knows that everyone followed P (and that this is common

6.4. Strengthening of Protocols 175

knowledge). Thirdly, in the part 〈P 〉 assuming that after the considered call
everyone will continue to follow protocol P in the future.

Hence we have strengthened the protocol that the agents use and thereby
their behavior, but not their assumptions about what protocol other agents follow.
For example, when P = LNS, all agents now act according to LNS�, on the
assumption that all other agents act according to LNS. This does not mean that
agents cannot determine what they know if LNS� were common knowledge: each
agent a can check that knowledge using KLNS�

a ϕ. But this KLNS�

a modality is not
part of the protocol LNS�. The agents do not use this knowledge to determine
whether to make calls.

But why should our agents stop their reasoning here? It is natural to iterate
strengthenings and determine whether we can further improve our protocols by
also updating the knowledge of the agents.

For example, consider repeated hard one-step strengthening:

(P�)
�
ab = P�ab ∧ K̂P�

a [ab](Ex ∨
∨
i,j

(Nij ∧ P�ij))

In this section we investigate iterations and combinations of protocol strength-
enings. In particular we investigate various combinations of hard and soft one-step
and look-ahead strengthening, in order to determine how they relate to each other.

6.4.8. Definition. Let P be a syntactic protocol. For any of the four syntactic
strengthenings ♥ ∈ {�,�,�,♦}, we define its iteration by adjusting the protocol
condition as follows, which implies P♥1 = P♥:

P♥0
ab := Pab
P
♥(k+1)
ab := (P♥k)

♥
ab

Let now P be a semantic protocol, and let ♥ ∈ {HUBD, SUBD}. We define their
iteration, for all gossip graphs G, by:

P♥0(G) := P (G)

P♥(k+1)(G) := (P♥k)
♥

(G)

It is easy to check that Theorem 6.4.7 generalizes to the iterated strengthenings
as follows.

6.4.9. Corollary. For any k ∈ N, we have:

P�k = PHUBDk and P ♦k = P SUBDk

Proof:
By induction using Theorem 6.4.7. 2

176 Chapter 6. Dynamic Gossip

6.4.10. Example. We reconsider Examples 6.3.11 and 6.4.5, and we recall that
LNS� and LNS♦ both rule out the call ab after bc or cb happened. To eliminate
bc and cb as the first call, we have to iterate one-step strengthening: (LNS�)

� is
strongly successful on this graph, as well as (LNS♦)

♦, (LNS�)
♦ and (LNS♦)

�.

6.4.11. Example. We consider the “N”-shaped gossip graph shown in Figure 6.2.

1 0

3 2

Figure 6.2: The “N” Graph.

There are 21 LNS sequences for this graph, of which 4 are successful (X) and
17 are unsuccessful (×):

20; 30; 01; 31 ×
20; 30; 31; 01 ×
20; 31; 10; 30 ×
20; 31; 30; 10 ×
30; 01; 20; 31 ×
30; 01; 31; 20 ×
30; 20; 01; 21; 31 X

30; 20; 01; 31; 21 X
30; 20; 21; 01; 31 X
30; 20; 21; 31; 01 X
30; 20; 31; 01; 21 ×
30; 20; 31; 21; 01 ×
30; 31; 01; 20 ×
30; 31; 20; 01; 21 ×

30; 31; 20; 21; 01 ×
31; 10; 20; 30 ×
31; 10; 30; 20 ×
31; 20; 10; 30 ×
31; 20; 30; 10 ×
31; 30; 10; 20 ×
31; 30; 20; 10 ×

We can show the call sequences in a more compact way if we only distinguish
call sequences up to the moment when it is decided whether LNS will succeed.
Formally, consider the set of minimal σ ∈ LNS(G) such that for all two terminal
LNS-sequences τ, τ ′ ∈ LNS(G) extending σ, we have G, τ � Ex iff G, τ ′ � Ex . We
will use this shortening convention throughout the chapter.

20 ×
30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 31 ×
31 ×

It is pretty obvious what the agents should do here: Agent 2 should not make
the first call but let 3 call 0 first. The soft look-ahead strengthening works well
on this graph: It disallows all unsuccessful sequences and keeps all successful ones.

6.4. Strengthening of Protocols 177

For example, after call 30, agent 2 considers it possible that call 30 happened and
in this case the call 20 can lead to success. Hence the protocol condition of LNS�

is fulfilled. The strengthening LNS� is strongly successful on this graph.
But note that 2 does not know that 20 is safe, because the first call could

have been 31 as well and for agent 2 this would be indistinguishable from 30.
Therefore the hard look-ahead strengthening is too restrictive here. In fact, the
only call which LNS� still allows is 30 at the beginning. After that no more calls
are allowed by the hard look-ahead strengthening.

A full list showing which call sequences are allowed by which strengthenings
of LNS for this example is provided in Table 6.4. “Full” means that we continue
iterating the strengthening until P♥k(G) = P♥(k + 1)(G) for the given graph G.
Such fixpoints of protocol strengthening will be formally introduced in the next
section.

The hard look-ahead strengthening restricts the set of allowed calls based on a
full analysis of the whole execution tree. One might thus expect, that applying
hard look-ahead more than once would not make a difference. However, we have
the following negative results on iterating hard look-ahead strengthening and the
combination of hard look-ahead and hard one-step strengthening.

6.4.12. Fact. Hard look-ahead strengthening is not idempotent and does not
always yield a fixpoint of hard one-step strengthening:

(i) There is a protocol P for which P� 6= (P�)
�.

(ii) There is a protocol P for which (P�)
� 6= P�.

Proof:

(i) Let G be the “N” graph from Example 6.4.11 and consider the protocol
P = LNS. Applying hard look-ahead strengthening once only allows the
first call 30 and nothing after that call. If we now apply hard look-ahead
strengthening again we get the empty set: P�(G) 6= (P�)

�
(G) = ∅. See

also Table 6.4.

(ii) The “diamond” graph that we will present in Example 6.4.6 can serve as an
example here. We can show that the inequality holds for this graph by ex-
haustive search, using our Haskell implementation described in Section 6.6.1.
Plain LNS has 48 successful and 44 unsuccessful sequences on this graph.
Of these, LNS� still includes 8 successful and 8 unsuccessful sequences. If
we now apply hard one-step strengthening, we get (LNS�)

� where 4 of the
unsuccessful sequences are removed. See also Table 6.3. 2

178 Chapter 6. Dynamic Gossip

Similarly, we can ask whether two soft strengthenings are related to each other,
analogous to Fact 6.4.12. We do not know whether there is a protocol P for which
(P �)

♦ 6= P � and leave this as an open question.

Another interesting property that strengthenings can have is monotonicity.
Intuitively, a strengthening is monotone iff it preserves the inclusion relation
between extensions of protocols. This property is useful to study the fixpoint
behavior of strengthenings. We will now define monotonicity formally and then
obtain some results for it.

6.4.13. Definition. A strengthening (·)♥ is called monotone iff for all protocols
Q and P such that Q ⊆ P , we also have Q♥ ⊆ P♥.

6.4.14. Proposition. Soft one-step strengthening is monotone. More formally,
let P be a protocol and Q be an arbitrary strengthening of P , i.e. Q ⊆ P . Then
we also have Q♦ ⊆ P ♦.

Proof:
As Q is a strengthening of P , the formula Qab → Pab is valid. We want to show
that Q♦ab → P ♦ab. Suppose that G, σ � Q♦ab, i.e.:

G, σ � Qab and G, σ � K̂Q
a [ab](Ex ∨

∨
i,j

(Nij ∧Qij))

From the first part and the validity of Qab → Pab, we get G, σ � Pab. The second
part and the validity of Qij → Pij give us G, σ � K̂Q

a [ab](Ex ∨
∨
i,j(Nij ∧ Pij)).

From that and Lemma 6.4.3 it follows that G, σ � K̂P
a [ab](Ex ∨

∨
i,j(Nij ∧ Pij)).

Combining these, it follows by definition of soft one-step strengthening that we
have G, σ � P ♦ab. 2

6.4.15. Proposition. Both hard strengthenings are not monotone: Let P and
Q be protocols. If Q ⊆ P , then (i) Q� ⊆ P� may not hold, and also (ii) Q� ⊆ P�

may not hold.

Proof:
(i) Hard one-step strengthening is not monotone:

Consider the “spaceship” graph below with four agents 0, 1, 2 and 3 where 0
and 3 know 1’s number, 1 knows 2’s number, and 2 knows no numbers.

0

1

3

2

6.4. Strengthening of Protocols 179

On this graph the LNS sequences up to decision point are:

01; 02 ×
01; 12 ×
01; 31; 02 ×

01; 31; 12 X
01; 31; 32 X
12 ×

31; 01; 02 X
31; 01; 12 X
31; 01; 32 ×

31; 12 ×
31; 32 ×

Note that

LNS�(G) =


(01; 31; 12; 02; 32), (01; 31; 12; 32; 02), (01; 31; 32; 02; 12),
(01; 31; 32; 12; 02), (31; 01; 02; 12; 32), (31; 01; 02; 32; 12),
(31; 01; 12; 02; 32), (31; 01; 12; 32; 02)


is strongly successful and therefore hard one-step strengthening does not change
it — we have (LNS�)

�
(G) = LNS�(G). On the other hand, consider

LNS�(G) =


(01; 02; 12), (01; 12; 02), (01; 31; 02; 12), (01; 31; 02; 32),
(01; 31; 12; 32; 02), (01; 31; 32; 12; 02), (12; 01), (12; 31),
(31; 01; 02; 12; 32), (31; 01; 12; 02; 32), (31; 01; 32; 02),
(31; 01; 32; 12), (31; 12; 32), (31; 32; 12)


and note that this is not a superset of (LNS�)

�
(G) = LNS�(G), because we have

(01; 31; 12; 02; 32) ∈ (LNS�)
�

(G) = LNS�(G) but (01; 31; 12; 02; 32) /∈ LNS�(G).
Together, we have LNS�(G) ⊆ LNS(G) but (LNS�)

�
(G) 6⊆ LNS�(G).

Hence Q = LNS� ⊆ LNS = P is a counterexample and (·)� is not monotone.

(ii) Hard look-ahead strengthening is not monotone:
For hard look-ahead strengthening we can use the same example. Because

LNS� is strongly successful, hard look-ahead strengthening does not change it:
(LNS�)

�
(G) = LNS�(G). Moreover, we have LNS�(G) = {(01), (31)} which is

not a superset of (LNS�)
�

(G) = LNS�(G).
Together we have LNS�(G) ⊆ LNS(G) but (LNS�)

�
(G) 6⊆ LNS�(G), hence

hard look-ahead strengthening is not monotone either. 2

This result is relevant for our pursuit to pin down what it means to commonly
know a protocol. It shows that hard look-ahead strengthening is not rational, as
follows.

We consider again the “spaceship” graph in the proof of Proposition 6.4.15.
Let us, using the language of game theory, define a losing move as a call after
which no successful continuation is possible. The initial call could be 12, but that
is a losing move. All successful, now also called winning, LNS sequences on this
graph start with 01; 31 or 31; 01.

Let us place ourselves in the position of agent 3 after one call has been made.
As far as 3 can tell (if the only background common knowledge is that everyone
follows LNS), the first call may have been 12, at which point no agent can make a

180 Chapter 6. Dynamic Gossip

winning move (no continuation is successful). In particular, the second call 31 is
then losing. So 3 will not call 1, because it is possible that the call 31 is losing,
and we are following hard look-ahead.

Symmetrically, the same reasoning is made by agent 0: even if the first call is
31, it could also have been 12, after which any continuation is unsuccessful, and
therefore 0 will not call 1, which again seems irrational.

So nobody will make a call. The extension of LNS� on this graph is empty.
But as all agents know that 12 is losing, agent 1 knows this in particular, and

as agent 1 is rational herself, she would therefore not have made that move. And
agents 3 and 0 can draw that conclusion too. It therefore seems after all irrational
for 3 not to call 1, or for 0 not to call 1.

This shows that hard look-ahead strengthening is not rational. In particular,
it ignores the rationality of other agents.

6.4.5 Limits and Fixpoints of Strengthenings

Given the iteration of strengthenings we discussed in the previous section, it
is natural to consider limits and fixpoints of strengthening procedures. In this
subsection we discuss them and give some small results. A detailed investigation
is deferred to future research.

Note that the protocol conditions of all four basic syntactic strengthenings are
conjunctions with the original protocol condition as a conjunct. Therefore, all
these four strengthenings are decreasing : For all ♥ ∈ {�,�,�,♦} and all protocols
P , we have P♥ ⊆ P . The same holds, by definition, for semantic strengthenings.
This implies that if, on any gossip graph, we start with a protocol that only allows
finite call sequences, such as LNS, then applying strengthening repeatedly will
eventually lead to a fixpoint. This fixpoint might be the empty set, or a non-empty
set and thereby provide a new protocol.

For other protocols that allow infinite call sequences, such as ANY, we do not
know if this procedure leads to a unique fixpoint and whether fixpoints are always
reached. We therefore distinguish fixpoints from limits.

6.4.16. Definition. Consider any strengthening (·)♥. The ♥-limit of a given
protocol P is the semantic protocol P♥∗ defined as

⋂
k P
♥k. A given protocol P

is a fixpoint of a strengthening (·)♥ iff P = P♥.

Note that limit protocols P♥∗ are not in the logical language, unlike their con-
stituents P♥k. We now define P�∗ as Hard Uniform Backward Induction, and P ♦∗
as Soft Uniform Backward Induction. Again using induction on Theorem 6.4.7, it
follows that Uniform Backward Induction is the same as arbitrarily often iterated
Uniform Backward Defoliation.

6.4.17. Corollary.

P�∗ = PHUBD∗ and P ♦∗ = P SUBD∗.

6.4. Strengthening of Protocols 181

6.4.18. Example. Consider P = LNS. The number of LNS calls between n
agents is bounded by

(
n
2

)
= n(n − 1)/2. The limit LNS♥∗ is therefore reached

after a finite number of iterations, and expressible in the gossip protocol language:
LNS♥n(n−1)/2 = LNS♥∗.

As a further observation, the look-ahead strengthenings are not always the
limits of one-step strengthenings. In other words, we do not have for all G that
P�∗(G) = P�(G) or that P ♦∗(G) = P �(G). Counterexamples are the “N” graph
from Example 6.4.11 and the extension of various strengthenings relating to the
example in the upcoming Section 6.4.6, as shown in Table 6.3.

However, we know by the Knaster-Tarski theorem that on any gossip graph
soft one-step strengthening (·)♦ has a unique greatest fixpoint, because (·)♦ is
monotone and the lattice we are working in is the powerset of the set of all call
sequences and thereby complete. We leave a detailed analysis of infinite protocols
with such algebraic methods for another occasion.

6.4.6 Detailed Example: the Diamond Gossip Graph

Consider the initial “diamond” gossip graph in Figure 6.3.

0

1

2 3

Figure 6.3: The “diamond” example for four agents.

There are 92 different terminating sequences of LNS calls for this initial graph
of which 48 are successful and 44 are unsuccessful. Table 6.1 gives an overview of
all sequences. For brevity we only list them in the compact way, up to the call
after which success has been decided.

20; 01 ×
20; 21 ×
20; 30; 01 X
20; 30; 21 ×
20; 30; 31 X
20; 31 X

21; 10 ×
21; 20 ×
21; 30 X
21; 31; 10 X
21; 31; 20 ×
21; 31; 30 X

30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 21 X
30; 31 ×

31; 10 ×
31; 20 X
31; 21; 10 X
31; 21; 20 X
31; 21; 30 ×
31; 30 ×

Table 6.1: All LNS sequences for the diamond example up to decision moments.

182 Chapter 6. Dynamic Gossip

Table 6.2 shows how many sequences are still allowed by the different strength-
enings. Both one-step strengthenings and the soft look-ahead strengthening
rule out some, but not all, unsuccessful sequences while keeping all successful
sequences. The hard look-ahead strengthening however, also removes some suc-
cessful sequences while still keeping the same number of unsuccessful sequences as
the soft strengthening. Interestingly, those are not the same sequences, which is
not visible in Table 6.2.

Protocol # successful # unsuccessful
LNS 48 44
LNS� 8 8
LNS�2 0 4
LNS�3 0 0
LNS� 48 8
LNS�2 48 8
LNS�3 48 8
LNS� 24 36
LNS�2 8 16
LNS�3 8 4
LNS�4 0 4
LNS�5 0 0
LNS♦ 48 36
LNS♦2 48 32
LNS♦3 48 32
(LNS♦)

�3 16 0

((LNS♦)
�

)
�

16 0

Table 6.2: Statistics for the diamond example.

Only looking at these statistics can be misleading: If a strengthening does
not change the number of successful and unsuccessful sequences, it might still
have shortened some sequences. Table 6.3 lists individual sequences, showing
for example that LNS♦2 and LNS♦3 not only both have 48 successful and 32
unsuccessful sequences on the diamond graph, but that we also have an extensional
identity between them. This is therefore a fixpoint of (·)♦ on that graph.

Recall that we can identify the one-step strengthening with uniform backward
defoliation and thereby the limit of one-step strengthening with uniform backward
induction — see Theorem 6.4.7 and Corollary 6.4.17. Table 6.2 serves well to show
the difference between the look-ahead strengthenings and the one-step/defoliation
strengthenings. Although on this “diamond” graph, the hard strengthenings LNS�k

and LNS�k have the same empty extension for all k ≥ 4, the soft strengthenings
LNS�k and LNS♦k have different fixpoints. Both are reached at k = 2.

6.4. Strengthening of Protocols 183

We now discuss some strengthenings that are strongly successful on this graph
(only successfully terminating call sequences remain).

First, consider the protocol (LNS♦)
�3. Its extension is as follows, see also

Tables 6.2 and 6.3.

20; 30; 01; 31; 21
20; 30; 31; 01; 21
20; 31; 10; 30; 21
20; 31; 30; 10; 21

21; 30; 01; 31; 20
21; 30; 31; 01; 20
21; 31; 10; 30; 20
21; 31; 30; 10; 20

30; 20; 01; 21; 31
30; 20; 21; 01; 31
30; 21; 10; 20; 31
30; 21; 20; 10; 31

31; 20; 01; 21; 30
31; 20; 21; 01; 30
31; 21; 10; 20; 30
31; 21; 20; 10; 30

Unlike the next strongly successful strengthening its extension has no short
sequences with only four calls. Instead, there are redundant second-to-last calls,
for example 10 in 20; 31; 30; 10; 21.

Second, we present another protocol that is strongly successful on this graph,
that preserves more sequences than the previous protocol (LNS♦)

�3, but that does
not correspond to iteration of the soft or hard one-step protocols discussed up to
now. We first describe it as a semantic protocol, liberally referring to call histories
in our description (which cannot be done in our logical language) and only then
give a formalization using the syntax of our protocol logic. Consider the following
protocol:

(1) The left and right agents 2 and 3 both make one call, in any order
(say, first 2, then 3).

(2) If they called the same agent (say, 0), then that agent calls the
remaining agent (in this case 1), and then 2 and 3 call 1, in the same
order as they made the first two calls.

(3) If they called different agents (say 2 called 0 and 3 called 1), then
they both call the other one, in the opposite order as the first two calls
(so in this case 3 calls 0 and then 2 calls 1).

We need synchronicity to make sure that step 1 is finished before step 2 or 3
is begun.

Moreover, note that only one of 2 and 3, namely the one making the second
call, will learn whether (2) or (3) should be done. The protocol is still epistemic,
because the agent making the first call simply does the same in both (2) and
(3): wait one round and then if they called 0 first, call 1, or vice versa. This can
also be seen in the call sequences of this protocol (with the number behind the
sequence to indicate which part of the protocol is used):

20; 30; 01; 21; 31 (2)
21; 31; 10; 20; 30 (2)
20; 31; 30; 21 (3)
21; 30; 31; 20 (3)

30; 20; 01; 31; 21 (2)
31; 21; 10; 30; 20 (2)
30; 21; 20; 31 (3)
31; 20; 21; 30 (3)

184 Chapter 6. Dynamic Gossip

Finally, we can see that all of these sequences are also LNS sequences, as shown
in Table 6.1. Hence this is indeed a semantic strengthening of LNS.

This protocol can also be defined syntactically as follows, though it is rather
ugly and we cannot guarantee the exact order of calls.

We can define “no calls have been made” quite easily: ϕ0 :=
∧
i

∧
j 6=i ¬Sij.

Defining “one call has been made” is a bit harder, but we can do it because
after the first call there are two agents that know each other’s secrets, while the
remaining agents know only their own: ϕ1 :=

∨
i,j(Sij ∧ Sji ∧

∧
k 6∈{i,j}

∧
l 6=k ¬Skl).

So the calls allowed by clause (1) are: if you only know your own secret and
ϕ0 or ϕ1 holds, then you may make a call (if you know the number, of course.)
Formally, this means that we add a disjunct

∧
k 6=i ¬Sik ∧ (ϕ0 ∨ ϕ1) to Pij.

Now, consider the calls that have to be made for clause (2): in our language,
we cannot distinguish between 0 (the callee) and 3 (the last person to call 0). But
that does not matter, since both are supposed to call 1. We define that if you
know three secrets, you are allowed to call the final person who’s secret you do
not know. This gives us a disjunct

∨
k,l 6∈{i,j} Sikl.

This leaves us with agent 2, which first called 0. This agent 2 must make a
call to agent 1 (the only agent that 2 can call) after 0 or 3 has made their call.
So the call must be made after at least three other calls have been placed. We
can formulate a condition ϕ3 which holds if at least three calls have been made,
but that formula is huge. So it is more convenient to take a shortcut: you are
allowed to call someone if you consider it possible that this person is an expert.
This yields a disjunct K̂iEx j.

Now, consider clause (3). Here agents 3 and 2 need to call 0 and 1, respectively.
First, consider the call by 3. This needs to take place if the two agents called
different agents. Agent 3 will know that this is the case. So we can create a
disjunct that says that you are allowed to make a call if you know that all four
agents know two secrets:

∨
i 6=j, k 6=l

 Siij ∧ Sjij ∧ Skkl ∧ Slkl
∧ ¬Sik ∧ ¬Sjk ∧ ¬Sil ∧ ¬Sjl
∧ ¬Ski ∧ ¬Sli ∧ ¬Skj ∧ ¬Slj


Note that not only agent 3 is allowed to make a call based on this, but also agent
1. That is fine, because the extra call does not prevent success.

Finally, agent 2 needs to make a call. That happens through the same disjunct
that we discussed in clause (2), namely K̂iEx j.

All in all, this gives us the protocol that we need. Admittedly, the manual
verification of this protocol is tedious. We therefore also checked that it is strongly
successful using the implementation that will describe later in Section 6.6.1.

6.5. Impossibility Result on Strengthening LNS 185

6.5 Impossibility Result on Strengthening LNS
In this section we will show that there are graphs where (i) LNS is weakly successful
and (ii) no epistemic symmetric strengthening of LNS is strongly successful. Recall
that we assume that the system is synchronous and that the initial gossip graph
is common knowledge. Without such assumptions it is even easier to obtain such
an impossibility result, a matter that we will address in Section 6.7.

6.5.1. Theorem. There is no epistemic symmetric protocol that is a strongly
successful strengthening of LNS on all graphs.

Proof:
Consider the following “candy” graph G:

0

1 2 3 4

5

LNS is weakly successful on G, but there is no epistemic symmetric protocol P
that is a strengthening of LNS and that is strongly successful on G.

In [Dit+15], it was shown that LNS is weakly successful on any graph that is
neither a “bush” nor a “double bush”. Since this graph G is neither a bush nor a
double bush, LNS is weakly successful on it. For example, the sequence

02; 12; 53; 43; 13; 03; 23; 52; 42

is a successful LNS sequence which makes everyone an expert. LNS is not strongly
successful on this graph, however. For example,

02; 12; 53; 43; 13; 03; 52; 42

is an unsuccessful LNS sequence, because 5 does neither learn the number nor the
secret of 4 and no further calls are allowed.

Now, suppose towards a contradiction that P is an epistemic symmetric
strengthening of LNS, and that P is strongly successful on G. Before we look at
specific calls made by P , we consider a general fact. Recall that knowing a pure
number means knowing the number of an agent without knowing their secret. For
any gossip graph and any agent a, if no one has a’s pure number, then no call
sequence will result in anyone learning a’s pure number. After all, in order to
learn a’s number, one would have to call or be called by someone who already
knows that number, but in such a call one would also learn a’s secret.

186 Chapter 6. Dynamic Gossip

In LNS, you are only allowed to call an agent if you have the number but not
the secret of that agent, i.e., if you have their pure number. It follows that if, in a
given gossip graph, no one has a’s pure number, then no LNS sequence on that
graph will contain any calls where a is the receiver.

In the gossip graph G under consideration, agents 0, 1, 4 and 5 are in the
situation that no one else knows their number. So in particular, no one knows the
pure number of any of these agents. It follows that 2 and 3 are the only possible
targets for LNS calls in this graph.

Now, let us consider the first call according to P . This call must target 2 or 3.
The calls 12 and 43 are losing moves, since they would result in 1 (resp. 4) being
unable to make calls or be called, while still not being an expert. This means that
either 0 or 5 must make the first call. By symmetry, we can assume without loss
of generality that the first call is 02. This yields the following situation.

0

1 2 3 4

5

Now, let us look at the next call.

• The sequence 02; 43 is losing, because afterwards 4 cannot become an expert.

• Because of the symmetry of P , the initial call could have been 03 instead
of 02. The sequence 03; 12 is losing, since 1 cannot become an expert, so
03; 12 is not allowed by the strongly successful protocol P . Moreover, agent
1 cannot tell the difference between 03 and 02, so from the fact that 03; 12 is
disallowed and that P is epistemic, it follows that 02; 12 is also disallowed.

• The sequence 02; 03 is losing, since 0 will not be able to make any call
afterwards. As 0 can never be called, this implies that 0 will never become
an expert.

• Consider then the sequence 02; 23. This results in the following diagram.

0

1 2 3 4

5

6.5. Impossibility Result on Strengthening LNS 187

This graph has the following property: it is impossible (in any LNS sequence)
for any agent to get to learn a new pure number. That is, nobody can learn
a new number without also getting to know the secret of that agent: agents
1, 0, and 4 each know only one pure number, so they cannot teach anyone
a new number, and agent 5 knows two pure numbers (2 and 3), but those
agents already know each other’s secrets.

As a result, any call that will become allowed by LNS in the future is already
allowed now. There are 5 such calls that are currently allowed, namely
12, 52, 53, 03 and 43. Furthermore, of those calls 52 and 53 are mutually
exclusive, since calling 2 will teach 5 the secret of 3, and calling 3 will teach
5 the secret of 2.

So any continuation of 02; 23 allowed by LNS can only contain (in any order)
12, 03, 43 and either 52 or 53. Since P is a strengthening of LNS, the same
holds for P . But using only those calls, there is no way to teach 3 the secret
of 1: secret 1 can reach agent 2 using the call 12, but in order for the secret
to travel any further we need the call 52. After that call only 03 and 43
are still allowed (in particular, 53 is ruled out), so the knowledge of secret 1
remains limited to agents 1, 2 and 5.

Since 02;13 cannot be extended to a successful LNS sequence, 02;13 must
be disallowed.

• Consider the call sequence 02; 52. This gives the following diagram.

0

1 2 3 4

5

Note that in this situation, it is impossible for agents 3 and 4 to learn
any new number without also learning the secrets corresponding to those
numbers: there is no agent that knows the number of agent 3 and that also
knows another pure number, and this will remain the case whatever other
calls happen.

This means that agent 3 cannot make any calls, and that agent 4 can make
exactly one call, to agent 3.

Suppose now that 02; 52 is extended to a successful LNS sequence. This
sequence has to contain the call 43 at some point. This will be the only call

188 Chapter 6. Dynamic Gossip

by agent 4, so in order for the sequence to be successful, agent 3 already has
to know secret 1 by the time 43 takes place.

In particular, this means that the call 12 has already happened, and that
either agent 1 or agent 2 has then called agent 3 to transmit this secret.
Whichever agent among 1 and 2 makes this call, afterwards they are unable
to make any more calls. Furthermore, this takes place before the call 43,
so whatever agent x ∈ {1, 2} informs 3 of secret 1 does not learn secret 4.
Since this agent x can neither make another call nor be called, it follows
that x does not become an expert.

So 02; 52 is not allowed by P which we assumed to be strongly successful.

• Finally, consider the call sequence 02; 53. By symmetry, 03 could have
been the first call as opposed to 02. Furthermore, the same reasoning that
showed 02;52 to be unsuccessful above can, with an appropriate permutation
of agents, be used to show that 03;53 is unsuccessful. Agent 5 cannot
distinguish between the first call 02 and 03 before making the call 53, so if
03; 53 is disallowed then so is 02; 53 because P is epistemic.

Remember that 02 is, without loss of generality, the only initial call that can
lead to success. We have shown that all of the LNS-permitted calls following the
initial call 02 (namely, the calls 43, 12, 03, 23, 52 and 53) are disallowed by P .
This contradicts P being a strongly successful strengthening of LNS. 2

Given this impossibility result, it is natural to wonder what would happen if
we use the syntactic strengthenings from Definition 6.4.4, or their iterations, on
the “candy” graph G.

All second calls are eliminated by LNS�, because for any two agents a and b
we have G, 02 � ¬KLNS

a [ab]〈LNS〉Ex . By symmetry this also holds for the three
other possible first calls, hence LNS� is unsuccessful on G. However, the first calls
are still allowed according to LNS�.

There are 9468 LNS-sequences on this graph of which 840 are successful. With
the implementation discussed Section 6.6.1, we found out that LNS�, the soft
look-ahead strengthening of LNS, is weakly successful on this graph and allows
840 successful and 112 unsuccessful sequences.

6.6 Model Checking for Dynamic Gossip
Analyzing examples of gossip graphs and execution trees by hand is tedious. In
this section we will explore different ways to automate the analysis of gossip
graphs, calls and protocols. We start with an implementation of explicit state
model checking. Then we discuss how to represent gossip in standard DEL and
give a new symbolic representation using our framework from Chapters 2 and 3.

6.6. Model Checking for Dynamic Gossip 189

6.6.1 An Explicit Implementation

To help us find and check all the examples in the previous sections we wrote an
explicit model checker. Like SMCDEL, it is written in Haskell. The sources can
be found at https://github.com/m4lvin/gossip.

Our program can show and randomly generate gossip graphs, execute the
protocols we discussed and draw the resulting execution trees with epistemic
edges. The program also includes an epistemic model checker for the formal
language we introduced, similar to DEMO-S5, but tailor-made for dynamic
gossip. Another similar implementation, though only for static gossip, is the
EGP tool from [Att+15] and [Att15]. It was only recently made public at
https://github.com/mdk333/EGPTool and we leave a comparison between this
tool and our implementations as future work.

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

Figure 6.4: dispTreeWith [2] 2 1 lns (tree lns (nExample,[])).

Figure 6.4 is an example output of the implementation, showing the execution
tree for Example 6.4.11 up to two calls, together with the epistemic relations for
agent 2, here called c. Note that we use a more compact way to denote gossip
graphs: lower case stands for a pure number and capital letters for knowing the
number and secret.

We observe that after da and db, agent c considers two alternatives, but this
indistinguishability disappears when c makes the second call. This is because c
will either learn the secret of a or the secret of b and thereby learn with whom of
these c talked before. This shows that there is no “No Learning” axiom in gossip,
because agents do learn something about the past when they make calls. Similarly,
“No Miracles” is not valid in gossip either.

https://github.com/m4lvin/gossip
https://github.com/mdk333/EGPTool

190 Chapter 6. Dynamic Gossip

The implementation also includes an automated test module, to check all
examples we used in the previous sections. Similar to the tests for SMCDEL
described in Section 3.10, it is based on QuickCheck and Hspec.

Our implementation can run different protocols on a given graph and output
a LATEX table showing and comparing the extension of those protocols. Tables 6.4
and 6.3 have been generated in this way. They provide details how various
strengthenings behave on the gossip graphs from Example 6.4.11 and 6.4.6.

LNS ·� (·�)� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 (·♦)�3

ε ×
01 ×
01;21 × × × ×
01;21;30 ×
01;21;31 ×
01;30 ×
01;30;21 × × × ×
01;31 ×
01;31;21 × × × ×
21 ×
21;01 × × × ×
21;01;30 ×
21;01;31 ×
21;30 × ×
21;30;01 × ×
21;30;01;31 ×
21;30;31 × ×
21;30;31;01 ×
21;31 ×
21;31;01 × × × ×
30 × ×
30;01 × ×
30;01;21;31 X X X X X
30;01;31;21 X X X X X X X
30;21;01 ×
30;21;01;31 × × × × ×
30;21;31 ×
30;21;31;01 × × × × ×
30;31 × ×
30;31;01;21 X X X X X X X
30;31;21;01 X X X X X
31;01;21;30 X X X X X
31;01;30;21 X X X X X X
31;10;21;30 X X X X X
31;10;30;21 X X X X X X X X X X X
31;21;01;30 X X X X X
31;21;30 X X X X X X
31;30;10;21 X X X X X X X X X X X
31;30;21 X X X X X

Table 6.3: Diamond Example 6.4.6: Extensions of strengthenings, after 20.

6.6. Model Checking for Dynamic Gossip 191

LNS ·� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 ·♦4 ·♦5

ε ×
20 × ×
20;30 × ×
20;30;01 × ×
20;30;01;31 ×
20;30;31 × ×
20;30;31;01 ×
20;31 × ×
20;31;10 × ×
20;31;10;30 ×
20;31;30 × ×
20;31;30;10 ×
30 × ×
30;01 ×
30;01;20 ×
30;01;20;31 × × × × × ×
30;01;31 × × × × × ×
30;01;31;20 ×
30;20;01 ×
30;20;01;21;31 X X X X X X X X
30;20;01;31;21 X X X X X X X
30;20;21 ×
30;20;21;01;31 X X X X X X X X
30;20;21;31;01 X X X X X X X
30;20;31;01 ×
30;20;31;01;21 × × × × × ×
30;20;31;21 ×
30;20;31;21;01 × × × × × ×
30;31 ×
30;31;01 × ×
30;31;01;20 ×
30;31;20 × × × ×
30;31;20;01 × ×
30;31;20;01;21 ×
30;31;20;21 × ×
30;31;20;21;01 ×
31 ×
31;10 ×
31;10;20 × × × × × ×
31;10;20;30 ×
31;10;30 × ×
31;10;30;20 ×
31;20 × × × × ×
31;20;10 × ×
31;20;10;30 ×
31;20;30 × ×
31;20;30;10 ×
31;30 ×
31;30;10 × ×
31;30;10;20 ×
31;30;20 × × × × × ×
31;30;20;10 ×

Table 6.4: N Example 6.4.11: Extensions of strengthenings.

192 Chapter 6. Dynamic Gossip

6.6.2 Gossip in Standard DEL

In the previous sections we used a special-purpose language and semantics to
analyze the gossip problem. And while our explicit model checker is similar
to DEMO-S5, it is not compatible with the symbolic methods we developed in
Chapters 2 and 3. Hence we would also like to see which parts of the gossip problem
we can model in standard DEL, based on propositional logic and interpreted in
Kripke models or knowledge structures.

An analysis of gossip in DEL with action models is [Att+14]. In Section 6.6.4
we will look at the action models provided there. In Section 6.6.5 we then define
a symbolic abstraction of these models to speed up model checking tasks.

In contrast to the previous sections, we now restrict ourselves to “static” gossip
where N is the total relation and only secrets and no numbers are exchanged.

When a call happens, agents can learn various facts: Who is in the call? Which
secrets are exchanged? What is their value? The answers differ, depending on
which observations we allow agents who do not participate in the call to make.
Moreover, the number of different possible events depends on how secrets and the
knowledge thereof are represented.

The question who is in the call gives us a factor of n(n− 1): all possible calls
are different events. In static gossip we can identify calls ab and ba, which reduces
the factor to n·(n−1)

2
=
(
n
2

)
.

Before we consider the other two questions, we need to be more precise about
the knowledge of secrets, which is also a good occasion to explain the differences
between our gossip models and [Att+14].

6.6.3 Knowing-whether, Knowing-that, Atomic-knowing

We can distinguish at least three ways of modeling gossip. First, what we have
done in the previous sections is to model that a knows the secret of b as an atomic
proposition Sab. We can call this the “atomic-knowing” modeling. Second, the
“knowing-whether” approach in [Att+14] models secrets themselves as atomic
propositions which can be true or false.

In between the two is a third approach, which we now call “knowing-that”
where secrets are only exchanged if they are true. This also comes natural, because
some gossip is only interesting if it is true: “Did you know that he does not have
a cat?!” is not a very exciting thing to say.

The three languages are compared in Table 6.5. Clearly, atomic-knowing is
more concise, but we can only use it if we do not care about the value of secrets.

The reader will also notice that these different models of the static gossip
problem are similar to the different representations for knowledge of numeric
variables discussed in Chapter 5. In particular, we can compare Table 6.5 to
Table 5.3: Just like PIL is an abstraction that ignores the values of numeric
variables, atomic-knowing gossip is an abstraction that ignores the values of

6.6. Model Checking for Dynamic Gossip 193

secrets. And again, this abstraction trades expressivity for succinctness. In the
next sections we will see that this is not only the case for formulas, but also for
the size of action models and transformers to describe events.

a knows b’s secret c knows that a knows b’s secret

knowing-whether Kapb ∨Ka¬pb Kc(Kapb ∨Ka¬pb)
knowing-that Kapb Kc(p→ Kapb)
atomic-knowing Sab KcSab

Table 6.5: Three formal languages for gossip.

6.6.4 Action Models for Gossip

In [Att+14] an analysis of the static gossip problem is given using action models.
In contrast to our models, knowledge of secrets there is modeled using standard
propositions and knowing-whether. Moreover, it is not assumed that there is a
bijection between secrets and agents and that each agent knows only their own
secret in the beginning. The authors discuss three sorts of gossip calls, depending
on what agents that are not in the call can observe. The resulting action models
differ in their specific size, but are all in the same order of magnitude, as Table 6.6
shows.

Symbol Name Number of actions

ab− observable O(24n)
ab0 synchronous O(24n) ·

(
n
2

)
= O(24n)

ab+ skip-async O(24n) ·
(
n
2

)
+ 1 = O(24n)

Table 6.6: Size of action models for gossip calls.

A call ab corresponds to multiple events in these action models. Each event not
only describes who is in the call, but also which information is exchanged. This is
achieved with preconditions of the form δ(Q+

a , Q
−
a , Q

+
b , Q

−
b) with four parameters

saying which secrets are known to be true or false by a or b. For example, Q+
a

consists of those variables which a knows to be true before the call. Each parameter
can be any subset of the set of secrets, hence for n secrets we get 24n different
preconditions.

In these action models, two events are indistinguishable for an agent iff either
(i) the agent is not in both calls or (ii) the agent is in both calls AND observes
the same, i.e. there is the same other agent in both calls and both agents in the
call knew the same set of secrets before.

Can we simplify the action models by saying that secrets are only exchanged
if they are true, i.e. by moving from knowing-whether to knowing-what gossip?

194 Chapter 6. Dynamic Gossip

The answer is positive, but not satisfactory: The preconditions would then be
of the form δ(Q+

a , Q
+
b) which reduces the size of the action models, but they are

still exponential. In the next section we therefore go back to the atomic-knowing
modeling.

6.6.5 Symbolic Gossip

We now discuss how the “atomic-knowing” version of gossip can be modeled
symbolically using knowledge transformers with factual change as presented in
Definition 2.8.5. There are two key ideas that lead us to a very compact modeling.

First, in atomic-knowing gossip, exchange of secrets is factual change. Hence,
instead of multiple events with different preconditions, we can use a single event
with postconditions that describe which secrets are exchanged. In an action model
the call ab is then represented by one event with the postconditions postab(Sab) :=
> and postab(Sac) := Sac ∨ Sbc etc.

Second, postconditions are common knowledge, but not what they evaluate to.
This means that we can ensure that agents in the call observe more than agents
who do not participate, without needing multiple events for the same call. Instead,
the uncertainty about which call happens induces uncertainty about what other
agents learn. Note that here we use our assumption that the initial graph is
common knowledge. Therefore, all uncertainty about what agents in other calls
are exchanging comes from uncertainty about previous calls.

More formally, suppose some agent is not in a call. In knowing-whether gossip
it will consider only those preconditions that are true at some possible world it
considers before the call. Each world can only fulfill one of the mutually exclusive
preconditions. Similarly, in atomic-knowing gossip we have one event which applies
to all those possible worlds, and the postcondition will be evaluated differently but
deterministically in each one. New uncertainty is always about who-called-whom,
and not about what they exchanged.

The initial situation for atomic-knowing gossip with n agents is given by the
knowledge structure

Finit = (V = {Sij | i, j ∈ I, i 6= j}, θ =
∧
i 6=j

¬Si,j, Oi = ∅)

and the actual state ∅.
We now model calls using a knowledge transformer with factual change. As we

are dealing with static total-graph gossip for now, we can identify the calls (a, b)
and (b, a). The atoms in the following event vocabulary V + describe which call
happens: qi,j is an element of the actual event iff the call (i, j) or (j, i) happens.
For each agent k, let ϕk :=

∨
({qi,k | k ∈ I, i < k} ∪ {qk,j | j ∈ I, k < j}). This

abbreviation says that k participates in a call.

6.6. Model Checking for Dynamic Gossip 195

We show the call transformer Xcall in Figure 6.5.
The event law θ+ ensures that some call happens, but excludes that two calls

happen at the same time.
The factual change encoded by θ− says that after a call, i has the secret of j

iff either i already knew it, or i and j are both in the call or i is in the call and
there is some k in the call who knew j. While this is quite a complex boolean
formula, in the implementation it will be a BDD of reasonable size. For example,
if we consider four agents, the BDD of θ(S01) has 21 non-terminal nodes.


V + = {qi,j | i, j ∈ I, i < j}
θ+ =

∨
i<j qi,j ∧

∧
{¬(qi,j ∧ qk,l) | i, j, k, l ∈ I, i < j, k < l, (i, j) 6= (j, k)}

V− = V
θ− : Si,j 7→ Si,j ∨ (ϕi ∧ ϕj) ∨ (ϕi ∧

∨
k(ϕk ∧ Sk,j))

O+ = {qi,k} ∪ {qk,j}


Figure 6.5: The transformer Xcall.

Figure 6.6 shows how the initial knowledge structure for gossip can be imple-
mented in SMCDEL and Figure 6.7 shows the implementation of the transformer
Xab together with some helper function to simplify its usage. We also include
short comments to highlight the connection to the mathematical definitions in
Figure 6.5 and our explanations of θ+ and θ−.

One might also consider describing the events with less propositions, namely
just qi to say that i participates in the call. But someone in the actual call also
observes which other person participates. Hence only using propositions qi makes
it impossible to encode the event observations with a simple set of observational
variables and forces us to use belief structures, even though the relations here are
all equivalences.

gossipers :: Int -> [Int]
gossipers n = [0..(n-1)]

hasSof :: Int -> Int -> Int -> Prp
hasSof n a b | a == b = error "Let ’s not even talk about that."

| otherwise = toEnum (n * a + b)

gossipInit :: Int -> KnowScene
gossipInit n = (KnS vocab law obs , actual) where

vocab = [hasSof n i j | i <- gossipers n, j <- gossipers n, i /= j]
law = boolBddOf $ Conj [Neg $ PrpF $ hasSof n i j

| i <- gossipers n, j <- gossipers n, i /= j]
obs = [(show i, []) | i <- gossipers n]
actual = []

Figure 6.6: Finit in SMCDEL.Examples.GossipS5.

196 Chapter 6. Dynamic Gossip

thisCallProp :: (Int ,Int) -> Prp
thisCallProp (i,j) | i < j = P (100 + 10*i + j)

| otherwise = error $ "wrong call: " ++ show (i,j)

call :: Int -> (Int ,Int) -> Event
call n (a,b) = (callTrf n, [thisCallProp (a,b)])

callTrf :: Int -> KnowChange
callTrf n = CTrf eventprops eventlaw changeprops changelaws eventobs where

thisCallHappens (i,j) = PrpF $ thisCallProp (i,j)
isInCallForm k = Disj $

[thisCallHappens (i,k) | i <- gossipers n \\ [k], i < k] ++
[thisCallHappens (k,j) | j <- gossipers n \\ [k], k < j]

allCalls = [(i,j) | i <- gossipers n, j <- gossipers n, i < j]
eventprops = map thisCallProp allCalls
eventlaw = simplify $

Conj [Disj (map thisCallHappens allCalls)
-- some call must happen , but never two at the same time:
, Neg $ Disj [Conj [thisCallHappens c1 , thisCallHappens c2]

| c1 <- allCalls , c2 <- allCalls \\ [c1]]]
callPropsWith k = [thisCallProp (i,k) | i <- gossipers n, i < k]

++ [thisCallProp (k,j) | j <- gossipers n, k < j]
eventobs = fromList [(show k, callPropsWith k) | k <- gossipers n]
changeprops = keys changelaws
changelaws = fromList

[(hasSof n i j, boolBddOf $ -- after call , i has secret j
Disj [has n i j -- iff i already knew j, or

, Conj (map isInCallForm [i,j]) -- i and j are both in call or
, Conj [isInCallForm i -- i is in call and some k who

, Disj [Conj [isInCallForm k, has n k j] -- knew j
| k <- gossipers n \\ [j]]]

])
| i <- gossipers n, j <- gossipers n, i /= j]

doCall :: KnowScene -> (Int ,Int) -> KnowScene
doCall start (a,b) = knowChange start (call (length $ agentsOf start) (a,b))

after :: Int -> [(Int ,Int)] -> KnowScene
after n = foldl doCall (gossipInit n)

Figure 6.7: Xab in SMCDEL.Examples.GossipS5.

6.7 Conclusion and Future Work

We modeled common knowledge of protocols in the setting of distributed dynamic
gossip. A crucial role is played by the novel notion of protocol-dependent knowledge.
This knowledge is interpreted using an equivalence relation over states in the
execution tree of a gossip protocol in a given gossip graph. As the execution
tree consists of gossip states resulting from calls permitted by the protocol, this
requires a careful semantic framework. We described various syntactically or
semantically definable strengthenings of gossip protocols, and investigated the
combination and iteration of such strengthenings, in view of strengthening a
weakly successful protocol into one that is strongly successful on all graphs. In
the setting of gossip, a novel notion we used in such strengthenings is that of

6.7. Conclusion and Future Work 197

uniform backward induction, as a variation on backward induction in search trees
and game trees. Finally, we proved that for the LNS protocol, in which agents are
only allowed to call other agents if they do not know their secrets, it is impossible
to define a strengthening that is strongly successful on all graphs.

As already described at length in the introductory section, our work builds
upon prior work on dynamic distributed gossip [Dit+15; Dit+17], which itself
has a prior history both in the networks community [HLL99; Kar+00; Hae15]
and in the logic community [Att+14; AGH15]. Many aspects of gossip may or
may not be common knowledge among agents: how many agents there are, the
time of a global clock, the gossip graph, etc. The point of our result is that
even under the strongest such assumptions, one can still not guarantee that a
gossip protocol always terminates successfully. How common knowledge of agents
is affected by gossip protocol execution is investigated in [AW17]: for example,
the authors demonstrate how sender-receiver subgroup common knowledge is
obtained (and lost) during calls. However, they do not study common knowledge
of gossip protocols. We do not know of other work on that topic. Outside the area
of gossip, protocol knowledge has been well investigated in the epistemic logic
community [Hos09; Wan10; Dit+14].

While the concept of backward induction is well-known in game theory, it is
only used in perfect-information settings, where all agents know what the real
world or the actual state is. Our definition of uniform backward induction is a
generalization of backward induction to the dynamic gossip setting, where only
partial observability is assumed. A concept akin to uniform backward induction
has been proposed in [Per14] (rooted in [BS02]), under the name of common belief
in future rationality, with an accompanying recursive elimination procedure called
backward dominance.2 As in our approach, this models a decision rule faced with
uncertainty over indistinguishable moves.

In [Per14], the players are utility maximizers with probabilistic beliefs, which in
our setting would correspond to randomizing over all indistinguishable moves/calls.
As a decision rule this is also known as the insufficient reason (or Laplace) criterion:
all outcomes are considered equiprobable. Seeing uniform backward induction as
the combination of backward induction and a decision rule immediately clarifies
the picture. Soft uniform backward induction applies the minimax regret criterion
for the decision whom to call, minimizing the maximum utility loss. In contrast,
hard uniform backward induction applies the maximin utility criterion, maximizing
the minimum utility (also known as risk-averse, pessimistic, or Wald criterion). In
the gossip scenario, the unique minimum value is unsuccessful termination, and
the unique maximum value is successful termination. Minimax prescribes that as
long as the agent considers it possible that a call leads to successful termination,
the agent is allowed to make the call (as long as the minimum of the maximum

2We kindly thank Andrés Perea for his interactions.

198 Chapter 6. Dynamic Gossip

is success, go for it): the soft version. Maximin prescribes that, as long as the
agent considers it possible that a call lead to unsuccessful termination, the agent
should not make the call (as long as the maximum of the minimum is failure,
avoid it): the hard version. Such decision criteria over uncertainty also crop up
in areas overlapping with social software and social choice, e.g. [BSZ09; CWX11;
PTW13; Mei15]. In [BSZ09] a somewhat similar concept has been called “common
knowledge of stable belief in rationality”. However, there it applies to a weaker
epistemic notion, namely belief.

The impossibility result for LNS is for dynamic gossip wherein agents exchange
both secrets and numbers, and where the network expands. Also in the non-
dynamic setting we can quite easily find a graph where static LNS is weakly
successful but cannot be (epistemically and symmetrically) strengthened to a
strongly successful protocol. Consider again the “diamond” graph of Section 6.4.6,
for which we described various strongly successful strengthenings. Also in “static”
gossip LNS is weakly successful on this graph, since 01; 30; 20; 31 is successful. All
four possible first calls are symmetric. After 21, the remaining possible calls are
20, 31 and 30. But 20 is losing, since 2 will never learn secret 3 that way. Also
31 is losing, since agent 1 will never learn the secret of 0. The call 30 is winning,
but by epistemic symmetry it cannot be allowed while 31 is disallowed. Therefore,
it is impossible to strengthen LNS on “diamond” such that it becomes strongly
successful. We can thus expect a completely different picture for strengthening
“static” gossip protocols in similar fashion as we did here, for dynamic gossip.

We assumed synchronicity (a global clock) and common knowledge of the
initial gossip graph. These strong assumptions were made on purpose, because
without them agents will have even less information available and will therefore not
be able to coordinate any better. Such and other parameters for gossip problems
are discussed in [Dit+16]. It is unclear what results still can be obtained under
fully distributed conditions, where agents only know their own history of calls and
who their neighbors are.

We wish to determine the logic of protocol-dependent knowledge KP
a , and

also on fully distributed gossip protocols, without a global clock, and to further
generalize this beyond the setting of gossip.

Our explicit state implementation covers both static and dynamic gossip,
but the implementation of gossip in SMCDEL so far only covers static gossip
and misses many features of the explicit checker. In the future we also hope to
symbolically verify dynamic gossip protocols.

Another recent formalization of dynamic gossip which could help with auto-
mated checking of protocols is [Wag17]. It gives a translation of various properties
of gossip graphs and the success of the LNS protocol to NetKAT, a network
programming language based on Kleene algebras with tests. This paves another
way for an automated analysis of gossip protocols, and its performance should be
compared with our explicit and symbolic approaches.

Conclusion

Het mooie van logica, van wetenschap in het
algemeen, is dat het groter is dan jezelf: je
kunt je er altijd in blijven ontwikkelen.

Jan van Eijck

Coming to the end of this thesis, we give a summary of our work. How did we
answer our research questions? Which new concepts did we introduce? Which
results did we show? Which open questions remain?

Summary
We started our investigations with an overview of the standard frameworks for
Epistemic Logic, Public Announcement Logic, Dynamic Epistemic Logic, Temporal
Logic and symbolic model checking in Chapter 1. It can serve as a new introduction
text to both Dynamic Epistemic Logic and symbolic representation.

The next three chapters revolved around our first three research questions:

Can we find symbolic model checking methods for DEL?
How can symbolic model checking for DEL be implemented?
How good is the performance of symbolic methods for DEL?

We achieved our goal of putting a new engine into DEL with symbolic equiva-
lents for all its components: Kripke models are encoded in knowledge and belief
structures; action models are represented using transformers. Besides these model-
ing parts of the DEL framework, we also presented syntax, semantics and reduction
axioms for a symbolic language with dynamic operators based on transformers.

The take-home message of Chapter 2 is “Everything is boolean!”, because the
key feature of our symbolic version of DEL is that all formulas have boolean
equivalents with respect to a given structure. Besides being the crucial ingredient

199

200 Conclusion

to the symbolic model checking procedure, this translation is also useful to study
other properties of our structures. For example, we gave a symbolic analysis of
bisimulations as boolean formulas in Section 2.11 and we compared different forms
of redundancy and corresponding optimization methods in Section 2.12.

Our first research question can thus be answered with a clear yes.
In Chapter 3 we tackled the second question by moving from mathematics to

programming, implementing our ideas in Haskell. Our main engineering challenge
here was to implement the two tricks of symbolic representation: First, the set
of possible worlds is replaced with the powerset of our vocabulary, restricted by
a boolean formula. Second, explicit relations are replaced with subsets of the
vocabulary, the so-called observational variables, or, if they are not equivalences,
formulas over a double vocabulary. The management of double and quadruple
vocabularies is mathematically simple, but not easy to keep track of manually.
We therefore paid extra attention to lift this management of vocabularies to the
type level, so that we no longer have to worry about it.

To make the implementation truly symbolic and efficient, instead of boolean
formulas we used Binary Decision Diagrams wherever possible. While the worst-
case complexity of BDDs is not better than that of other representations of boolean
functions like truth tables or formulas in conjunctive normal form, they perform
much better on real-world examples.

The main answer to our second question is thus given by BDDs, which just
like for temporal logics, are an excellent data type for the boolean reasoning tasks
underpinning our symbolic version of DEL. Additionally, we think that functional
programming is the natural choice for implementing logics in general and model
checking in particular.

The benchmark results and further examples in Chapter 4 give two answers
to our third question: Compared with the explicit DEL model checkers DEMO
and DEMO-S5, our new SMCDEL is clearly faster. Compared with temporal
model checkers, the answer depends on concrete examples. If the scenario at hand
is of the kind characterized in [Ben+09] and [DHR13], then modeling it in DEL
instead of a temporal logic is usually simpler and more efficient. That is, if we
have synchronicity, perfect-recall and no miracles, and individual time steps are
not important, then DEL can compete with epistemic temporal logics. That we
now have a symbolic model checker for DEL means we no longer have to choose
between simplicity of logics and performance of implementations, but can have
both at the same time.

For the next research question we analyzed a specific kind of knowledge, namely
“knowing the value” or numeric knowledge.

How can we model knowledge of variables and values?

In Chapter 5 we first summarized two existing approaches, the binary encoding
and register models. Our main contribution then is Public Inspection Logic (PIL),

Conclusion 201

a basic dynamic epistemic logic of “knowing the value” and “inspecting the value”.
Analogous to the public announcement in PAL, the public inspection in PIL is
a new dynamic operator that updates the agents’ knowledge about values. We
provided a sound and strongly complete axiomatization for the single and multi-
agent case, making use of the well-known Armstrong axioms for dependencies in
databases.

The second application of DEL we studied are dynamic gossip protocols. We
began Chapter 6 with a new result that intuitively says that “anything might
happen” in dynamic gossip, provided there are enough agents. The first research
question then brought us to the study of gossip with the tools of epistemic logic.

Can we improve gossip protocols using epistemic logic?

Chapter 6 gives multiple positive answers to this. We introduced the new KP
i

operator for protocol-dependent knowledge and then used it to define four different
ways to strengthen gossip protocols. Examples showed that these strengthenings
indeed improve the previously studied “Learn New Secrets” protocol on many
gossip graphs. However, we also proved a negative result: There is no perfect
strengthening of “Learn New Secrets” that works on all graphs.

This leaves us with our last research question.

Can we use model checking for DEL to analyze gossip protocols?

We saw that model checking dynamic gossip explicitly is feasible for small
numbers of agents and this is informative. In fact, our implementation of explicit
state model checking was a perfect tool to find and check the results from the
previous sections. Finally, combining topics from the beginning and the end of
this thesis, we also showed how symbolic model checking methods can be used to
model the gossip problem.

Overall, we see that the plurality of Dynamic Epistemic Logics is their biggest
strength and weakness at the same time. Tailor-made languages like PIL models
or gossip graphs are more intuitive to grasp and often they perform well enough on
small examples, as shown in Section 6.6. An extreme case of this special-purpose
modeling is the generalized quantifier approach to the Muddy Children puzzle
from [GS11] which we discussed in Section 4.1.

Already a small deviation from the propositional standard DEL in syntax and
semantics can make it hard or impossible to apply general purpose methods for
symbolic model checking. To make this concrete, we can say that the DEMO-
S5 “type variable trick”, which we discussed in Section 3.1, trades efficiency for
usability and generality. SMCDEL is our start to overcome this dichotomy between
efficient methods that only work for the propositional standard framework on one
side and convenient explicit methods that work with various kinds of models on
the other side. We hope to extend SMCDEL with non-propositional variables in
the future, similar to their usage in temporal logic model checkers.

202 Conclusion

Open Questions
There is obviously more to be explored, about DEL, knowing values and gossip in
particular and the theory of symbolic representation for modal and dynamic logics
in general. We now conclude with only a few points for future research, ranging
from concrete questions to fluffy speculation.

As mentioned before, restricting postconditions to boolean formulas does
not limit expressivity. The authors of [DK08] in fact prove the stronger result
that postconditions can be restricted to > and ⊥. Hence one can also model
postconditions as functions of the type A → P(V) as done in [Bol14]. What
could be symbolic versions of such more compact postconditions and would they
improve the usability and performance of our transformers?

In Section 2.13 we already mentioned the open question of how to extend our
symbolic methods to non-normal logics for evidence and belief which are usually
interpreted on neighborhood models.

Yet another variant of DEL introduces an “arbitrary announcement” operator
which says that there is an announcement leading to a model where the given
formula is true. Similarly, we can study “arbitrary arrow update” and “arbitrary
action model” operators [Hal13]. All of these are very much dependent on the lan-
guage. How can such “arbitrary” operators be interpreted on symbolic structures?
What is the logic of “arbitrary transformation”?

Transformers also motivate a new notion of action equivalence. This might
help to solve a problem with action models for which bisimulation had to be
replaced with the more complicated notion of action emulation [ERS12]. Is there
an easy way to determine whether two given transformers encode action models
that emulate each other?

Perhaps the deepest issue that we see emerging in our approach is the following.
Standard logical approaches to information flow assume a sharp distinction between
syntax and semantic models. The BDD-oriented approach suggests the existence
of a third intermediate level: We introduced state and observation laws as boolean
formulas, but in practice we only need the boolean function they represent.
Our structures are therefore not a compromise, but rather a both-and solution
combining syntax and semantics. Also from the viewpoints of computational
complexity and cognition, this might be the right level. We leave the exploration
of this grander program to another occasion.

Bibliography

[AGH15] Krzysztof R. Apt, Davide Grossi, and Wiebe van der Hoek. “Epistemic
Protocols for Distributed Gossiping”. In: Proceedings of the 15th
Conference on Theoretical Aspects of Rationality and Knowledge.
Edited by Ramanujam. TARK 2015. 2015. doi: 10.4204/EPTCS.215.
5 (cited on page 197).

[AGM85] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. “On
the logic of theory change: Partial meet contraction and revision
functions”. In: Journal of Symbolic Logic 50.2 (1985), pages 510–530.
doi: 10.2307/2274239 (cited on page 57).

[All+17] Alice Allen et al. “Engineering Academic Software (Dagstuhl Perspec-
tives Workshop 16252)”. In: Dagstuhl Manifestos 6.1 (2017), pages 1–
20. issn: 2193-2433. doi: 10.4230/DagMan.6.1.1 (cited on page 4).

[AM18] Christopher Allen and Julie Moronuki. Haskell Programming from
first principles. forthcoming. 2018. url: http://haskellbook.com/
(cited on page 89).

[Arm74] William Ward Armstrong. “Dependency Structures of Data Base
Relationships”. In: IFIP congress. Volume 74. Geneva, Switzerland,
1974, pages 580–583. url: https://is.gd/armstrong1974depende
ncy (cited on pages 138, 139, 143, 145, 147).

[AS13] Guillaume Aucher and François Schwarzentruber. “On the Com-
plexity of Dynamic Epistemic Logic”. In: Proceedings of the 14th
Conference on Theoretical Aspects of Rationality and Knowledge.
Edited by Burkhard C. Schipper. TARK 2013. 2013, pages 19–28.
url: https://is.gd/ComplexityDEL (cited on page 111).

203

https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.2307/2274239
https://doi.org/10.4230/DagMan.6.1.1
http://haskellbook.com/
https://is.gd/armstrong1974dependency
https://is.gd/armstrong1974dependency
https://is.gd/ComplexityDEL

204 Bibliography

[Att+14] Maduka Attamah, Hans van Ditmarsch, Davide Grossi, and Wiebe van
der Hoek. “Knowledge and Gossip”. In: Proceedings of the Twenty-first
European Conference on Artificial Intelligence. Frontiers in Artificial
Intelligence and Applications. 2014, pages 21–26. isbn: 978-1-61499-
418-3. doi: 10.3233/978-1-61499-419-0-21 (cited on pages 192,
193, 197).

[Att+15] Maduka Attamah, Hans van Ditmarsch, Davide Grossi, and Wiebe
van der Hoek. “A Framework for Epistemic Gossip Protocols”. In:
12th European Conference on Multi-Agent Systems EUMAS 2014.
Edited by Nils Bulling. 2015, pages 193–209. isbn: 978-3-319-17130-2.
doi: 10.1007/978-3-319-17130-2_13 (cited on page 189).

[Att12] Maduka Attamah. “Visualising Dynamic Epistemic Logic”. Master’s
thesis. University of Liverpool, 2012. url: https://cgi.csc.liv.
ac.uk/~byear/index_files/Maduka_MScDissertation.pdf (cited
on page 87).

[Att15] Maduka Attamah. “Epistemic Gossip Protocols”. PhD thesis. 2015.
url: https://livrepository.liverpool.ac.uk/3001317/ (cited
on page 189).

[AW17] Krzysztof R. Apt and Dominik Wojtczak. “Common Knowledge
in a Logic of Gossips”. In: Proceedings of the 16th Conference on
Theoretical Aspects of Rationality and Knowledge. Edited by Jérôme
Lang. TARK 2017. 2017. doi: 10.4204/EPTCS.251.2 (cited on
pages 164, 197).

[BA11] Thomas Bolander and Mikkel Birkegaard Andersen. “Epistemic plan-
ning for single- and multi-agent systems”. In: Journal of Applied Non-
Classical Logics 21.1 (2011), pages 9–34. doi: 10.3166/jancl.21.9-
34 (cited on page 128).

[Bai13] Justin Bailey. The Haskell Cheatsheet. July 22, 2013. url: https:
//cheatsheet.codeslower.com/ (cited on page 89).

[Bai17] Leemon Baird. The Swirlds Hashgraph Consensus Algorithm: Fair,
Fast, Byzantine Fault Tolerance. 2017. url: https://www.swirlds.
com/downloads/SWIRLDS-TR-2016-01.pdf (cited on pages 3, 156).

[Bal16] Alexandru Baltag. “To Know is to Know the Value of a Variable”.
In: Advances in Modal Logic. Edited by Lev Beklemishev, Stéphane
Demri, and András Máté. Volume 11. 2016, pages 135–155. url:
http://www.aiml.net/volumes/volume11/Baltag.pdf (cited on
pages 3, 139, 153).

https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.1007/978-3-319-17130-2_13
https://cgi.csc.liv.ac.uk/~byear/index_files/Maduka_MScDissertation.pdf
https://cgi.csc.liv.ac.uk/~byear/index_files/Maduka_MScDissertation.pdf
https://livrepository.liverpool.ac.uk/3001317/
https://doi.org/10.4204/EPTCS.251.2
https://doi.org/10.3166/jancl.21.9-34
https://doi.org/10.3166/jancl.21.9-34
https://cheatsheet.codeslower.com/
https://cheatsheet.codeslower.com/
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
http://www.aiml.net/volumes/volume11/Baltag.pdf

Bibliography 205

[Bar+17] Chitta Baral, Thomas Bolander, Hans van Ditmarsch, and Sheila McIl-
rath. “Epistemic Planning (Dagstuhl Seminar 17231)”. In: Dagstuhl
Reports 7.6 (2017), pages 1–47. issn: 2192-5283. doi: 10.4230/
DagRep.7.6.1 (cited on page 130).

[BEK06] Johan van Benthem, Jan van Eijck, and Barteld Kooi. “Logics of
communication and change”. In: Information and computation 204.11
(2006), pages 1620–1662. doi: 10.1016/j.ic.2006.04.006 (cited on
pages 19, 20, 63).

[Ben+09] Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric
Pacuit. “Merging frameworks for interaction”. In: Journal of Philo-
sophical Logic 38.5 (2009), pages 491–526. doi: 10.1007/s10992-
008-9099-x (cited on pages 26, 27, 117, 200).

[Ben+15] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile
Su. “Symbolic Model Checking for Dynamic Epistemic Logic”. In:
Proceedings of the 5th International Workshop on Logic, Rationality,
and Interaction (LORI 2015). Edited by Wiebe van der Hoek, Wesley
H. Holliday, and Wen-fang Wang. 2015, pages 366–378. isbn: 978-
3-662-48561-3. doi: 10.1007/978-3-662-48561-3_30 (cited on
page 7).

[Ben+17] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su.
“Symbolic Model Checking for Dynamic Epistemic Logic – S5 and
Beyond”. In: Journal of Logic and Computation (JLC) (2017). doi:
10.1093/logcom/exx038. url: https://is.gd/DELBDD (cited on
page 7).

[BFP14] Johan van Benthem, David Fernández-Duque, and Eric Pacuit. “Ev-
idence and plausibility in neighborhood structures”. In: Annals of
Pure and Applied Logic 165.1 (2014), pages 106–133. issn: 0168-0072.
doi: 10.1016/j.apal.2013.07.007 (cited on page 83).

[BFS17] Kai Brünnler, Dandolo Flumini, and Thomas Studer. “A Logic of
Blockchain Updates”. In: CoRR abs/1707.01766 (2017). url: https:
//arxiv.org/abs/1707.01766 (cited on page 156).

[BLF85] Simon Baron-Cohen, Alan M. Leslie, and Uta Frith. “Does the autistic
child have a “theory of mind”?” In: Cognition 21.1 (1985), pages 37–46.
doi: 10.1016/0010-0277(85)90022-8 (cited on page 126).

[BMS98] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. “The
logic of public announcements, common knowledge, and private sus-
picions”. In: Proceedings of the 7th Conference on Theoretical Aspects
of Rationality and Knowledge. Edited by Itzhak Gilboa. TARK 1998.
1998, pages 43–56. url: https://dl.acm.org/citation.cfm?id=
645876.671885 (cited on page 20).

https://doi.org/10.4230/DagRep.7.6.1
https://doi.org/10.4230/DagRep.7.6.1
https://doi.org/10.1016/j.ic.2006.04.006
https://doi.org/10.1007/s10992-008-9099-x
https://doi.org/10.1007/s10992-008-9099-x
https://doi.org/10.1007/978-3-662-48561-3_30
https://doi.org/10.1093/logcom/exx038
https://is.gd/DELBDD
https://doi.org/10.1016/j.apal.2013.07.007
https://arxiv.org/abs/1707.01766
https://arxiv.org/abs/1707.01766
https://doi.org/10.1016/0010-0277(85)90022-8
https://dl.acm.org/citation.cfm?id=645876.671885
https://dl.acm.org/citation.cfm?id=645876.671885

206 Bibliography

[Bol14] Thomas Bolander. “Seeing is Believing: Formalising False-Belief Tasks
in Dynamic Epistemic Logic.” In: Proceedings of the European Con-
ference on Social Intelligence (ECSI-2014). Edited by Andreas Herzig
and Emiliano Lorini. 2014, pages 246–263. url: http : / / ceur -
ws.org/Vol-1283/paper_14.pdf (cited on pages 127, 202).

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science 53. Cambridge
University Press, 2001. isbn: 978-0-521-52714-9 (cited on pages 13,
17, 48, 78).

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation”. In: IEEE Transaction on Computers C-35.8 (1986),
pages 677–691. doi: 10.1109/TC.1986.1676819 (cited on pages 28,
34, 36, 51, 125).

[BS02] Pierpaolo Battigalli and Marciano Siniscalchi. “Strong Belief and
Forward Induction Reasoning”. In: Journal of Economic Theory 106.2
(2002), pages 356–391. doi: 10.1006/jeth.2001.2942 (cited on
page 197).

[BS08] Alexandru Baltag and Sonja Smets. “A qualitative theory of dynamic
interactive belief revision”. In: Logic and the Foundations of Game
and Decision Theory (LOFT 7). Volume 3. Texts in logic and games.
Amsterdam University Press, 2008, pages 9–58. isbn: 9789089640260.
url: https://hdl.handle.net/11245/1.300554 (cited on page 57).

[BS15] Johan van Benthem and Sonja Smets. “Dynamic Logics of Belief
Change”. In: Handbook of Epistemic Logic. Edited by Hans van Dit-
marsch, Joseph Y. Halpern, Wiebe van der Hoek, and Barteld Kooi.
College Publications, 2015, pages 313–393. isbn: 978-1-84890-158-2.
url: https://is.gd/BenSme2015DLBC (cited on page 27).

[BS72] Brenda Baker and Robert Shostak. “Gossips and telephones”. In:
Discrete Mathematics 2.3 (1972), pages 191–193. doi: 10.1016/0012-
365X(72)90001-5 (cited on page 155).

[BSZ09] Alexandru Baltag, Sonja Smets, and Jonathan Alexander Zvesper.
“Keep ‘hoping’ for rationality: a solution to the backward induction
paradox”. In: Synthese 169.2 (2009), pages 301–333. doi: 10.1007/
s11229-009-9559-z (cited on pages 173, 198).

[Bur+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and Lain-Jinn Hwang. “Symbolic model checking: 1020 states and
beyond”. In: Fifth Annual IEEE Symposium on Logic in Computer
Science. 1990, pages 428–439. doi: 10.1109/lics.1990.113767
(cited on pages 2, 28, 31).

http://ceur-ws.org/Vol-1283/paper_14.pdf
http://ceur-ws.org/Vol-1283/paper_14.pdf
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1006/jeth.2001.2942
https://hdl.handle.net/11245/1.300554
https://is.gd/BenSme2015DLBC
https://doi.org/10.1016/0012-365X(72)90001-5
https://doi.org/10.1016/0012-365X(72)90001-5
https://doi.org/10.1007/s11229-009-9559-z
https://doi.org/10.1007/s11229-009-9559-z
https://doi.org/10.1109/lics.1990.113767

Bibliography 207

[CF10] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: Accountable Anony-
mous Group Messaging”. In: Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security. CCS 2010. 2010,
pages 340–350. isbn: 978-1-4503-0245-6. doi: 10.1145/1866307.
1866346 (cited on page 130).

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E Long. “Model
checking and abstraction”. In: ACM transactions on Programming
Languages and Systems 16.5 (1994), pages 1512–1542. doi: 10.1145/
186025.186051 (cited on pages 28, 32).

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Check-
ing. Cambridge, Massachusetts, USA: The MIT Press, 1999. isbn:
9780262032704 (cited on pages 25, 28, 32, 86, 134, 136).

[CH00] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool
for random testing of Haskell programs”. In: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming.
Edited by Martin Odersky and Philip Wadler. 2000, pages 268–279.
doi: 10.1145/351240.351266 (cited on page 105).

[Cha85] David Chaum. “Security without identification: transaction systems
to make big brother obsolete”. In: Communications of the ACM
28.10 (1985), pages 1030–1044. doi: 10.1145/4372.4373 (cited on
page 117).

[Cha88] David Chaum. “The dining cryptographers problem: Unconditional
sender and recipient untraceability”. In: Journal of Cryptology 1.1
(1988), pages 65–75. issn: 0933-2790. doi: 10.1007/BF00206326
(cited on pages 112, 116).

[Cia16] Ivano Ciardelli. “Questions in Logic”. PhD thesis. University of
Amsterdam, 2016. url: https://www.illc.uva.nl/Research/
Publications/Dissertations/DS-2016-01.text.pdf (cited on
page 153).

[Cim+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking”. In: Computer Aided Verification (CAV). Edited by
Ed Brinksma and Kim Guldstrand Larsen. 2002, pages 359–364. doi:
10.1007/3-540-45657-0_29 (cited on page 86).

[CKS09] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. “Finally
tagless, partially evaluated: Tagless staged interpreters for sim-
pler typed languages”. In: Journal of Functional Programming 19.5
(2009), pages 509–543. doi: 10.1017/S0956796809007205 (cited on
page 107).

https://doi.org/10.1145/1866307.1866346
https://doi.org/10.1145/1866307.1866346
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/BF00206326
https://www.illc.uva.nl/Research/Publications/Dissertations/DS-2016-01.text.pdf
https://www.illc.uva.nl/Research/Publications/Dissertations/DS-2016-01.text.pdf
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1017/S0956796809007205

208 Bibliography

[Cla+01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
“Bounded Model Checking Using Satisfiability Solving”. In: Formal
Methods in System Design 19.1 (July 1, 2001), pages 7–34. issn:
1572-8102. doi: 10.1023/A:1011276507260 (cited on page 107).

[Cla+18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Rod-
erick Bloem, editors. Handbook of Model Checking. Forthcoming.
Springer International Publishing, Mar. 20, 2018. isbn: 978-3-319-
10574-1. doi: 10.1007/978-3-319-10575-8 (cited on page 28).

[Com18] Commercial Haskell Special Interest Group. The Haskell Tool Stack.
Version 1.6.5. Feb. 19, 2018. url: https://haskellstack.org (cited
on page 109).

[Cor+15] Andrés Cordón-Franco, Hans van Ditmarsch, David Fernández-Duque,
and Fernando Soler-Toscano. “A geometric protocol for cryptogra-
phy with cards”. In: Designs, Codes and Cryptography 74.1 (2015),
pages 113–125. issn: 0925-1022. doi: 10.1007/s10623-013-9855-y
(cited on page 120).

[CR15] Ivano Ciardelli and Floris Roelofsen. “Inquisitive dynamic epistemic
logic”. In: Synthese 192.6 (2015), pages 1643–1687. doi: 10.1007/
s11229-014-0404-7 (cited on page 153).

[CS15] Tristan Charrier and François Schwarzentruber. “Arbitrary Public
Announcement Logic with Mental Programs”. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent
Systems. IFAAMAS. 2015, pages 1471–1479. url: https://dl.acm.
org/citation.cfm?id=2772879.2773340 (cited on page 107).

[CS17] Tristan Charrier and François Schwarzentruber. “A Succinct Language
for Dynamic Epistemic Logic”. In: Proceedings of the 16th Conference
on Autonomous Agents and Multiagent Systems. AAMAS ’17. São
Paulo, Brazil: International Foundation for Autonomous Agents and
Multiagent Systems, 2017, pages 123–131. url: http://www.aamas2
017.org/proceedings/pdfs/p123.pdf (cited on pages 38, 107).

[CW96] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State
of the Art and Future Directions”. In: ACM Computing Surveys
28.4 (1996), pages 626–643. issn: 0360-0300. doi: 10.1145/242223.
242257 (cited on page 2).

[CWX11] Vincent Conitzer, Toby Walsh, and Lirong Xia. “Dominating Ma-
nipulations in Voting with Partial Information”. In: Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011,
pages 638–643. url: https://www.aaai.org/ocs/index.php/
AAAI/AAAI11/paper/view/3706 (cited on page 198).

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-319-10575-8
https://haskellstack.org
https://doi.org/10.1007/s10623-013-9855-y
https://doi.org/10.1007/s11229-014-0404-7
https://doi.org/10.1007/s11229-014-0404-7
https://dl.acm.org/citation.cfm?id=2772879.2773340
https://dl.acm.org/citation.cfm?id=2772879.2773340
http://www.aamas2017.org/proceedings/pdfs/p123.pdf
http://www.aamas2017.org/proceedings/pdfs/p123.pdf
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3706
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3706

Bibliography 209

[DE12] Kees Doets and Jan van Eijck. The Haskell Road to Logic, Maths and
Programming. 2012. isbn: 0-9543006-9-6 (cited on page 89).

[DEW10] Hans van Ditmarsch, Jan van Eijck, and William Wu. “One Hundred
Prisoners and a Lightbulb — Logic and Computation”. In: Proceedings
of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning. 2010, pages 90–100. isbn: 978-1-5773-
545-12. url: https://www.aaai.org/ocs/index.php/KR/KR2010/
paper/view/1234 (cited on page 130).

[DHK07] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic
Epistemic Logic. Springer, 2007. isbn: 978-1-4020-5838-7. doi: 10.
1007/978-1-4020-5839-4 (cited on pages 14, 19, 23, 37, 45, 122).

[DHR13] Hans van Ditmarsch, Wiebe van der Hoek, and Ji Ruan. “Connecting
dynamic epistemic and temporal epistemic logics”. In: Logic Journal
of IGPL 21.3 (2013), pages 380–403. doi: 10.1093/jigpal/jzr038
(cited on pages 27, 117, 118, 200).

[Din16] Yifeng Ding. “Epistemic Logic with Functional Dependency Operator”.
In: Studies in Logic 9.4 (2016), pages 55–84. url: https://arxiv.
org/abs/1706.02048 (cited on page 154).

[Dit+06] Hans van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden,
and Ji Ruan. “Model Checking Russian Cards”. In: Electronic Notes
in Theoretical Computer Science 149.2 (2006), pages 105–123. doi:
10.1016/j.entcs.2005.07.029 (cited on pages 27, 38, 87, 120,
121).

[Dit+12] Hans van Ditmarsch, Jan van Eijck, Ignacio Hernández-Antón, Floor
Sietsma, Sunil Simon, and Fernando Soler-Toscano. “Modelling Cryp-
tographic Keys in Dynamic Epistemic Logic with DEMO”. In: High-
lights on Practical Applications of Agents and Multi-Agent Systems.
Edited by Javier Bajo Pérez et al. 2012, pages 155–162. isbn: 978-3-
642-28762-6 (cited on page 87).

[Dit+13] Hans van Ditmarsch, Andreas Herzig, Emiliano Lorini, and François
Schwarzentruber. “Listen to Me! Public Announcements to Agents
That Pay Attention — or Not”. In: Logic, Rationality, and Interaction.
Edited by Davide Grossi, Olivier Roy, and Huaxin Huang. 2013,
pages 96–109. isbn: 978-3-642-40948-6 (cited on page 137).

[Dit+14] Hans van Ditmarsch, Sujata Ghosh, Rineke Verbrugge, and Yanjing
Wang. “Hidden protocols: Modifying our expectations in an evolving
world”. In: Artificial Intelligence 208 (2014), pages 18–40. issn: 0004-
3702. doi: 10.1016/j.artint.2013.12.001 (cited on page 197).

https://www.aaai.org/ocs/index.php/KR/KR2010/paper/view/1234
https://www.aaai.org/ocs/index.php/KR/KR2010/paper/view/1234
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1093/jigpal/jzr038
https://arxiv.org/abs/1706.02048
https://arxiv.org/abs/1706.02048
https://doi.org/10.1016/j.entcs.2005.07.029
https://doi.org/10.1016/j.artint.2013.12.001

210 Bibliography

[Dit+15] Hans van Ditmarsch, Jan van Eijck, Pere Pardo, Rahim Ramezanian,
and François Schwarzentruber. “Dynamic Gossip”. In: Preprint (2015).
url: https://arxiv.org/abs/1511.00867 (cited on pages 155, 157,
159, 164, 185, 197).

[Dit+16] Hans van Ditmarsch, Davide Grossi, Andreas Herzig, Wiebe van
der Hoek, and Louwe B. Kuijer. “Parameters for Epistemic Gossip
Problems”. In: Proceedings of LOFT 2016. 2016. url: https://
sites.google.com/site/lbkuijer/LOFT_Gossip_Revised.pdf
(cited on page 198).

[Dit+17] Hans van Ditmarsch, Jan van Eijck, Pere Pardo, Rahim Ramezanian,
and François Schwarzentruber. “Epistemic protocols for dynamic
gossip”. In: Journal of Applied Logic 20 (2017), pages 1–31. doi:
10.1016/j.jal.2016.12.001 (cited on pages 155, 157, 197).

[Dit+18] Hans van Ditmarsch, Malvin Gattinger, Louwe B. Kuijer, and Pere
Pardo. How Come You Don’t Call Me? Common Knowledge of Gossip
Protocols. Submitted. 2018 (cited on page 8).

[Dit03] Hans van Ditmarsch. “The Russian Cards problem”. In: Studia Logica
75.1 (2003), pages 31–62. doi: 10.1023/A:1026168632319 (cited on
pages 120, 121).

[DK08] Hans van Ditmarsch and Barteld Kooi. “Semantic Results for Ontic
and Epistemic Change”. In: Logic and the Foundations of Game and
Decision Theory (LOFT 7). Volume 3. Texts in logic and games. Am-
sterdam University Press, 2008, pages 87–117. isbn: 9789089640260.
url: https://arxiv.org/abs/cs/0610093 (cited on pages 20, 23,
202).

[DKS17] Hans van Ditmarsch, Ioannis Kokkinis, and Anders Stockmarr.
“Reachability and Expectation in Gossiping”. In: Proceedings of
PRIMA 2017. 2017. url: https : / / sites . google . com / site /
ykokkinis/prima17.pdf (cited on page 157).

[DM17] Chris Dornan and Simon Marlow. Alex: A lexical analyser generator
for Haskell. Version 3.2.3. Sept. 8, 2017. url: https://www.haskell.
org/alex (cited on pages 95, 104).

[DRV08] Hans P. van Ditmarsch, Ji Ruan, and Rineke Verbrugge. “Sum and
Product in Dynamic Epistemic Logic”. In: Journal of Logic and
Computation 18.4 (2008), pages 563–588. doi: 10.1093/logcom/
exm081 (cited on pages 122, 124).

https://arxiv.org/abs/1511.00867
https://sites.google.com/site/lbkuijer/LOFT_Gossip_Revised.pdf
https://sites.google.com/site/lbkuijer/LOFT_Gossip_Revised.pdf
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1023/A:1026168632319
https://arxiv.org/abs/cs/0610093
https://sites.google.com/site/ykokkinis/prima17.pdf
https://sites.google.com/site/ykokkinis/prima17.pdf
https://www.haskell.org/alex
https://www.haskell.org/alex
https://doi.org/10.1093/logcom/exm081
https://doi.org/10.1093/logcom/exm081

Bibliography 211

[EG15] Jan van Eijck and Malvin Gattinger. “Elements of Epistemic Crypto
Logic”. In: Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems. AAMAS ’15. Istanbul,
Turkey: International Foundation for Autonomous Agents and Multi-
agent Systems, 2015, pages 1795–1796. isbn: 978-1-4503-3413-6. url:
https://dl.acm.org/citation.cfm?id=2773441 (cited on pages 8,
134, 135, 137).

[EGW17] Jan van Eijck, Malvin Gattinger, and Yanjing Wang. “Knowing Values
and Public Inspection”. In: Seventh Indian Conference on Logic and
Its Applications: ICLA 2017, Kanpur, India. Edited by Sujata Ghosh
and Sanjiva Prasad. 2017, pages 77–90. isbn: 978-3-662-54069-5. doi:
10.1007/978-3-662-54069-5_7. url: https://arxiv.org/abs/
1609.03338 (cited on pages 8, 151).

[Eij07] Jan van Eijck. “DEMO—a demo of epistemic modelling”. In: In-
teractive Logic. Selected Papers from the 7th Augustus de Morgan
Workshop, London. Volume 1. 2007, pages 303–362. url: https:
//homepages.cwi.nl/~jve/papers/07/pdfs/DEMO_IL.pdf (cited
on pages 37, 87).

[Eij11] Jan van Eijck. Demo Light. Technical report. CWI, 2011. url: https:
/ / homepages . cwi . nl / ~jve / software / demolight0/ (cited on
page 87).

[Eij13] Jan van Eijck. PRODEMO: Implementation of Model Checking for
EPL. Technical report. CWI, 2013. url: https://homepages.cwi.
nl/~jve/software/prodemo/PRODEMO.pdf (cited on page 87).

[Eij14a] Jan van Eijck. DEMO-S5. Technical report. CWI, 2014. url: https:
//homepages.cwi.nl/~jve/software/demo_s5 (cited on pages 31,
37, 87, 104, 109, 122).

[Eij14b] Jan van Eijck. “Dynamic epistemic logics”. In: Johan van Benthem
on Logic and Information Dynamics. Edited by Alexandru Baltag
and Sonja Smets. 2014, pages 175–202. isbn: 978-3-319-06025-5. doi:
10.1007/978-3-319-06025-5_7 (cited on page 63).

[Eij14c] Jan van Eijck. Relations, Equivalences, Partitions. Technical report.
CWI, 2014. url: https://homepages.cwi.nl/~jve/software/
demo_s5/EREL.pdf (cited on page 30).

[Ell+04] John Ellson, Emden R Gansner, Eleftherios Koutsofios, Stephen C
North, and Gordon Woodhull. “Graphviz and dynagraph — static
and dynamic graph drawing tools”. In: Graph drawing software (2004),
pages 127–148 (cited on pages 87, 104).

https://dl.acm.org/citation.cfm?id=2773441
https://doi.org/10.1007/978-3-662-54069-5_7
https://arxiv.org/abs/1609.03338
https://arxiv.org/abs/1609.03338
https://homepages.cwi.nl/~jve/papers/07/pdfs/DEMO_IL.pdf
https://homepages.cwi.nl/~jve/papers/07/pdfs/DEMO_IL.pdf
https://homepages.cwi.nl/~jve/software/demolight0/
https://homepages.cwi.nl/~jve/software/demolight0/
https://homepages.cwi.nl/~jve/software/prodemo/PRODEMO.pdf
https://homepages.cwi.nl/~jve/software/prodemo/PRODEMO.pdf
https://homepages.cwi.nl/~jve/software/demo_s5
https://homepages.cwi.nl/~jve/software/demo_s5
https://doi.org/10.1007/978-3-319-06025-5_7
https://homepages.cwi.nl/~jve/software/demo_s5/EREL.pdf
https://homepages.cwi.nl/~jve/software/demo_s5/EREL.pdf

212 Bibliography

[Eme08] E. Allen Emerson. “The Beginning of Model Checking: A Personal
Perspective”. In: 25 Years of Model Checking: History, Achievements,
Perspectives. Edited by Orna Grumberg and Helmut Veith. 2008,
pages 27–45. isbn: 978-3-540-69850-0. doi: 10.1007/978-3-540-
69850-0_2 (cited on page 1).

[Eng+15] Thorsten Engesser, Thomas Bolander, Robert Mattmüller, and Bern-
hard Nebel. “Cooperative Epistemic Multi-Agent Planning With Im-
plicit Coordination”. In: ICAPS Proceedings of the 3rd Workshop on
Distributed and Multi-Agent Planning (DMAP-2015) (2015), pages 68–
76. url: https://is.gd/DMAP2015_p68 (cited on pages 121, 128).

[EO07] Jan van Eijck and Simona Orzan. “Epistemic Verification of Ano-
nymity”. In: Electronic Notes in Theoretical Computer Science 168
(2007). Second International Workshop on Views on Designing Com-
plex Architectures (VODCA 2006), pages 159–174. issn: 1571-0661.
doi: 10.1016/j.entcs.2006.08.026 (cited on page 116).

[ERS12] Jan van Eijck, Ji Ruan, and Tomasz Sadzik. “Action emulation”. In:
Synthese 185.1 (2012), pages 131–151. doi: 10.1007/s11229-012-
0083-1 (cited on pages 55, 202).

[Eug+04] Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and
Laurent Massoulié. “Epidemic Information Dissemination in Dis-
tributed Systems”. In: IEEE Computer 37.5 (2004), pages 60–67. doi:
10.1109/MC.2004.1297243 (cited on page 155).

[Fag+95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about knowledge. Volume 4. MIT press Cambridge, 1995.
isbn: 9780262061629 (cited on pages 13, 14, 45).

[Fan17] Jeremy Fantl. “Knowledge How”. In: The Stanford Encyclopedia of Phi-
losophy. Edited by Edward N. Zalta. Fall 2017. Metaphysics Research
Lab, Stanford University, 2017. url: https://plato.stanford.edu/
archives/fall2017/entries/knowledge-how/ (cited on page 131).

[FG16] David Fernández-Duque and Valentin Goranko. “Secure aggregation
of distributed information: how a team of agents can safely share
secrets in front of a spy”. In: Discrete Applied Mathematics 198
(2016), pages 118–135. doi: 10.1016/j.dam.2015.06.022 (cited on
pages 120, 130).

[Fit03] Melvin Fitting. “Bisimulations and Boolean Vectors”. In: Advances in
Modal Logic. Volume 4. King’s College Publications, 2003, pages 97–
126. url: http://www.aiml.net/volumes/volume4/Fitting.ps
(cited on page 62).

https://doi.org/10.1007/978-3-540-69850-0_2
https://doi.org/10.1007/978-3-540-69850-0_2
https://is.gd/DMAP2015_p68
https://doi.org/10.1016/j.entcs.2006.08.026
https://doi.org/10.1007/s11229-012-0083-1
https://doi.org/10.1007/s11229-012-0083-1
https://doi.org/10.1109/MC.2004.1297243
https://plato.stanford.edu/archives/fall2017/entries/knowledge-how/
https://plato.stanford.edu/archives/fall2017/entries/knowledge-how/
https://doi.org/10.1016/j.dam.2015.06.022
http://www.aiml.net/volumes/volume4/Fitting.ps

Bibliography 213

[Fre69] Hans Freudenthal. “Formulering van het ’som-en-product’-probleem”.
In: Nieuw Archief voor Wiskunde 17 (1969), page 152 (cited on
page 122).

[Gat14] Malvin Gattinger. “Dynamic Epistemic Logic for Guessing Games and
Cryptographic Protocols”. See also https://w4eg.de/malvin/illc/
thesis/. Master’s thesis. ILLC, University of Amsterdam, 2014. url:
https://eprints.illc.uva.nl/934/ (cited on pages 87, 134, 135,
136, 137).

[Gat16] Malvin Gattinger. “A Model Checker for the Hardest Logic Puzzle
Ever”. In: PhDs in Logic VIII, Darmstadt. 2016 (cited on pages 8,
129).

[Gat17a] Malvin Gattinger. HasCacBDD. Version 0.1.0.0. Mar. 9, 2017. url:
https://github.com/m4lvin/HasCacBDD (cited on page 92).

[Gat17b] Malvin Gattinger. “Towards Symbolic Factual Change in DEL”. In:
Proceedings of the ESSLLI 2017 Student Session. Edited by Karoliina
Lohiniva and Johannes Wahle. 2017, pages 14–24. url: https://is.
gd/symbolicfactualchange (cited on page 7).

[Gat18] Malvin Gattinger. SMCDEL — An Implementation of Symbolic Model
Checking for Dynamic Epistemic Logic with Binary Decision Diagrams.
Version 1.0.0. Feb. 26, 2018. doi: 10.5281/zenodo.1184686. url:
https://github.com/jrclogic/SMCDEL (cited on pages 7, 92, 110,
112).

[GJ04] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited”. In:
Advances in Cryptology - EUROCRYPT 2004. Edited by Christian
Cachin and Jan L. Camenisch. 2004, pages 456–473. isbn: 978-3-
540-24676-3. doi: 10.1007/978- 3- 540- 24676- 3_27 (cited on
page 130).

[GM04] Peter Gammie and Ron van der Meyden. “MCK: Model Checking
the Logic of Knowledge”. In: Computer Aided Verification. 2004,
pages 479–483. doi: 10.1007/978-3-540-27813-9_41 (cited on
page 86).

[GM17] Andy Gill and Simon Marlow. Happy: the parser generator for Haskell.
Version 1.19.8. Oct. 12, 2017. url: https://www.haskell.org/
happy (cited on pages 95, 104).

[GR02] Nikos Gorogiannis and Mark D. Ryan. “Implementation of Belief
Change Operators Using BDDs”. In: Studia Logica 70.1 (2002),
pages 131–156. issn: 0039-3215. doi: 10.1023/A:1014610426691
(cited on pages 32, 33, 82).

https://w4eg.de/malvin/illc/thesis/
https://w4eg.de/malvin/illc/thesis/
https://eprints.illc.uva.nl/934/
https://github.com/m4lvin/HasCacBDD
https://is.gd/symbolicfactualchange
https://is.gd/symbolicfactualchange
https://doi.org/10.5281/zenodo.1184686
https://github.com/jrclogic/SMCDEL
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-540-27813-9_41
https://www.haskell.org/happy
https://www.haskell.org/happy
https://doi.org/10.1023/A:1014610426691

214 Bibliography

[GS11] Nina Gierasimczuk and Jakub Szymanik. “A note on a generalization
of the Muddy Children puzzle”. In: Proceedings of the 13th Confer-
ence on Theoretical Aspects of Rationality and Knowledge. Edited
by Krzysztof R. Apt. TARK 2011. 2011, pages 257–264. isbn: 978-
1-4503-0707-9. doi: 10.1145/2000378.2000409 (cited on pages 104,
110, 111, 201).

[GT17] Tetsuji Goto and Satoshi Tojo. DEMO+A. Version 0.0.1.0. Sept. 5,
2017. url: http://cirrus.jaist.ac.jp:8080/soft/demo_plus_
a/ (cited on page 87).

[GV17] Jan Friso Groote and Erik P. de Vink. “Problem Solving Using Process
Algebra Considered Insightful”. In: ModelEd, TestEd, TrustEd: Essays
Dedicated to Ed Brinksma on the Occasion of His 60th Birthday.
Edited by Joost-Pieter Katoen, Rom Langerak, and Arend Rensink.
2017, pages 48–63. isbn: 978-3-319-68270-9. doi: 10.1007/978-3-
319-68270-9_3 (cited on page 130).

[GW16] Tau Gu and Yanjing Wang. ““Knowing value” logic as a normal modal
logic”. In: edited by Lev Beklemishev, Stéphane Demri, and András
Máté. Volume 11. 2016, pages 362–381. url: http://www.aiml.net/
volumes/volume11/Gu-Wang.pdf (cited on pages 3, 138, 139).

[Hae+16] Bernhard Haeupler, Gopal Pandurangan, David Peleg, Rajmohan Ra-
jaraman, and Zhifeng Sun. “Discovery Through Gossip”. In: Random
Structures & Algorithms 48.3 (2016), pages 565–587. issn: 1098-2418.
doi: 10.1002/rsa.20621 (cited on page 155).

[Hae15] Bernhard Haeupler. “Simple, Fast and Deterministic Gossip and
Rumor Spreading”. In: Journal of the ACM 62.6 (2015). doi: 10.
1145/2767126 (cited on page 197).

[Hal13] James Hales. “Arbitrary Action Model Logic and Action Model Syn-
thesis”. In: 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science. IEEE, 2013. doi: 10.1109/lics.2013.31 (cited
on pages 24, 202).

[Hen17] Simon Hengel. Hspec: A Testing Framework for Haskell. Version 2.4.4.
June 16, 2017. url: https://hspec.github.io/ (cited on page 106).

[HHL88] Sandra M Hedetniemi, Stephen T Hedetniemi, and Arthur L Liestman.
“A survey of gossiping and broadcasting in communication networks”.
In: Networks 18.4 (1988), pages 319–349. doi: 10.1002/net.323018
0406 (cited on pages 155, 156).

[Hil13] David Hilbert. David Hilbert’s Lectures on the Foundations of Arith-
metic and Logic 1917-1933. Edited by Michael Hallett, Ulrich Majer,
and Dirk Schlimm. Volume 3. 2013. isbn: 978-3-540-20578-4. doi:
10.1007/978-3-540-69444-1 (cited on page 97).

https://doi.org/10.1145/2000378.2000409
http://cirrus.jaist.ac.jp:8080/soft/demo_plus_a/
http://cirrus.jaist.ac.jp:8080/soft/demo_plus_a/
https://doi.org/10.1007/978-3-319-68270-9_3
https://doi.org/10.1007/978-3-319-68270-9_3
http://www.aiml.net/volumes/volume11/Gu-Wang.pdf
http://www.aiml.net/volumes/volume11/Gu-Wang.pdf
https://doi.org/10.1002/rsa.20621
https://doi.org/10.1145/2767126
https://doi.org/10.1145/2767126
https://doi.org/10.1109/lics.2013.31
https://hspec.github.io/
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1007/978-3-540-69444-1

Bibliography 215

[HLL99] Mor Harchol-Balter, Frank Thomson Leighton, and Daniel Lewin.
“Resource Discovery in Distributed Networks”. In: Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC). 1999, pages 229–237. doi: 10.1145/301308.
301362 (cited on pages 156, 197).

[HLM15] Andreas Herzig, Emiliano Lorini, and Faustine Maffre. “A Poor Man’s
Epistemic Logic Based on Propositional Assignment and Higher-Order
Observation”. In: LORI 2015: Logic, Rationality, and Interaction
(LORI) 5th International Workshop, Taipei, Taiwan, October 28-30.
Edited by Wiebe van der Hoek, Wesley H. Holliday, and Wen-fang
Wang. 2015, pages 156–168. doi: 10.1007/978-3-662-48561-3_13
(cited on page 38).

[HM17] Andreas Herzig and Faustine Maffre. “How to share knowledge by
gossiping”. In: AI Communications 30.1 (2017), pages 1–17. doi:
10.3233/aic-170723 (cited on pages 38, 157).

[HN16] Kristine Harjes and Pavel Naumov. “Functional Dependence in Strate-
gic Games”. In: Notre Dame Journal Formal Logic 57.3 (2016),
pages 341–353. doi: 10.1215/00294527-3479096 (cited on page 154).

[Hos09] Tomohiro Hoshi. “Epistemic Dynamics and Protocol Information”.
PhD thesis. Amsterdam University, 2009. url: https://www.illc.
uva.nl/cms/Research/Publications/Dissertations/DS-2009-
08.text.pdf (cited on page 197).

[HP17] Joseph Y Halpern and Rafael Pass. “A Knowledge-Based Analysis of
the Blockchain”. In: Proceedings of the 16th Conference on Theoretical
Aspects of Rationality and Knowledge. Edited by Jérôme Lang. TARK
2017. 2017. doi: 10.4204/EPTCS.251.22 (cited on page 156).

[HS15] Vincent Hendricks and John Symons. “Epistemic Logic”. In: The
Stanford Encyclopedia of Philosophy. Edited by Edward N. Zalta.
Fall 2015. Metaphysics Research Lab, Stanford University, 2015. url:
https://plato.stanford.edu/archives/fall2015/entries/
logic-epistemic/ (cited on page 15).

[HST15] Ryo Hatano, Katsuhiko Sano, and Satoshi Tojo. “Linear Alge-
braic Semantics for Multi-agent Communication”. In: Proceedings of
the International Conference on Agents and Artificial Intelligence.
SCITEPRESS Science and Technology Publications, 2015. doi:
10.5220/0005219001740181 (cited on page 62).

[Hur00] C. A. J. Hurkens. “Spreading gossip efficiently”. In: Nieuw Archief
voor Wiskunde 5.1 (2000), pages 208–210. url: http://www.nie
uwarchief.nl/serie5/pdf/naw5-2000-01-2-208.pdf (cited on
page 156).

https://doi.org/10.1145/301308.301362
https://doi.org/10.1145/301308.301362
https://doi.org/10.1007/978-3-662-48561-3_13
https://doi.org/10.3233/aic-170723
https://doi.org/10.1215/00294527-3479096
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2009-08.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2009-08.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2009-08.text.pdf
https://doi.org/10.4204/EPTCS.251.22
https://plato.stanford.edu/archives/fall2015/entries/logic-epistemic/
https://plato.stanford.edu/archives/fall2015/entries/logic-epistemic/
https://doi.org/10.5220/0005219001740181
http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-2-208.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-2-208.pdf

216 Bibliography

[HV91] Joseph Y. Halpern and Moshe Y. Vardi. “Model Checking vs. Theorem
Proving: A Manifesto”. In: Artificial Intelligence and Mathematical
Theory of Computation (Papers in Honor of John McCarthy). Edited
by Vladimir Lifschitz. 1991, pages 151–176. doi: 10.1016/b978-0-
12-450010-5.50015-3 (cited on page 29).

[Irv16] Mix Irving. Gossiping Securely is the new Email. Feb. 13, 2016. url:
https://is.gd/IrvingGossipingSecurely (cited on pages 3, 155).

[Kar+00] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and
Berthold Vöcking. “Randomized Rumor Spreading”. In: 41st An-
nual Symposium on Foundations of Computer Science, FOCS. 2000,
pages 565–574. doi: 10.1109/SFCS.2000.892324 (cited on pages 156,
197).

[Kle17] Rana Klein. “The Logical Dynamics of Gossip: an analysis in Dy-
namic Epistemic Logic”. Master’s thesis. ILLC, University of Amster-
dam, 2017. url: https://eprints.illc.uva.nl/1567/ (cited on
page 155).

[Kme16] Edward A. Kmett. tagged: Haskell 98 phantom types to avoid unsafely
passing dummy arguments. Version 0.8.5. July 23, 2016. url: htt
ps://hackage.haskell.org/package/tagged-0.8.5 (cited on
page 99).

[Knu08] Donald E. Knuth. Fun With Binary Decision Diagrams (BDDs). June
2008. url: https://youtu.be/SQE21efsf7Y (cited on pages 34, 36).

[Knu11] Donald E. Knuth. The Art of Computer Programming. Combinatorial
Algorithms, Part 1. Volume 4A. Addison-Wesley Professional, 2011.
url: https://cs.stanford.edu/~uno/taocp.html (cited on
page 36).

[Knu84] Donald E. Knuth. “Literate Programming”. In: The Computer Journal
27.2 (1984), pages 97–111. doi: 10.1093/comjnl/27.2.97 (cited on
page 85).

[Kov11] Daniel L. Kovacs. BNF definition of PDDL 3.1. 2011. url: https:
//is.gd/PDDL2011 (cited on page 128).

[KR11a] Barteld P. Kooi and Bryan Renne. “Generalized arrow update logic”.
In: Proceedings of the 13th Conference on Theoretical Aspects of
Rationality and Knowledge. Edited by Krzysztof R. Apt. TARK 2011.
2011, pages 205–211. doi: 10.1145/2000378.2000403 (cited on
page 25).

[KR11b] Barteld Kooi and Bryan Renne. “Arrow Update Logic”. In: The
Review of Symbolic Logic 4.4 (2011), pages 536–559. doi: 10.1017/
S1755020311000189 (cited on pages 24, 71, 73).

https://doi.org/10.1016/b978-0-12-450010-5.50015-3
https://doi.org/10.1016/b978-0-12-450010-5.50015-3
https://is.gd/IrvingGossipingSecurely
https://doi.org/10.1109/SFCS.2000.892324
https://eprints.illc.uva.nl/1567/
https://hackage.haskell.org/package/tagged-0.8.5
https://hackage.haskell.org/package/tagged-0.8.5
https://youtu.be/SQE21efsf7Y
https://cs.stanford.edu/~uno/taocp.html
https://doi.org/10.1093/comjnl/27.2.97
https://is.gd/PDDL2011
https://is.gd/PDDL2011
https://doi.org/10.1145/2000378.2000403
https://doi.org/10.1017/S1755020311000189
https://doi.org/10.1017/S1755020311000189

Bibliography 217

[Kur+95] Ágnes Kurucz, István Németi, Ildikó Sain, and András Simon. “De-
cidable and undecidable logics with a binary modality”. In: Journal
of Logic, Language and Information 4.3 (Sept. 1995), pages 191–206.
issn: 1572-9583. doi: 10.1007/BF01049412 (cited on page 82).

[LF17] Esteban Landerreche and David Fernández-Duque. “A case study in
almost-perfect security for unconditionally secure communication”. In:
Designs, Codes and Cryptography 83.1 (2017), pages 145–168. issn:
1573-7586. doi: 10.1007/s10623-016-0210-y (cited on page 120).

[Lip11] Miran Lipovača. Learn You a Haskell for Great Good! 2011. isbn:
978-1-59327-283-8. url: http://learnyouahaskell.com/ (cited on
page 89).

[Lit53] J.E. Littlewood. A Mathematician’s Miscellany. London: Methuen,
1953. url: https://archive.org/details/mathematiciansmi033
496mbp (cited on page 44).

[LMR00] Alessio R. Lomuscio, Ron van der Meyden, and Mark Ryan. “Knowl-
edge in Multiagent Systems: Initial Configurations and Broadcast”. In:
Transactions on Computational Logic (TOCL) 1.2 (2000), pages 247–
284. issn: 1529-3785. doi: 10 . 1145 / 359496 . 359527 (cited on
page 38).

[LP15] Alessio Lomuscio and Wojciech Penczek. “Model Checking Temporal
Epistemic Logic”. In: Handbook of Epistemic Logic. Edited by Hans
van Ditmarsch, Joseph Y. Halpern, Wiebe van der Hoek, and Barteld
Kooi. College Publications, 2015, pages 397–441. isbn: 978-1-84890-
158-2. url: https://is.gd/LomPen2015MCTEL (cited on page 25).

[LQR15] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. “MCMAS: an
open-source model checker for the verification of multi-agent systems”.
In: International Journal on Software Tools for Technology Transfer
(2015), pages 1–22. issn: 1433-2779. doi: 10.1007/s10009-015-
0378-x (cited on pages 31, 37, 86, 112, 117, 118, 119).

[LR06] Alessio Lomuscio and Franco Raimondi. “MCMAS: A model checker
for multi-agent systems”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS
2006. 2006, pages 450–454. doi: 10.1007/11691372_31 (cited on
page 86).

[LSX13] Guanfeng Lv, Kaile Su, and Yanyan Xu. “CacBDD: A BDD Package
with Dynamic Cache Management”. In: Proceedings of the 25th Inter-
national Conference on Computer Aided Verification. CAV’13. 2013,
pages 229–234. isbn: 978-3-642-39798-1. doi: 10.1007/978-3-642-
39799-8_15 (cited on pages 92, 110).

https://doi.org/10.1007/BF01049412
https://doi.org/10.1007/s10623-016-0210-y
http://learnyouahaskell.com/
https://archive.org/details/mathematiciansmi033496mbp
https://archive.org/details/mathematiciansmi033496mbp
https://doi.org/10.1145/359496.359527
https://is.gd/LomPen2015MCTEL
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/978-3-642-39799-8_15

218 Bibliography

[LT93] Nancy G. Leveson and Clark S. Turner. “An investigation of the
Therac-25 accidents”. In: Computer 26.7 (1993), pages 18–41. doi:
10.1109/MC.1993.274940 (cited on page 1).

[Luo+08] Xiangyu Luo, Kaile Su, Abdul Sattar, and Yan Chen. “Solving Sum
and Product Riddle via BDD-Based Model Checking”. In: 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology. IEEE, 2008, pages 630–633. doi: 10.
1109/WIIAT.2008.277 (cited on pages 31, 38, 123).

[Lut06] Carsten Lutz. “Complexity and Succinctness of Public Announcement
Logic”. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems. AAMAS ’06. Hakodate,
Japan: ACM, 2006, pages 137–143. isbn: 1-59593-303-4. doi: 10.
1145/1160633.1160657 (cited on pages 19, 43).

[LW13] Fenrong Liu and Yanjing Wang. “Reasoning about agent types and
the hardest logic puzzle ever”. In: Minds and Machines 23.1 (2013),
pages 123–161. doi: 10 . 1007 / s11023 - 012 - 9287 - x (cited on
page 129).

[McD+98] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL –
The Planning Domain Definition Language – Version 1.2. Technical
report. CVC TR-98-003. Yale Center for Computational Vision and
Control, 1998. url: https://is.gd/PDDL1988 (cited on page 128).

[McM93] Kenneth L. McMillan. “Symbolic Model Checking: an Approach to the
State Explosion Problem”. PhD thesis. Carnegie Mellon University,
1993 (cited on page 86).

[Mei15] Reshef Meir. “Plurality Voting Under Uncertainty”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI
2015. 2015, pages 2103–2109. isbn: 0-262-51129-0. url: https://
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9784
(cited on page 198).

[MN10] Sara Miner More and Pavel Naumov. “An Independence Relation
for Sets of Secrets”. In: Studia Logica 94.1 (2010), pages 73–85. doi:
10.1007/s11225-010-9223-0 (cited on page 154).

[MS04] Ron van der Meyden and Kaile Su. “Symbolic Model Checking the
Knowledge of the Dining Cryptographers”. In: 17th IEEE Computer
Security Foundations Workshop. 2004, pages 280–291. isbn: 0-7695-
2169-X. doi: 10.1109/CSFW.2004.1310747 (cited on pages 31,
38).

https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/WIIAT.2008.277
https://doi.org/10.1109/WIIAT.2008.277
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.1007/s11023-012-9287-x
https://is.gd/PDDL1988
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9784
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9784
https://doi.org/10.1007/s11225-010-9223-0
https://doi.org/10.1109/CSFW.2004.1310747

Bibliography 219

[Nau12] Pavel Naumov. “Independence in Information Spaces”. In: Studia
Logica 100.5 (2012), pages 953–973. doi: 10.1007/s11225-012-
9435-6 (cited on page 154).

[NN14] Pavel Naumov and Brittany Nicholls. “Rationally Functional Depen-
dence”. In: Journal of Philosophical Logic 43.2-3 (2014), pages 603–
616. doi: 10.1007/s10992-013-9283-5 (cited on page 154).

[OR94] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory.
Electronic edition, freely accessible at https://books.osborne.
economics.utoronto.ca/. The MIT Press, 1994. isbn: 0-262-65040-
1 (cited on page 173).

[OSG08] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World
Haskell. O’Reilly Media, 2008. isbn: 978-0596514983. url: http:
//book.realworldhaskell.org/ (cited on page 89).

[OSu16] Bryan O’Sullivan. Criterion. 2016. url: http://www.serpentine.
com/criterion (cited on pages 110, 125).

[Per14] Andrés Perea. “Belief in the opponents’ future rationality”. In: Games
and Economic Behavior 83.Supplement C (2014), pages 231–254. issn:
0899-8256. doi: 10.1016/j.geb.2013.11.008 (cited on pages 173,
197).

[Pla07] Jan Plaza. “Logics of public communications”. In: Synthese 158.2
(2007). Originally published in 1989., pages 165–179. issn: 1573-0964.
doi: 10.1007/s11229-007-9168-7 (cited on pages 17, 138, 139,
153).

[Pol15] Iris van de Pol. “How Difficult is it to Think that you Think that I
Think that...? A DEL-based Computational-level Model of Theory
of Mind and its Complexity”. Master’s thesis. ILLC, University of
Amsterdam, 2015. url: https://eprints.illc.uva.nl/955/
(cited on page 126).

[PRS15] Iris van de Pol, Iris van Rooij, and Jakub Szymanik. “Parameterized
Complexity Results for a Model of Theory of Mind Based on Dy-
namic Epistemic Logic”. In: Proceedings of the 15th Conference on
Theoretical Aspects of Rationality and Knowledge. TARK 2015. 2015,
pages 246–263. doi: 10.4204/EPTCS.215.18 (cited on page 126).

[PTW13] Rohit Parikh, Çağil Taşdemir, and Andreas Witzel. “The Power of
Knowledge in Games”. In: International Game Theory Review 15.4
(2013). doi: 10.1142/S0219198913400306 (cited on page 198).

https://doi.org/10.1007/s11225-012-9435-6
https://doi.org/10.1007/s11225-012-9435-6
https://doi.org/10.1007/s10992-013-9283-5
https://books.osborne.economics.utoronto.ca/
https://books.osborne.economics.utoronto.ca/
http://book.realworldhaskell.org/
http://book.realworldhaskell.org/
http://www.serpentine.com/criterion
http://www.serpentine.com/criterion
https://doi.org/10.1016/j.geb.2013.11.008
https://doi.org/10.1007/s11229-007-9168-7
https://eprints.illc.uva.nl/955/
https://doi.org/10.4204/EPTCS.215.18
https://doi.org/10.1142/S0219198913400306

220 Bibliography

[SLZ04] Kaile Su, Guanfeng Lv, and Yan Zhang. “Reasoning about Knowl-
edge by Variable Forgetting”. In: (2004). Edited by Didier Dubois,
Christopher Welty, and Mary-Anne Williams, pages 576–586. url:
https://www.aaai.org/Papers/KR/2004/KR04-060.pdf (cited on
page 38).

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPEC-
TRE: A Fast and Scalable Cryptocurrency Protocol. Cryptology ePrint
Archive, Report 2016/1159. 2016. url: https://eprint.iacr.org/
2016/1159 (cited on pages 3, 156).

[Som12] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.5.0.
Technical report. Department of Electrical, Computer, and Energy
Engineering, University of Colorado at Boulder, 2012. url: http:
//vlsi.colorado.edu/~fabio/CUDD/ (cited on pages 93, 110).

[Spi11] SpikedMath.com. Three logicians walk into a bar. Creative Commons
BY-NC-SA. Sept. 22, 2011. url: http://spikedmath.com/445.html
(cited on page 114).

[SSL07] Kaile Su, Abdul Sattar, and Xiangyu Luo. “Model Checking Temporal
Logics of Knowledge Via OBDDs”. In: The Computer Journal 50.4
(2007), pages 403–420. doi: 10.1093/comjnl/bxm009 (cited on
pages 31, 37, 38, 86, 118).

[Swe15] Latanya Sweeney. Only You, Your Doctor, and Many Others May
Know. 2015. url: https : / / techscience . org / a / 2015092903/
(cited on page 138).

[Tij71] Robert Tijdeman. “On a telephone problem”. In: Nieuw Archief voor
Wiskunde 3.19 (1971), pages 188–192 (cited on pages 155, 156).

[Vää07] Jouko Väänänen. Dependence Logic: A New Approach to Indepen-
dence Friendly Logic. London Mathematical Society Student Texts.
Cambridge: Cambridge University Press, 2007. isbn: 9780521876599
(cited on page 153).

[Var95] Moshe Y. Vardi. “On the Complexity of Bounded-variable Queries (Ex-
tended Abstract)”. In: Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems.
Edited by Mihalis Yannakakis. 1995, pages 266–276. isbn: 0-89791-
730-8. doi: 10.1145/212433.212474 (cited on page 79).

[VR07] Hans Van Ditmarsch and Ji Ruan. “Model Checking Logic Puzzles”.
In: Annales du Lamsade 8 (2007). url: https://hal.archives-
ouvertes.fr/hal-00188953 (cited on pages 87, 130).

[Wag17] Jana Wagemaker. “Gossip in NetKAT”. Master’s thesis. ILLC, Uni-
versity of Amsterdam, 2017. url: https://eprints.illc.uva.nl/
1552/ (cited on page 198).

https://www.aaai.org/Papers/KR/2004/KR04-060.pdf
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://spikedmath.com/445.html
https://doi.org/10.1093/comjnl/bxm009
https://techscience.org/a/2015092903/
https://doi.org/10.1145/212433.212474
https://hal.archives-ouvertes.fr/hal-00188953
https://hal.archives-ouvertes.fr/hal-00188953
https://eprints.illc.uva.nl/1552/
https://eprints.illc.uva.nl/1552/

Bibliography 221

[Wal15] Adam Walker. cudd: Bindings to the CUDD binary decision diagrams
library. Version 0.1.0.0 for CUDD 2.5.0. 2015. url: https://hackage.
haskell.org/package/cudd-0.1.0.0 (cited on page 93).

[Wan10] Yanjing Wang. “Epistemic Modelling and Protocol Dynamics”. PhD
thesis. Amsterdam University, 2010. url: https://www.illc.uva.
nl/cms/Research/Publications/Dissertations/DS-2010-06.
text.pdf (cited on page 197).

[Wan18] Yanjing Wang. “Beyond Knowing That: A New Generation of
Epistemic Logics”. In: Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics. Edited by Hans van Ditmarsch and Gabriel
Sandu. Springer International Publishing, 2018, pages 499–533. isbn:
978-3-319-62864-6. doi: 10.1007/978-3-319-62864-6_21 (cited on
pages 3, 131).

[WC13] Yanjing Wang and Qinxiang Cao. “On axiomatizations of public
announcement logic”. In: Synthese 190.1 (2013), pages 103–134. issn:
1573-0964. doi: 10.1007/s11229-012-0233-5 (cited on page 18).

[WF13] Yanjing Wang and Jie Fan. “Knowing That, Knowing What, and
Public Communication: Public Announcement Logic with Kv Opera-
tors”. In: Twenty-Third International Joint Conference on Artificial
Intelligence – IJCAI ’13. 2013, pages 1147–1154. url: https://
www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6742
(cited on pages 138, 139).

[WF14] Yanjing Wang and Jie Fan. “Conditionally Knowing What”. In: Ad-
vances in Modal Logic. Edited by Rajeev Goré, Barteld Kooi, and Agi
Kurucz. Volume 10. 2014, pages 569–587. url: http://www.aiml.
net/volumes/volume10/Wang-Fan.pdf (cited on pages 138, 139).

[WL12] Yanjing Wang and Yanjun Li. “Y.: Not all those who wander are lost:
Dynamic epistemic reasoning in navigation”. In: Advances in Modal
Logic. Edited by Thomas Bolander, Torben Braüner, Silvio Ghilardi,
and Lawrence Moss. Volume 9. 2012, pages 559–580. isbn: 978-1-
84890-068-4. url: http://www.aiml.net/volumes/volume9/Wang-
Li.pdf (cited on pages 128, 130).

https://hackage.haskell.org/package/cudd-0.1.0.0
https://hackage.haskell.org/package/cudd-0.1.0.0
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2010-06.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2010-06.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2010-06.text.pdf
https://doi.org/10.1007/978-3-319-62864-6_21
https://doi.org/10.1007/s11229-012-0233-5
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6742
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6742
http://www.aiml.net/volumes/volume10/Wang-Fan.pdf
http://www.aiml.net/volumes/volume10/Wang-Fan.pdf
http://www.aiml.net/volumes/volume9/Wang-Li.pdf
http://www.aiml.net/volumes/volume9/Wang-Li.pdf

Samenvatting

Dynamische Epistemische Logica (DEL) kan complexe informatiescenario’s mo-
delleren op een intuïtieve manier. Bestaande implementaties zijn echter gebaseerd
op expliciete representaties die alleen voor kleine modellen werken. Daarom weten
we niet hoe bruikbaar DEL is voor grotere modellen en echte problemen.

Voor temporele logica’s daarentegen bestaan geavanceerde symbolische me-
thodes voor modelverificatie (model checking) die met succes worden toegepast,
bijvoorbeeld voor protocol- en hardwareverificatie. Symbolische modelverificatie
voor temporele logica is efficiënt en kan met zeer grote modellen werken.

In dit proefschrift slaan we een brug: nieuwe representaties van Kripke-modellen
als zogenaamde kennis- en geloofsstructuren (knowledge and belief structures) die
geschikt zijn voor symbolische methodes. Voor complexe epistemische gebeurte-
nissen en feitelijke verandering introduceren we kennis- en geloof-veranderende
structuren (knowledge and belief transformers), een symbolische vervanging voor
actiemodellen (action models).

Naast een gedetailleerde uitleg van de theorie presenteert het proefschrift
SMCDEL, een Haskell-implementatie van symbolische modelverificatie voor DEL
gebaseerd op binaire beslissingsdiagrammen.

Onze nieuwe methodes kunnen bekende epistemische problemen en puzzels
sneller oplossen dan bestaande implementaties van DEL. We vergelijken de
prestatie van onze nieuwe methodes ook met die van bestaande implementaties van
temporele logica. De resultaten tonen aan dat DEL de strijd met de concurrentie
aankan.

We kijken verder naar twee specifieke varianten van DEL voor concrete toe-
passingen. Ten eerste introduceren we Public Inspection Logic (PIL), een nieuwe
logica voor de kennis van variabelen en de dynamiek ervan. Ten tweede bestuderen
we het dynamische roddelprobleem en we analyseren het in epistemische logica.
We laten zien dat bestaande roddelprotocollen kunnen worden verbeterd, maar
we bewijzen ook dat het “Learn New Secrets”-protocol niet zodanig kan worden
versterkt dat het altijd succesvol uitgevoerd kan worden.

Dit onderzoek toont aan dat DEL een in de praktijk bruikbare logica is en
efficiënt geïmplementeerd kan worden. Het opent de deur zowel naar toepassingen
als naar verdere ontwikkeling van de theorie van symbolische representatie.

223

Abstract

Dynamic Epistemic Logic (DEL) can model complex information scenarios in a
way that appeals to logicians. However, its existing implementations are based
on explicit model checking which can only deal with small models, so we do not
know how DEL performs for larger and real-world problems.

For temporal logics, in contrast, symbolic model checking has been developed
and successfully applied, for example in protocol and hardware verification. Sym-
bolic model checkers for temporal logics are very efficient and can deal with very
large models.

In this thesis we build a bridge: new faithful representations of DEL models as
so-called knowledge and belief structures that allow for symbolic model checking.
For complex epistemic and factual change we introduce knowledge and belief
transformers, a symbolic replacement for action models.

Besides a detailed explanation of the theory, the thesis presents SMCDEL: a
Haskell implementation of symbolic model checking for DEL using Binary Decision
Diagrams.

Our new methods can solve well-known benchmark problems in epistemic
scenarios much faster than existing methods for DEL. We also compare the
performance of the implementation to existing model checkers for temporal logics
and show that DEL can compete with the established frameworks.

We zoom in on two specific variants of DEL for concrete applications. First,
we introduce Public Inspection Logic (PIL), a new framework for the knowledge
of variables and its dynamics. Second, we study the dynamic gossip problem
and how it can be analyzed with epistemic logic. We show that existing gossip
protocols can be improved, but also prove that no perfect strengthening of the
“Learn New Secrets” protocol exists.

This research allows DEL to join the club of efficiently implemented and
applicable logics. It opens up new directions, both towards real-world applications
and further development of the theory of symbolic representation.

225

Titles in the ILLC Dissertation Series:

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2010-12: Martin Mose Bentzen
Stit, Iit, and Deontic Logic for Action Types

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn
The neural basis of structure in language

ILLC DS-2012-01: Federico Sangati
Decomposing and Regenerating Syntactic Trees

ILLC DS-2012-02: Markos Mylonakis
Learning the Latent Structure of Translation

ILLC DS-2012-03: Edgar José Andrade Lotero
Models of Language: Towards a practice-based account of information in
natural language

ILLC DS-2012-04: Yurii Khomskii
Regularity Properties and Definability in the Real Number Continuum: idealized
forcing, polarized partitions, Hausdorff gaps and mad families in the projective
hierarchy.

ILLC DS-2012-05: David García Soriano
Query-Efficient Computation in Property Testing and Learning Theory

ILLC DS-2012-06: Dimitris Gakis
Contextual Metaphilosophy - The Case of Wittgenstein

ILLC DS-2012-07: Pietro Galliani
The Dynamics of Imperfect Information

ILLC DS-2012-08: Umberto Grandi
Binary Aggregation with Integrity Constraints

ILLC DS-2012-09: Wesley Halcrow Holliday
Knowing What Follows: Epistemic Closure and Epistemic Logic

ILLC DS-2012-10: Jeremy Meyers
Locations, Bodies, and Sets: A model theoretic investigation into nominalistic
mereologies

ILLC DS-2012-11: Floor Sietsma
Logics of Communication and Knowledge

ILLC DS-2012-12: Joris Dormans
Engineering emergence: applied theory for game design

ILLC DS-2013-01: Simon Pauw
Size Matters: Grounding Quantifiers in Spatial Perception

ILLC DS-2013-02: Virginie Fiutek
Playing with Knowledge and Belief

ILLC DS-2013-03: Giannicola Scarpa
Quantum entanglement in non-local games, graph parameters and zero-error
information theory

ILLC DS-2014-01: Machiel Keestra
Sculpting the Space of Actions. Explaining Human Action by Integrating
Intentions and Mechanisms

ILLC DS-2014-02: Thomas Icard
The Algorithmic Mind: A Study of Inference in Action

ILLC DS-2014-03: Harald A. Bastiaanse
Very, Many, Small, Penguins

ILLC DS-2014-04: Ben Rodenhäuser
A Matter of Trust: Dynamic Attitudes in Epistemic Logic

ILLC DS-2015-01: María Inés Crespo
Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and
Cognitive Science

ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro
Fragments of Fixpoint Logics: Automata and Expressiveness

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recogni-
tion & Recurrence

ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch
Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-environ-
ment systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

	Acknowledgments
	Introduction
	Key Contributions
	Outline
	Sources of the Chapters
	List of Symbols

	Basics
	Epistemic Logic on Kripke Models
	Public Announcement Logic
	Dynamic Epistemic Logic with Action Models
	Arrow Updates
	Temporal Logics on Interpreted Systems
	Comparing Dynamic and Temporal Logics
	Model Checking
	Symbolic Representation
	Binary Decision Diagrams

	Symbolic Model Checking DEL
	Related Work
	Knowledge Structures
	Example: Muddy Children
	Equivalence Proof for S5-PAL
	Knowledge Transformers
	Belief Structures
	Belief Transformers
	Symbolic Factual Change
	Equivalence Proof for the General Case
	Symbolic Language and Reduction Axioms
	Symbolic Bisimulations
	Redundancy and Optimization
	Other Similarity Types, Beyond Normality

	Implementing Symbolic DEL with BDDs
	Existing Epistemic Model Checkers
	From Mathematics to Haskell
	Knowledge Structures with BDDs
	S5 Input and Output Examples
	Type-Safe Vocabulary Management
	Belief Structures with BDDs
	Reduction and Optimization
	Transformers
	Module Overview
	Automated Testing
	Further Development

	Examples and Benchmarks
	Muddy Children
	Drinking Logicians
	Dining Cryptographers
	Comparing DEL and ETL model checkers
	Russian Cards
	Sum and Product
	Sally and Anne
	Epistemic Planning
	Conclusion and Future Work

	Knowing and Inspecting Values
	Binary Encoding
	Register Models
	Public Inspection
	Richer Languages
	Single-Agent PIL
	Multi-Agent PIL
	Conclusion and Future Work

	Dynamic Gossip
	Gossip graphs and calls
	Constructible Graphs and Subgraphs
	Epistemic Logic for Dynamic Gossip Protocols
	Syntax and Protocols
	Protocol-Dependent Knowledge

	Strengthening of Protocols
	What is strengthening?
	Syntactic Strengthening: Look-Ahead and One-Step
	Semantic Strengthening: Uniform Backward Defoliation
	Iterated Strengthenings
	Limits and Fixpoints of Strengthenings
	Detailed Example: the Diamond Gossip Graph

	Impossibility Result on Strengthening LNS
	Model Checking for Dynamic Gossip
	An Explicit Implementation
	Gossip in Standard DEL
	Knowing-whether, Knowing-that, Atomic-knowing
	Action Models for Gossip
	Symbolic Gossip

	Conclusion and Future Work

	Conclusion
	Bibliography
	Samenvatting
	Abstract

