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Introduction

@ Natural language exhibits patterns that are provably beyond
the context-free boundary,

@ Research into formal grammar resulted in the definition of the
so called Mildly Context Sensitive Languages,

@ Different extensions of Context Free formalisms have been
proposed,

@ We show that three of these systems are 'equivalent’.
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Setting the Stage
@000

Formal Grammar

Formal Grammar

A Formal Grammar is a quadruple (N, X, R, S) where:
@ N is a finite set of non-terminal symbols,
@ 2 is a finite set of terminal symbols,
@ R is a set of rewrite rules of the form
(NUD)*N(NUXL)* - (NUX)*,
@ S € N is a distinguished start symbol.
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Setting the Stage
[e] lele}

Formal Grammar

Let G = (N,X,R,S) be a formal grammar. The string language of
G, denoted L£(G), is defined as follows:

L(G) :={w e X*|S -* w}

Let G and G’ be Formal Grammars. G and G’ are said to be
(weakly) equivalent iff £(G) = L(G').
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Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:
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Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:

Language class Restriction Automaton
Regular A— a,A— aB FSA
Context Free A— 7 PDA
Context Sensitive aAB = ayfB,y F € LBA
Recursively Enumerable o — ™
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Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:

Language class Restriction Automaton
Regular A— a,A— aB FSA
Context Free A— 7 PDA
Context Sensitive aAB = ayfB,y F € LBA
Recursively Enumerable o — ™

RL c CFL c CSL C REL
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Setting the Stage
[e]e]e] ]

Formal Grammar

Example of a Context Free Grammar for palindromes over three
symbols:

S — aSa
S — bSh
S — cSc
S —e¢
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Setting the Stage
[e]e]e] ]

Formal Grammar

Example of a Context Free Grammar for palindromes over three
symbols:

S — aSa
S — bSh
S — cSc
S —e¢

Example derivation:

S — aSa — acSca — acbSbca — acbbca
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Setting the Stage
@0000

Context Free Grammar vs. Lambek Calculus

Next to generative grammar, another type of grammar formalism
was developed: Categorial Grammar.

@ A categorial grammar consists of a lexicon and a proof system,
@ The lexicon assigns types to elements of the alphabet,
@ The proof system governs grammaticality.

e Prototypical example: the Lambek Calculus (Logic of
Concatenation)
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Setting the Stage Y ment Calculus

Context Free Grammar vs. Lambek Calculus

Let T be a set of atomic types. Then the set T* of categorial
types is defined as follows:

o If Ac T, then Ac T
o If A,B € T* then Ae B,B/A,A\B € T*.

A Lambek grammar is a triple (X, 0, S) where:
@ Y is a set of words,

@ ) CX x T* is a type assignment relation,

@ S € T* is a distinguished start symbol.
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Setting the Stage
[e]e] Tele]

Context Free Grammar vs. Lambek Calculus

Proof Theory of L

da)=A
oA Lex. 07 Ax.l 17 Ax.J
a:A.B:B
a:A [:B v:AeB Ala+p):C
le Ee
a+pB:AeB A(y): C
a:A a: A
a+;y:B a:A v:A\B 'y+d:B y:B/A a:A
—z N\ ——— - E\ : / - E/
~v:A\B a+vy:B v:B/A Yy+a:B
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Setting the Stage
[e]e]e] o]

Context Free Grammar vs. Lambek Calculus

A Lambek grammar for (non-empty) palindromes:
a:A b:B c:C
a:S/A b:S/B c:S5/C
a:(S/A)/S b:(S5/B)/)S c:(S5/C)/S
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Setting the Stage
[e]e]e] o]

Context Free Grammar vs. Lambek Calculus

A Lambek grammar for (non-empty) palindromes:

a:A b:B c:C
a:S/A b:S/B c:S5/C
a:(S/A)/S b:(5/B)/)S c¢:(5/C)/S

Example derivation:

b:S/B b:B
2 (S/A))S b5
abb:S/A a:A
abba: S
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Setting the Stage
0000e

Context Free Grammar vs. Lambek Calculus

@ Context Free Grammar and Lambek Calculus are weakly
equivalent (Pentus)

@ If you consider only first-order types, the conversions are not
too complicated...

@ ... but Pentus’ proof is quite tedious!
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Setting the Stage
[ Je]e]ele]e}

Beyond Context Free

Context Free Grammar is provably inadequate for natural
language:
e ... dat Jan Henk zag lopen.
e Can be translated into {a"b™c"d™|n,m > 1} or
{w?|w € £*} (Shieber)
@ These languages are not Context Free! Can be shown by the
pumping lemma.
@ So we want to move beyond Context Free.

@ However, Context Sensitive is too general...
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Setting the Stage
[o] Je]ele]e}

Beyond Context Free

Mild Context Sensitivity

Introduced by Joshi in 1985, a class of languages L is Mildly
Context Sensitive iff:

@ L contains the class of Context Free languages,

@ L recognizes a bounded number of cross-serial dependencies,
i.e. there exists n > 2 such that {wk|w € ¥*} € £ for all
k <n,

@ All languages in L are polynomially parsable,
@ All languages in £ have the constant growth property.

Semilinear languages have the constant growth property.
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Setting the Stage V ment Calculus

00000
Beyond Context Free

Definition
Let X = {ay, ..., an} be an alphabet with some fixed order. The
Parikh image of a word w € X* and a language L C ¥* are as

follows:
p(w) = ((wlaps -y [Wla,),
p(L) = {p(w) | w € L}.

Definition

Two words w, w’ € £* are letter equivalent if p(w) = p(w').

Two languages L, L’ C ¥* are letter equivalent if for every w € L
there is a w’ € L’ such that w and w’ are letter equivalent and vice
versa.

A language is semilinear iff it is letter equivalent to a regular
language. Parikh’s theorem says that all Context Free languages

are semilinear.
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Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:
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Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:

RL c CFL c MCSL c CSL c REL
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Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:

RL c CFL c MCSL c CSL c REL

However, there is (to my knowledge) no grammar formalism that
characterizes precisely the class MCSL. Also, there is no
automaton known to do this.
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Setting the Stage
000000

Beyond Context Free

Some extensions of Context Free Formalisms:

@ Tree Adjoining Grammar, Head Grammar, well-nested
2-Multiple Context Free Grammar (all equivalent)

@ Linear Context Free Rewriting Systems, Multiple Context Free
Grammar, Minimalist Grammar, simple Range Concatenation
Grammar (all equivalent)

@ These formalisms all describe Mildly Context Sensitive
Languages, however the two groups are distinguished.
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Setting the Stage
[e]e]e]ele] ]

Beyond Context Free

Some extensions of the Lambek Calculus:
e Combinatory Categorial Grammar (equivalent to TAG)
@ Multimodal Categorial Grammar
@ Displacement Calculus
@ Lambek-Grishin Calculus (exceeds TAG)

@ As we will show, restrictions of the Displacement Calculus
generate Mildly Context Sensitive Languages.
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MCFGs

Introduction

@ Multiple Context Free Grammars are like Context Free
Grammars, but they act on tuples of strings.

@ The max. arity of tuples acted upon in such a grammar
provides a measure that invokes an infinite hierarchy in the
sense of generative capacity and computational complexity.
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MCFGs ) ment Calculus
,QOOOOO O

Grammar

Grammar

A Multiple Context Free Grammar is a 6-tuple (N, T, F, P, S, dim)
such that:

@ N is a finite set of non-terminal symbols, and dim assigns a
dimension to every non-terminal,

@ T is a finite set of terminal symbols,
@ F is a finite set of mcf-functions,

@ P is a finite set of production rules of the form
Ao — f[Al, ...,Ak] with kK > 0
fo(T*)dimA) | x (T*)4m(A) 5 (T*)dim(A) and f € F.

@ S € N is a distinguished start symbol such that dim(S) = 1.
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tting the Stage MCFGs ment Calculus
ele (o] dejelelele]

Grammar

mcf-function

f is a mcf-function if:
= =\ __ * 2
o f(Xi,....xk) = c1ff1...an3n Where o; € T* and f3; a variable
from some x,.

@ Each variable xjj from some vector x,, occurs at most (or
exactly) once in the right hand side (linearity)

Definition

The dimension of a MCFG G is given by the maximal dimension of
the non-terminals, i.e. max(dim(N)). We call a MCFG of
dimension k a k-MCFG.
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MCFGs
00®0000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

S — f[A] A — hH[A] A — f]

f1[<Xa Y>] = <XY> f2[<Xa Y>] = <aXb’ CYd> fé[] = <ab7 Cd>
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MCFGs
00®0000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

S = A[A A= hHlA] A — f]]
ALX. V)] = (XY) AX, V)] = (aXb,cYd)  A[] = (ab, cd)
Example run:
S — A[A] = A[R[A]]l = AlkIA[]

= fi[f[(ab, cd)]] = fi[(aabb, ccdd)] = (aabbccdd).
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MCFGs
felele] Yolole}

Grammar

sRCG notation

In equivalent notation:

S(XY) = A(X, Y)
A(aXb, cYd) — A(X,Y)
A(ab,cd) — €
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MCFGs
felele] Yolole}

Grammar

sRCG notation

In equivalent notation:
S(XY) = A(X,Y)
A(aXb, cYd) — A(X,Y)
A(ab,cd) — €
Example run:
S(aabbccdd) — A(aabb, ccdd) — A(ab, cd) — e.
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MCFGs
[elelele] Yole}

Grammar

Well-nestedness

e Well-nested : A(XY,ZW) — B(X,W)C(Y,Z2)
@ NOT well-nested : A(XY,ZW) — B(X,Z)C(Y, W)
We denote well-nested MCFG by MCFG,p,.
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MCFGs
0000000

Grammar

String language

Let G = (N, T,F,P,S) be a MCFG,p).
@ Forevery Ac N:
© For every (A — f[]) € P : f[] € yield(A),
@ For every (A — f[A1, ..., Ak]) € P(k > 1) and all tuples
71 € yield(A1)...7x € yield(Ax) : 1, ..., 7k] € yield(A).
© Nothing else is in yield(A).

@ The string language of G is L(G) = {w|(w) € yield(S)}.
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MCFGs
000000®

Grammar

Closure Properties

For every k, the class of k-MCFL,,)s is closed under:
@ substitution
@ homomorphism and inverse homomorphism
@ union,concatenation and Kleene closure
@ intersection with a regular language

So the class of k-MCFL,,,ys forms a substitution closed full
Abstract Family of Languages.
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MCFGs

Generative Capacity

Mild Context Sensitivity

e Every MCFL,, is semilinear,

@ The (fixed) recognition problem for k-MCFG s is
polynomial,

e county = {af...a}|n > 0} € (k — 1)-MCFL for k odd,
(k —2)-MCFL o.w.

o cross, = {afby"...,ab]"|l, k > 0} € k-MCFL,

o copyx = {wklw € £*} € k-MCFL.
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MCFGs

Generative Capacity

Mild Context Sensitivity

e Every MCFL,, is semilinear,

@ The (fixed) recognition problem for k-MCFG s is
polynomial,

e county = {af...a}|n > 0} € (k — 1)-MCFL for k odd,
(k —2)-MCFL o.w.

o cross, = {afby"...,ab]"|l, k > 0} € k-MCFL,

o copyx = {wklw € £*} € k-MCFL.

So, mild context-sensitivity?
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MCFGs

Generative Capacity
MIX is a MCFL
o MIX, ={w e {a1,...,ak}||a1lw = ... = |ak|w}-

MIXs € 2-MCFL (Salvati 2011).
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MCFGs

Generative Capacity

MIX is a MCFL

o MIXy ={w € {a1,...,ak}||ailw = ... = |ak|w}-
MIXs € 2-MCFL (Salvati 2011).

o It is shown in (Kanazawa,Salvati 2012) that MIX3 is not a
well-nested 2-MCFL.

@ So, is MCFG,,, a *better* candidate for Mild
Context-Sensitivity?
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MCFGs
[

Lexicalization of MCFG,,,

Introduction

Lexicalization is important for our purposes because categorial
grammar is by definition lexicalized.
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Displacement Calculus
[ JeJele]e]

Grammars

@ Displacement grammars are an extension of Lambek grammars

@ Displacement grammars extend Lambek grammars by allowing
wrapping.

@ For concatenation, we have 0 as the unit, for wrapping we
have 1 (separator) as unit.

@ Let |4 denote insertion at the k-th separator, e.g.
albcld |, ef = albcefd.
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Displacement Calculus
(o] Jelele)

Grammars

Let T be a set of atomic types. Then the set T* of general
displacement types is defined as follows:

o IfAe T, then Ac T",

o If A,Be T*, then
Ae B ,B/A, A\B, AGrB,AT BBl Ae T*.

A Displacement grammar is a triple (W, 6, S) such that:
@ W is a set of words,

@ 0 C W x T* is a type assignment relation,

@ S € T* is a distinguished start symbol.
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Displacement Calculus

00e00

Grammars

Proof Theory of D,

S(a) =A
o A Lex 0.7 Ax.l 1 Ax.J
a:A_ﬁ:B
a:A B:B v:AeB Ala+p8):C
——— e Ee
a+pB:AeB Ay : C
a:A a:A
a+"y:B a:A ~v:A\B 7+&:B ¥y:B/A a:A
= el 2y, I Ty
~ : A\B a+vy:B v:B/A yt+a:B
a:A B:B
a:A B:B N :iA@KB Alalf): C
1Ok EOk
algB:AQk B Afv) : C
a:A a:A
oz|k'.y:B a:A v:AlB fy\kolc:B Y:BTA a:A
— | i ———— 54 — k —— %= ET
v:Alk B alky: B Y:BTkA Yke: B
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Displacement Calculus
[elele] le}

Grammars

Proof Theory of D!

ﬁ Lex. ﬁ Ax.l ﬁ Ax.J
a:A B:B
le
a+pB:AeB
a: A : A\B :B/A a:A
oA ViAE L TB/A oA,
a+vy:B Y+a:B
a:A B:B
————— 1O
alkB: AOk B
a:A v: Al B Y:BTA a:A
hahEaEARAR LS SALSLIs AT
algy B Yk : B
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Displacement Calculus
[elelele] J

Grammars

Proof Theory of 1-D,

o A Lex. ﬁ Ax.l i Ax.J
a:A B:B
atB AeE '*
a:A v:A\B vy:B/A a:A
oA 7:A\B E\ JiB/A oA E/
a+v:B Yy+a:B
a: A : B
oA BB
al B:AG® B
a#0:A
a: A A B O‘(:B : B A a:A
v:AL El 7 v:BT Eq
al v:B y:B1t A vyl «: B
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Displacement Calculus

@0

Toy Grammars

Copy Language in D!

S'=S Ol
a:A a: JJ\(A\S) a:J\(S |1 (A\S))
b:B b:J\(B\S) b:J\(S!1(B\S))
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Displacement Calculus

@0

Toy Grammars

Copy Language in D!

S'=S Ol
a:A a: JJ\(A\S) a:J\(S |1 (A\S))
b:B b:J\(B\S) b:J\(S!1(B\S))

Example derivation:

1:J a:J\(A\S)

a:A la: A\S b:I\(S 11 (B\S))
ala: S 1b:S |1 (B\S)
b:B alba: B\S
balba: S 0:1/
baba: S &1/
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Toy Grammars

Copy Language in 1-D,

S=PTtX)ol x: X

a:A a: X\(A\P) a:X\((P1X)l(A\P))
b:B b: X\(B\P) b:X\((P1TX)lJ
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Displacement Calculus

oce

Toy Grammars

Copy Language in 1-D,

S=PTtX)ol x: X

a:A a: X\(A\P) a:X\((P1X)l(A\P))
b:B b: X\(B\P) b:X\((P1TX)lJ

Example derivation:

x: X a:X\(A\P)

a:A xa : A\P
axa: P x: X b:X\((P1X)l(B\P))
ala: PT X xb: (P71 X) | (B\P)
b:B axba : B\P
baxba : P
balba: P 1T X 0:1/

baba: (Pt X)® !
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Characterizations
@000

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) C L(D') (Wijnholds, 2011)

@ From left to right: Given a lexicalized rule
A(araan) — Bi(B1)...Bn(Bn), we can always
(nondeterministically) find a type assignment a: T such that
precisely the following derivation is allowed:

a:TLeX' Bl.:.B ﬁ,,.:B

1aan . A
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Characterizations
[o] le]e}

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) C L(D') (Wijnholds, 2011)

Examples:
e A(aXY,Z) — B(X,Z) C(Y)
~a:Al(B®1(Cel))

o A(Xa, YZ) = B(X,Z) C(Y)
~s g ((B ™1 (J. C)) 41 A)/J
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Characterizations
[e]e] Te}

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) 2 L(D') (Wijnholds, 2011)

@ From right to left: a construction in stages. In the first stage,
we construct the set Py = {RA(w) — € | §(w) = A}.

@ In each following stage, we decompose the types, e.g. for any
RA\B(al, ey p) —> 7y, we add a rule
RB(Y1, ..., Y X1, ... Xn) = RA(YL, ..., Vi) RAB(XL, ..., X)),

and for any o — 71 RA*B(Zy, ..., Zk)y2 we add a rule
RAB(X1, ..., Xo Y1, ey Yim) = RA(X1, oo, Xa)RB(Y1, ooy Yim)

(respecting sorts)

@ The fixed point of the staged construction plus a rule for the
start symbol gives us the wanted grammar.
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Characterizations
[e]ele] ]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a:J\(A\S) a:J\(S |1 (A\9))
b:B b:J\(B\S) b:J\(S 1 (B\S))
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Characterizations
[e]ele] ]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:I\N(B\S)  b:I\(S L1 (B\S))

S (XY) = S(X,Y)

RA(a).

RINANS) ()
RE(b).

. RIN(SL1(A\9)) ().
RINB\S)(p). RIN(SL1(B\S) (p)
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Characterizations
[e]ele] ]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

S'=5®
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:J\(B\S) b:J\(S 1 (B\S))
S (XY) = S(X,Y)
RA(a). RINANS)(g),  RI\(SL1(A\9)
RE(b).

RINB\S)(p).  RINSH(ENS)(p).

RA\S(e,X) — RI\NA\S) (x RSLl(A\S)(e,X —y RI\(S11(A\S)) X)
RB\S(e, x) = RINB\S)(x)  RSN(B\S)(¢ x)

- RSB\ (x)
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Characterizations
[e]ele] ]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:I\N(B\S)  b:I\(S L1 (B\S))

S'(XY) — S(X,Y)
RA(a). RINA\S) (5).  RINSLL(ANS) ().
RE(b). RINB\S) (p). RI\(S41(B\9) (p)

RA\S(e,X) — RI\NA\S) (x RSLl(A\S)(e,X —y RI\(S11(A\S)) X)
RB\S (¢, x) — RI\(B\S)(x) RSM(B\S) (¢, x) — RIN(SL1(B\9))(x)
RS(zY,X) = RAZ)RA\S(Y,X)  RA\S(XZ, WY) — R3(X, Y)RSV1(A\S)(Z w)
RS(2ZY,X) — RB(Z)RB\S(v,Xx)  RB\S(xZ, wy) — R5(X, Y)RSV1(B\S)(Z W)
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Characterizations
@00000

L(MCFGwy) = L(1-Dy)

Plan

o We show L(MCFG,,) C L(1-D,) C L(DY).

@ By the first characterization, then, we have the second one:
L(MCFGy,) = L(1-Dy).
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Characterizations
[o] lelele]e]

L(MCFGwy) = L(1-Dy)

L(MCFG,,) C L(1-D))

e Basically the same construction as for L(MCFG,,,) C L(D*'),
but:

@ For each rule labeled with A of dimension n, we add XIA : X,-A
forl1<i<n-1.

@ Whenever we introduce the kth separator J* for an A tuple,

we instead introduce x2.

@ Whenever we introduce a A ®, B construction, we instead use
(AT X2) © B. Similarly for A | B.

@ We have 'flattened’ types such that we only have
two-dimensional strings,

@ We use higher-order constructions to do intercalation.
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L(MCFGwy) = L(1-Dy)

L(MCFG,,) C L(1-D))

Examples:
o A(aXY,Z) — B(X,Z) C(Y)
~a:A/(B®1(Cel))
w2z A/((B1XE) 0 (Co X))

o A(Xa, YZ) = B(X,Z) C(Y)

~ g ((B ™1 (JO C)) 41 A)/J
~a: (BT XP) o (X e C) 1 X)L A)/X{
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L(MCFGwy) = L(1-Dy)

L(1-Dy) € L(DY)

@ An expression of type A1 B is an expression of type A with
an expression of type B extracted out.

@ We say that a type AT B is in input position iff it occurs as
one of the following types:
(A1 B)\C.C/(A1B),(A1B)eC,Ce(A1B),(ATB)]C.

@ Why? Because in these cases we need to use the / 1 rule to
get an expression of type A 1 B and we want to eliminate
exactly these derivations.

@ Idea: We can replace A1 B in input position by A" and add

type assignments such that all derivable expressions of type A’
mimick the behaviour of A1 B.
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L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P 1 X) | (B\P))
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L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P1X) | (B\P))
S=P oI x: X
a:A a: X\(A\P) a:X\(P’ {1 (A\P))
b:B b: X\(B\P) b:X\(P' {1 (B\P))
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L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P1X) | (B\P))
S=P oI x: X
a:A a: X\(A\P) a:X\(P’ {1 (A\P))
b:B b: X\(B\P) b:X\(P' {1 (B\P))

a: \(A\P')  a: \(P' 11 (A\P")
b \(B\P')  b:JI\(P" {1 (B\P"))
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L(MCFGwy) = L(1-Dy)

Conclusion

@ We have shown two logical characterizations of the Mildly
Context-Sensitive Languages

@ We have a choice between a (bounded) high number of
connectives but only first-order constructions or a fixed
number of connectives but allowing higher-order constructions.

@ Which system is favorable?

@ Open problem: is there a variant of D that relates to MCFG?
If so, how exactly?
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