Conversions between MCFG and D

Logical Characterizations of the Mildly Context-Sensitive
Languages

Gijs Wijnholds
Cool Logic, 21th of February 2014

Gijs Wijnholds

Conversions between MCFG and D

Introduction

@ Natural language exhibits patterns that are provably beyond
the context-free boundary,

@ Research into formal grammar resulted in the definition of the
so called Mildly Context Sensitive Languages,

@ Different extensions of Context Free formalisms have been
proposed,

@ We show that three of these systems are 'equivalent’.

Gijs Wijnholds

Conversions between MCFG and D

Outline

@ Setting the Stage
@ Formal Grammar
@ Context Free Grammar vs. Lambek Calculus
@ Beyond Context Free
© MCFGs
o Grammar
@ Generative Capacity
@ Lexicalization of MCFG,,,
© Displacement Calculus
@ Grammars
@ Toy Grammars
@ Characterizations
o L(MCFG,y,) = L(D') (Wijnholds, 2011)
e L(MCFGy,) = L(1-Dy)

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
@000

Formal Grammar

Formal Grammar

A Formal Grammar is a quadruple (N, X, R, S) where:
@ N is a finite set of non-terminal symbols,
@ 2 is a finite set of terminal symbols,
@ R is a set of rewrite rules of the form
(NUD)*N(NUXL)* - (NUX)*,
@ S € N is a distinguished start symbol.

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e] lele}

Formal Grammar

Let G = (N,X,R,S) be a formal grammar. The string language of
G, denoted L£(G), is defined as follows:

L(G) :={w e X*|S -* w}

Let G and G’ be Formal Grammars. G and G’ are said to be
(weakly) equivalent iff £(G) = L(G').

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:

Language class Restriction Automaton
Regular A— a,A— aB FSA
Context Free A— 7 PDA
Context Sensitive aAB = ayfB,y F € LBA
Recursively Enumerable o — ™

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e] e}

Formal Grammar

The Chomsky Hierarchy

Putting different restrictions on the rules results in different
language classes, with accompanying complexity results:

Language class Restriction Automaton
Regular A— a,A— aB FSA
Context Free A— 7 PDA
Context Sensitive aAB = ayfB,y F € LBA
Recursively Enumerable o — ™

RL c CFL c CSL C REL

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e]]

Formal Grammar

Example of a Context Free Grammar for palindromes over three
symbols:

S — aSa
S — bSh
S — cSc
S —e¢

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e]]

Formal Grammar

Example of a Context Free Grammar for palindromes over three
symbols:

S — aSa
S — bSh
S — cSc
S —e¢

Example derivation:

S — aSa — acSca — acbSbca — acbbca

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
@0000

Context Free Grammar vs. Lambek Calculus

Next to generative grammar, another type of grammar formalism
was developed: Categorial Grammar.

@ A categorial grammar consists of a lexicon and a proof system,
@ The lexicon assigns types to elements of the alphabet,
@ The proof system governs grammaticality.

e Prototypical example: the Lambek Calculus (Logic of
Concatenation)

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage Y ment Calculus

Context Free Grammar vs. Lambek Calculus

Let T be a set of atomic types. Then the set T* of categorial
types is defined as follows:

o If Ac T, then Ac T
o If A,B € T* then Ae B,B/A,A\B € T*.

A Lambek grammar is a triple (X, 0, S) where:
@ Y is a set of words,

@) CX x T* is a type assignment relation,

@ S € T* is a distinguished start symbol.

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e] Tele]

Context Free Grammar vs. Lambek Calculus

Proof Theory of L

da)=A
oA Lex. 07 Ax.l 17 Ax.J
a:A.B:B
a:A [:B v:AeB Ala+p):C
le Ee
a+pB:AeB A(y): C
a:A a: A
a+;y:B a:A v:A\B 'y+d:B y:B/A a:A
—z N\ ——— - E\ : / - E/
~v:A\B a+vy:B v:B/A Yy+a:B

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e] o]

Context Free Grammar vs. Lambek Calculus

A Lambek grammar for (non-empty) palindromes:
a:A b:B c:C
a:S/A b:S/B c:S5/C
a:(S/A)/S b:(S5/B)/)S c:(S5/C)/S

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e] o]

Context Free Grammar vs. Lambek Calculus

A Lambek grammar for (non-empty) palindromes:

a:A b:B c:C
a:S/A b:S/B c:S5/C
a:(S/A)/S b:(5/B)/)S c¢:(5/C)/S

Example derivation:

b:S/B b:B
2 (S/A))S b5
abb:S/A a:A
abba: S

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
0000e

Context Free Grammar vs. Lambek Calculus

@ Context Free Grammar and Lambek Calculus are weakly
equivalent (Pentus)

@ If you consider only first-order types, the conversions are not
too complicated...

@ ... but Pentus’ proof is quite tedious!

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[Je]e]ele]e}

Beyond Context Free

Context Free Grammar is provably inadequate for natural
language:
e ... dat Jan Henk zag lopen.
e Can be translated into {a"b™c"d™|n,m > 1} or
{w?|w € £*} (Shieber)
@ These languages are not Context Free! Can be shown by the
pumping lemma.
@ So we want to move beyond Context Free.

@ However, Context Sensitive is too general...

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[o] Je]ele]e}

Beyond Context Free

Mild Context Sensitivity

Introduced by Joshi in 1985, a class of languages L is Mildly
Context Sensitive iff:

@ L contains the class of Context Free languages,

@ L recognizes a bounded number of cross-serial dependencies,
i.e. there exists n > 2 such that {wk|w € ¥*} € £ for all
k <n,

@ All languages in L are polynomially parsable,
@ All languages in £ have the constant growth property.

Semilinear languages have the constant growth property.

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage V ment Calculus

00000
Beyond Context Free

Definition
Let X = {ay, ..., an} be an alphabet with some fixed order. The
Parikh image of a word w € X* and a language L C ¥* are as

follows:
p(w) = ((wlaps -y [Wla,),
p(L) = {p(w) | w € L}.

Definition

Two words w, w’ € £* are letter equivalent if p(w) = p(w').

Two languages L, L’ C ¥* are letter equivalent if for every w € L
there is a w’ € L’ such that w and w’ are letter equivalent and vice
versa.

A language is semilinear iff it is letter equivalent to a regular
language. Parikh’s theorem says that all Context Free languages

are semilinear.
Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:

RL c CFL c MCSL c CSL c REL

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e] le]e}

Beyond Context Free

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the
Chomsky Hierarchy:

RL c CFL c MCSL c CSL c REL

However, there is (to my knowledge) no grammar formalism that
characterizes precisely the class MCSL. Also, there is no
automaton known to do this.

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
000000

Beyond Context Free

Some extensions of Context Free Formalisms:

@ Tree Adjoining Grammar, Head Grammar, well-nested
2-Multiple Context Free Grammar (all equivalent)

@ Linear Context Free Rewriting Systems, Multiple Context Free
Grammar, Minimalist Grammar, simple Range Concatenation
Grammar (all equivalent)

@ These formalisms all describe Mildly Context Sensitive
Languages, however the two groups are distinguished.

Gijs Wijnholds

Conversions between MCFG and D

Setting the Stage
[e]e]e]ele]]

Beyond Context Free

Some extensions of the Lambek Calculus:
e Combinatory Categorial Grammar (equivalent to TAG)
@ Multimodal Categorial Grammar
@ Displacement Calculus
@ Lambek-Grishin Calculus (exceeds TAG)

@ As we will show, restrictions of the Displacement Calculus
generate Mildly Context Sensitive Languages.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs

Introduction

@ Multiple Context Free Grammars are like Context Free
Grammars, but they act on tuples of strings.

@ The max. arity of tuples acted upon in such a grammar
provides a measure that invokes an infinite hierarchy in the
sense of generative capacity and computational complexity.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs) ment Calculus
,QOOOOO O

Grammar

Grammar

A Multiple Context Free Grammar is a 6-tuple (N, T, F, P, S, dim)
such that:

@ N is a finite set of non-terminal symbols, and dim assigns a
dimension to every non-terminal,

@ T is a finite set of terminal symbols,
@ F is a finite set of mcf-functions,

@ P is a finite set of production rules of the form
Ao — f[Al, ...,Ak] with kK > 0
fo(T*)dimA) | x (T*)4m(A) 5 (T*)dim(A) and f € F.

@ S € N is a distinguished start symbol such that dim(S) = 1.

Gijs Wijnholds

Conversions between MCFG and D

tting the Stage MCFGs ment Calculus
ele (o] dejelelele]

Grammar

mcf-function

f is a mcf-function if:
= =\ __ * 2
o f(Xi,....xk) = c1ff1...an3n Where o; € T* and f3; a variable
from some x,.

@ Each variable xjj from some vector x,, occurs at most (or
exactly) once in the right hand side (linearity)

Definition

The dimension of a MCFG G is given by the maximal dimension of
the non-terminals, i.e. max(dim(N)). We call a MCFG of
dimension k a k-MCFG.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
00®0000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

S — f[A] A — hH[A] A — f]

f1[<Xa Y>] = <XY> f2[<Xa Y>] = <aXb’ CYd> fé[] = <ab7 Cd>

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
00®0000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

S = A[A A= hHlA] A — f]]
ALX. V)] = (XY) AX, V)] = (aXb,cYd) A[] = (ab, cd)
Example run:
S — A[A] = A[R[A]]l = AlkIA[]

= fi[f[(ab, cd)]] = fi[(aabb, ccdd)] = (aabbccdd).

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
felele] Yolole}

Grammar

sRCG notation

In equivalent notation:

S(XY) = A(X, Y)
A(aXb, cYd) — A(X,Y)
A(ab,cd) — €

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
felele] Yolole}

Grammar

sRCG notation

In equivalent notation:
S(XY) = A(X,Y)
A(aXb, cYd) — A(X,Y)
A(ab,cd) — €
Example run:
S(aabbccdd) — A(aabb, ccdd) — A(ab, cd) — e.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
[elelele] Yole}

Grammar

Well-nestedness

e Well-nested : A(XY,ZW) — B(X,W)C(Y,Z2)
@ NOT well-nested : A(XY,ZW) — B(X,Z)C(Y, W)
We denote well-nested MCFG by MCFG,p,.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
0000000

Grammar

String language

Let G = (N, T,F,P,S) be a MCFG,p).
@ Forevery Ac N:
© For every (A — f[]) € P : f[] € yield(A),
@ For every (A — f[A1, ..., Ak]) € P(k > 1) and all tuples
71 € yield(A1)...7x € yield(Ax) : 1, ..., 7k] € yield(A).
© Nothing else is in yield(A).

@ The string language of G is L(G) = {w|(w) € yield(S)}.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
000000®

Grammar

Closure Properties

For every k, the class of k-MCFL,,)s is closed under:
@ substitution
@ homomorphism and inverse homomorphism
@ union,concatenation and Kleene closure
@ intersection with a regular language

So the class of k-MCFL,,,ys forms a substitution closed full
Abstract Family of Languages.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs

Generative Capacity

Mild Context Sensitivity

e Every MCFL,, is semilinear,

@ The (fixed) recognition problem for k-MCFG s is
polynomial,

e county = {af...a}|n > 0} € (k — 1)-MCFL for k odd,
(k —2)-MCFL o.w.

o cross, = {afby"...,ab]"|l, k > 0} € k-MCFL,

o copyx = {wklw € £*} € k-MCFL.

Gijs Wijnholds

Conversions between MCFG and D

MCFGs

Generative Capacity

Mild Context Sensitivity

e Every MCFL,, is semilinear,

@ The (fixed) recognition problem for k-MCFG s is
polynomial,

e county = {af...a}|n > 0} € (k — 1)-MCFL for k odd,
(k —2)-MCFL o.w.

o cross, = {afby"...,ab]"|l, k > 0} € k-MCFL,

o copyx = {wklw € £*} € k-MCFL.

So, mild context-sensitivity?

Gijs Wijnholds

Conversions between MCFG and D

MCFGs

Generative Capacity
MIX is a MCFL
o MIX, ={w e {a1,...,ak}||a1lw = ... = |ak|w}-

MIXs € 2-MCFL (Salvati 2011).

Gijs Wijnholds

Conversions between MCFG and D

MCFGs

Generative Capacity

MIX is a MCFL

o MIXy ={w € {a1,...,ak}||ailw = ... = |ak|w}-
MIXs € 2-MCFL (Salvati 2011).

o It is shown in (Kanazawa,Salvati 2012) that MIX3 is not a
well-nested 2-MCFL.

@ So, is MCFG,,, a *better* candidate for Mild
Context-Sensitivity?

Gijs Wijnholds

Conversions between MCFG and D

MCFGs
[

Lexicalization of MCFG,,,

Introduction

Lexicalization is important for our purposes because categorial
grammar is by definition lexicalized.

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus
[JeJele]e]

Grammars

@ Displacement grammars are an extension of Lambek grammars

@ Displacement grammars extend Lambek grammars by allowing
wrapping.

@ For concatenation, we have 0 as the unit, for wrapping we
have 1 (separator) as unit.

@ Let |4 denote insertion at the k-th separator, e.g.
albcld |, ef = albcefd.

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus
(o] Jelele)

Grammars

Let T be a set of atomic types. Then the set T* of general
displacement types is defined as follows:

o IfAe T, then Ac T",

o If A,Be T*, then
Ae B ,B/A, A\B, AGrB,AT BBl Ae T*.

A Displacement grammar is a triple (W, 6, S) such that:
@ W is a set of words,

@ 0 C W x T* is a type assignment relation,

@ S € T* is a distinguished start symbol.

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus

00e00

Grammars

Proof Theory of D,

S(a) =A
o A Lex 0.7 Ax.l 1 Ax.J
a:A_ﬁ:B
a:A B:B v:AeB Ala+p8):C
——— e Ee
a+pB:AeB Ay : C
a:A a:A
a+"y:B a:A ~v:A\B 7+&:B ¥y:B/A a:A
= el 2y, I Ty
~ : A\B a+vy:B v:B/A yt+a:B
a:A B:B
a:A B:B N :iA@KB Alalf): C
1Ok EOk
algB:AQk B Afv) : C
a:A a:A
oz|k'.y:B a:A v:AlB fy\kolc:B Y:BTA a:A
— | i ———— 54 — k —— %= ET
v:Alk B alky: B Y:BTkA Yke: B

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus
[elele] le}

Grammars

Proof Theory of D!

ﬁ Lex. ﬁ Ax.l ﬁ Ax.J
a:A B:B
le
a+pB:AeB
a: A : A\B :B/A a:A
oA ViAE L TB/A oA,
a+vy:B Y+a:B
a:A B:B
————— 1O
alkB: AOk B
a:A v: Al B Y:BTA a:A
hahEaEARAR LS SALSLIs AT
algy B Yk : B

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus
[elelele] J

Grammars

Proof Theory of 1-D,

o A Lex. ﬁ Ax.l i Ax.J
a:A B:B
atB AeE '*
a:A v:A\B vy:B/A a:A
oA 7:A\B E\ JiB/A oA E/
a+v:B Yy+a:B
a: A : B
oA BB
al B:AG® B
a#0:A
a: A A B O‘(:B : B A a:A
v:AL El 7 v:BT Eq
al v:B y:B1t A vyl «: B

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus

@0

Toy Grammars

Copy Language in D!

S'=S Ol
a:A a: JJ\(A\S) a:J\(S |1 (A\S))
b:B b:J\(B\S) b:J\(S!1(B\S))

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus

@0

Toy Grammars

Copy Language in D!

S'=S Ol
a:A a: JJ\(A\S) a:J\(S |1 (A\S))
b:B b:J\(B\S) b:J\(S!1(B\S))

Example derivation:

1:J a:J\(A\S)

a:A la: A\S b:I\(S 11 (B\S))
ala: S 1b:S |1 (B\S)
b:B alba: B\S
balba: S 0:1/
baba: S &1/

Gijs Wijnholds

Conversions between MCFG and D

Toy Grammars

Copy Language in 1-D,

S=PTtX)ol x: X

a:A a: X\(A\P) a:X\((P1X)l(A\P))
b:B b: X\(B\P) b:X\((P1TX)lJ

Gijs Wijnholds

Conversions between MCFG and D

Displacement Calculus

oce

Toy Grammars

Copy Language in 1-D,

S=PTtX)ol x: X

a:A a: X\(A\P) a:X\((P1X)l(A\P))
b:B b: X\(B\P) b:X\((P1TX)lJ

Example derivation:

x: X a:X\(A\P)

a:A xa : A\P
axa: P x: X b:X\((P1X)l(B\P))
ala: PT X xb: (P71 X) | (B\P)
b:B axba : B\P
baxba : P
balba: P 1T X 0:1/

baba: (Pt X)® !

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
@000

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) C L(D') (Wijnholds, 2011)

@ From left to right: Given a lexicalized rule
A(araan) — Bi(B1)...Bn(Bn), we can always
(nondeterministically) find a type assignment a: T such that
precisely the following derivation is allowed:

a:TLeX' Bl.:.B ﬁ,,.:B

1aan . A

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[o] le]e}

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) C L(D') (Wijnholds, 2011)

Examples:
e A(aXY,Z) — B(X,Z) C(Y)
~a:Al(B®1(Cel))

o A(Xa, YZ) = B(X,Z) C(Y)
~s g ((B ™1 (J. C)) 41 A)/J

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]e] Te}

L(MCFG,,,) = L(D') (Wijnholds, 2011)

L(MCFG,,) 2 L(D') (Wijnholds, 2011)

@ From right to left: a construction in stages. In the first stage,
we construct the set Py = {RA(w) — € | §(w) = A}.

@ In each following stage, we decompose the types, e.g. for any
RA\B(al, ey p) —> 7y, we add a rule
RB(Y1, ..., Y X1, ... Xn) = RA(YL, ..., Vi) RAB(XL, ..., X)),

and for any o — 71 RA*B(Zy, ..., Zk)y2 we add a rule
RAB(X1, ..., Xo Y1, ey Yim) = RA(X1, oo, Xa)RB(Y1, ooy Yim)

(respecting sorts)

@ The fixed point of the staged construction plus a rule for the
start symbol gives us the wanted grammar.

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]ele]]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a:J\(A\S) a:J\(S |1 (A\9))
b:B b:J\(B\S) b:J\(S 1 (B\S))

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]ele]]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:I\N(B\S) b:I\(S L1 (B\S))

S (XY) = S(X,Y)

RA(a).

RINANS) ()
RE(b).

. RIN(SL1(A\9)) ().
RINB\S)(p). RIN(SL1(B\S) (p)

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]ele]]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

S'=5®
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:J\(B\S) b:J\(S 1 (B\S))
S (XY) = S(X,Y)
RA(a). RINANS)(g), RI\(SL1(A\9)
RE(b).

RINB\S)(p). RINSH(ENS)(p).

RA\S(e,X) — RI\NA\S) (x RSLl(A\S)(e,X —y RI\(S11(A\S)) X)
RB\S(e, x) = RINB\S)(x) RSN(B\S)(¢ x)

- RSB\ (x)

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]ele]]
L(MCFG,,,) = L(D') (Wijnholds, 2011)

Example: Copy language

=50
a:A a: J\(A\S) a: J\(S 11 (A\S))
b:B b:I\N(B\S) b:I\(S L1 (B\S))

S'(XY) — S(X,Y)
RA(a). RINA\S) (5). RINSLL(ANS) ().
RE(b). RINB\S) (p). RI\(S41(B\9) (p)

RA\S(e,X) — RI\NA\S) (x RSLl(A\S)(e,X —y RI\(S11(A\S)) X)
RB\S (¢, x) — RI\(B\S)(x) RSM(B\S) (¢, x) — RIN(SL1(B\9))(x)
RS(zY,X) = RAZ)RA\S(Y,X) RA\S(XZ, WY) — R3(X, Y)RSV1(A\S)(Z w)
RS(2ZY,X) — RB(Z)RB\S(v,Xx) RB\S(xZ, wy) — R5(X, Y)RSV1(B\S)(Z W)

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
@00000

L(MCFGwy) = L(1-Dy)

Plan

o We show L(MCFG,,) C L(1-D,) C L(DY).

@ By the first characterization, then, we have the second one:
L(MCFGy,) = L(1-Dy).

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[o] lelele]e]

L(MCFGwy) = L(1-Dy)

L(MCFG,,) C L(1-D))

e Basically the same construction as for L(MCFG,,,) C L(D*'),
but:

@ For each rule labeled with A of dimension n, we add XIA : X,-A
forl1<i<n-1.

@ Whenever we introduce the kth separator J* for an A tuple,

we instead introduce x2.

@ Whenever we introduce a A ®, B construction, we instead use
(AT X2) © B. Similarly for A | B.

@ We have 'flattened’ types such that we only have
two-dimensional strings,

@ We use higher-order constructions to do intercalation.

Gijs Wijnholds

Conversions between MCFG and D

Characterizations

00@000

L(MCFGwy) = L(1-Dy)

L(MCFG,,) C L(1-D))

Examples:
o A(aXY,Z) — B(X,Z) C(Y)
~a:A/(B®1(Cel))
w2z A/((B1XE) 0 (Co X))

o A(Xa, YZ) = B(X,Z) C(Y)

~ g ((B ™1 (JO C)) 41 A)/J
~a: (BT XP) o (X e C) 1 X)L A)/X{

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
[e]e]e] le]e]

L(MCFGwy) = L(1-Dy)

L(1-Dy) € L(DY)

@ An expression of type A1 B is an expression of type A with
an expression of type B extracted out.

@ We say that a type AT B is in input position iff it occurs as
one of the following types:
(A1 B)\C.C/(A1B),(A1B)eC,Ce(A1B),(ATB)]C.

@ Why? Because in these cases we need to use the / 1 rule to
get an expression of type A 1 B and we want to eliminate
exactly these derivations.

@ Idea: We can replace A1 B in input position by A" and add

type assignments such that all derivable expressions of type A’
mimick the behaviour of A1 B.

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
0000e0

L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P 1 X) | (B\P))

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
0000e0

L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P1X) | (B\P))
S=P oI x: X
a:A a: X\(A\P) a:X\(P’ {1 (A\P))
b:B b: X\(B\P) b:X\(P' {1 (B\P))

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
0000e0

L(MCFGwy) = L(1-Dy)

Example: Copy language (again)

S=PrX)OI x: X
a:A a: X\(A\P) a: X\((P 1 X) | (A\P))
b:B b: X\(B\P) b:X\((P1X) | (B\P))
S=P oI x: X
a:A a: X\(A\P) a:X\(P’ {1 (A\P))
b:B b: X\(B\P) b:X\(P' {1 (B\P))

a: \(A\P') a: \(P' 11 (A\P")
b \(B\P') b:JI\(P" {1 (B\P"))

Gijs Wijnholds

Conversions between MCFG and D

Characterizations
O0000e

L(MCFGwy) = L(1-Dy)

Conclusion

@ We have shown two logical characterizations of the Mildly
Context-Sensitive Languages

@ We have a choice between a (bounded) high number of
connectives but only first-order constructions or a fixed
number of connectives but allowing higher-order constructions.

@ Which system is favorable?

@ Open problem: is there a variant of D that relates to MCFG?
If so, how exactly?

Gijs Wijnholds

Conversions between MCFG and D

	Setting the Stage
	Formal Grammar
	Context Free Grammar vs. Lambek Calculus
	Beyond Context Free

	MCFGs
	Grammar
	Generative Capacity
	Lexicalization of MCFGwn

	Displacement Calculus
	Grammars
	Toy Grammars

	Characterizations
	L(MCFGwn) = L(D1) (Wijnholds, 2011)
	L(MCFGwn) = L(1-DJ)

