Conversions between MCFG and D

Logical Characterizations of the Mildly Context-Sensitive Languages

Gijs Wijnholds

Cool Logic, 21th of February 2014

Introduction

- Natural language exhibits patterns that are provably beyond the context-free boundary,
- Research into formal grammar resulted in the definition of the so called Mildly Context Sensitive Languages,
- Different extensions of Context Free formalisms have been proposed,
- We show that three of these systems are 'equivalent'.

Outline

- Setting the Stage
 - Formal Grammar
 - Context Free Grammar vs. Lambek Calculus
 - Beyond Context Free
- MCFGs
 - Grammar
 - Generative Capacity
 - Lexicalization of MCFG_{wn}
- Oisplacement Calculus
 - Grammars
 - Toy Grammars
- Characterizations
 - $L(MCFG_{wn}) = L(D^1)$ (Wijnholds, 2011)
 - $L(MCFG_{wn}) = L(1-D_J)$

Formal Grammar

Definition

A Formal Grammar is a quadruple (N, Σ, R, S) where:

- N is a finite set of non-terminal symbols,
- \bullet Σ is a finite set of terminal symbols,
- R is a set of rewrite rules of the form $(N \cup \Sigma)^* N(N \cup \Sigma)^* \rightarrow (N \cup \Sigma)^*$
- $S \in N$ is a distinguished start symbol.

Definition

Let $G = (N, \Sigma, R, S)$ be a formal grammar. The string language of G, denoted $\mathcal{L}(G)$, is defined as follows:

$$\mathcal{L}(G) := \{ w \in \Sigma^* | S \to^* w \}$$

Definition

Let G and G' be Formal Grammars. G and G' are said to be (weakly) equivalent iff $\mathcal{L}(G) = \mathcal{L}(G')$.

The Chomsky Hierarchy

Putting different restrictions on the rules results in different language classes, with accompanying complexity results:

The Chomsky Hierarchy

Putting different restrictions on the rules results in different language classes, with accompanying complexity results:

Language class	Restriction	Automaton
Regular	A o a; $A o aB$	FSA
Context Free	$A o \gamma$	PDA
Context Sensitive	$\alpha A\beta \to \alpha \gamma \beta, \gamma \neq \epsilon$	LBA
Recursively Enumerable	$\alpha \to \beta$	TM

The Chomsky Hierarchy

Putting different restrictions on the rules results in different language classes, with accompanying complexity results:

Language class	Restriction	Automaton
Regular	A o a; $A o aB$	FSA
Context Free	$A o \gamma$	PDA
Context Sensitive	$\alpha A\beta \to \alpha \gamma \beta, \gamma \neq \epsilon$	LBA
Recursively Enumerable	$\alpha \to \beta$	TM

$$RL \subset \mathit{CFL} \subset \mathit{CSL} \subset \mathit{REL}$$

Formal Grammar

Setting the Stage

Example of a Context Free Grammar for palindromes over three symbols:

$$S \rightarrow aSa$$

 $S \rightarrow bSb$
 $S \rightarrow cSc$

$$S \to \epsilon$$

Formal Grammar

Setting the Stage

Example of a Context Free Grammar for palindromes over three symbols:

$$S
ightarrow aSa$$

 $S
ightarrow bSb$
 $S
ightarrow cSc$
 $S
ightarrow \epsilon$

Example derivation:

$$S
ightarrow aSa
ightarrow acSca
ightarrow acbSbca
ightarrow acbbca$$

Next to generative grammar, another type of grammar formalism was developed: Categorial Grammar.

- A categorial grammar consists of a lexicon and a proof system,
- The lexicon assigns types to elements of the alphabet,
- The proof system governs grammaticality.
- Prototypical example: the Lambek Calculus (Logic of Concatenation)

Definition

Setting the Stage

Let T be a set of atomic types. Then the set T^* of categorial types is defined as follows:

- If $A \in T$, then $A \in T^*$,
- If $A, B \in T^*$, then $A \bullet B, B/A, A \backslash B \in T^*$.

Definition

A Lambek grammar is a triple (Σ, δ, S) where:

- \bullet Σ is a set of words,
- $\delta \subseteq \Sigma \times T^*$ is a type assignment relation,
- $S \in T^*$ is a distinguished start symbol.

Proof Theory of L

Setting the Stage 00000

$$\frac{\delta(\alpha) = A}{\alpha : A} \text{ Lex.} \qquad \frac{\alpha : A}{0 : I} Ax.I \qquad \frac{1 : J}{1 : J} Ax.J$$

$$\frac{\alpha : A}{\alpha + \beta : A \cdot B} I \bullet \qquad \frac{\gamma : A \cdot B}{\Delta \langle \alpha + \beta \rangle : C} E \bullet$$

$$\frac{\alpha : A}{\gamma : A \setminus B} I \land \qquad \frac{\alpha : A}{\alpha + \gamma : B} I \land \qquad \frac{\alpha : A}{\alpha + \gamma : B} E \land \qquad \frac{\gamma : A \cdot B}{\gamma : B/A} I / \qquad \frac{\gamma : B/A \quad \alpha : A}{\gamma + \alpha : B} E/$$

A Lambek grammar for (non-empty) palindromes:

a: A b: B c: C a: S/A b: S/B c: S/C a: (S/A)/S b: (S/B)/S c: (S/C)/S

Context Free Grammar vs. Lambek Calculus

Setting the Stage

A Lambek grammar for (non-empty) palindromes:

$$a: A$$
 $b: B$ $c: C$
 $a: S/A$ $b: S/B$ $c: S/C$
 $a: (S/A)/S$ $b: (S/B)/S$ $c: (S/C)/S$

Example derivation:

$$\frac{a: (S/A)/S}{abb: S} \frac{b: S/B \quad b: B}{bb: S}$$

$$\frac{abb: S/A}{abba: S} \quad a: A$$

- Context Free Grammar and Lambek Calculus are weakly equivalent (Pentus)
- If you consider only first-order types, the conversions are not too complicated...
- ... but Pentus' proof is quite tedious!

Context Free Grammar is provably inadequate for natural language:

- ... dat Jan Marie Henk zag leren lopen.
- Can be translated into $\{a^nb^mc^nd^m|n,m>1\}$ or $\{w^2|w\in\Sigma^*\}$ (Shieber)
- These languages are not Context Free! Can be shown by the pumping lemma.
- So we want to move beyond Context Free.
- However, Context Sensitive is too general...

Mild Context Sensitivity

Introduced by Joshi in 1985, a class of languages \mathcal{L} is Mildly Context Sensitive iff:

- L contains the class of Context Free languages,
- \mathcal{L} recognizes a bounded number of cross-serial dependencies, i.e. there exists $n \geq 2$ such that $\{w^k | w \in \Sigma^*\} \in \mathcal{L}$ for all $k \leq n$,
- ullet All languages in ${\cal L}$ are polynomially parsable,
- ullet All languages in ${\cal L}$ have the constant growth property.

Semilinear languages have the constant growth property.

Definition

Let $\Sigma = \{a_1, ..., a_n\}$ be an alphabet with some fixed order. The Parikh image of a word $w \in \Sigma^*$ and a language $L \subseteq \Sigma^*$ are as follows:

$$p(w) = \langle |w|_{a_1}, ..., |w|_{a_n} \rangle,$$

$$p(L) = \{ p(w) \mid w \in L \}.$$

Definition

Two words $w, w' \in \Sigma^*$ are letter equivalent if p(w) = p(w'). Two languages $L, L' \subseteq \Sigma^*$ are letter equivalent if for every $w \in L$ there is a $w' \in L'$ such that w and w' are letter equivalent and vice versa.

A language is semilinear iff it is letter equivalent to a regular language. Parikh's theorem says that all Context Free languages are semilinear.

Beyond Context Free

Setting the Stage 000000

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the Chomsky Hierarchy:

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the Chomsky Hierarchy:

$$RL \subset CFL \subset MCSL \subset CSL \subset REL$$

The extended Chomsky Hierarchy

We can place the Mildly Context-Sensitive Languages in the Chomsky Hierarchy:

$$RL \subset CFL \subset MCSL \subset CSL \subset REL$$

However, there is (to my knowledge) no grammar formalism that characterizes precisely the class MCSL. Also, there is no automaton known to do this.

Some extensions of Context Free Formalisms:

- Tree Adjoining Grammar, Head Grammar, well-nested 2-Multiple Context Free Grammar (all equivalent)
- Linear Context Free Rewriting Systems, Multiple Context Free Grammar, Minimalist Grammar, simple Range Concatenation Grammar (all equivalent)
- These formalisms all describe Mildly Context Sensitive Languages, however the two groups are distinguished.

Some extensions of the Lambek Calculus:

- Combinatory Categorial Grammar (equivalent to TAG)
- Multimodal Categorial Grammar
- Displacement Calculus
- Lambek-Grishin Calculus (exceeds TAG)
- As we will show, restrictions of the Displacement Calculus generate Mildly Context Sensitive Languages.

Introduction

- Multiple Context Free Grammars are like Context Free Grammars, but they act on tuples of strings.
- The max. arity of tuples acted upon in such a grammar provides a measure that invokes an infinite hierarchy in the sense of generative capacity and computational complexity.

Grammar

Definition

A Multiple Context Free Grammar is a 6-tuple (N, T, F, P, S, dim) such that:

- N is a finite set of non-terminal symbols, and dim assigns a dimension to every non-terminal,
- T is a finite set of terminal symbols,
- F is a finite set of mcf-functions,
- P is a finite set of production rules of the form $A_0 \to f[A_1,...,A_k]$ with $k \ge 0$ $f: (T^*)^{dim(A_1)} \times ... \times (T^*)^{dim(A_k)} \to (T^*)^{dim(A_0)}$ and $f \in F$.
- $S \in N$ is a distinguished start symbol such that dim(S) = 1.

mcf-function

Definition

f is a mcf-function if:

- $f(\overrightarrow{x_1},...,\overrightarrow{x_k}) = \alpha_1\beta_1...\alpha_n\beta_n$ where $\alpha_i \in T^*$ and β_j a variable from some x_m .
- Each variable x_{ij} from some vector x_m occurs at most (or exactly) once in the right hand side (linearity)

Definition

The dimension of a MCFG G is given by the maximal dimension of the non-terminals, i.e. max(dim(N)). We call a MCFG of dimension k a k-MCFG.

Example & Notation: $\{a^n b^n c^n d^n | n \ge 1\}$

$$S \rightarrow f_1[A]$$

$$A \rightarrow f_2[A]$$

$$A \rightarrow f_3[]$$

$$f_1[\langle X, Y \rangle] = \langle XY \rangle$$

$$f_1[\langle X,Y\rangle]=\langle XY\rangle$$
 $f_2[\langle X,Y\rangle]=\langle aXb,cYd\rangle$ $f_3[]=\langle ab,cd\rangle$

Example & Notation: $\{a^nb^nc^nd^n|n\geq 1\}$

$$S \rightarrow f_1[A]$$

$$A \rightarrow f_2[A]$$

$$A \rightarrow f_3[]$$

$$f_1[\langle X, Y \rangle] = \langle XY \rangle$$

$$\mathit{f}_1[\langle X,Y\rangle] = \langle XY\rangle \quad \mathit{f}_2[\langle X,Y\rangle] = \langle \mathit{aXb},\mathit{cYd}\rangle \quad \mathit{f}_3[] = \langle \mathit{ab},\mathit{cd}\rangle$$

Example run:

$$S \to f_1[A] \to f_1[f_2[A]] \to f_1[f_2[f_3[]]]$$

$$=f_1[f_2[\langle ab,cd\rangle]]=f_1[\langle aabb,ccdd\rangle]=\langle aabbccdd\rangle.$$

Graiiiiia

sRCG notation

In equivalent notation:

$$S(XY) \rightarrow A(X, Y)$$

 $A(aXb, cYd) \rightarrow A(X, Y)$
 $A(ab, cd) \rightarrow \epsilon$

sRCG notation

In equivalent notation:

$$S(XY) \rightarrow A(X, Y)$$

 $A(aXb, cYd) \rightarrow A(X, Y)$
 $A(ab, cd) \rightarrow \epsilon$

Example run:

$$S(aabbccdd) o A(aabb, ccdd) o A(ab, cd) o \epsilon.$$

Grammar

Well-nestedness

- Well-nested : $A(XY, ZW) \rightarrow B(X, W)C(Y, Z)$
- NOT well-nested : $A(XY, ZW) \rightarrow B(X, Z)C(Y, W)$

We denote well-nested MCFG by $MCFG_{wn}$.

String language

Definition

Let G = (N, T, F, P, S) be a $MCFG_{(wn)}$.

- For every $A \in N$:
 - For every $(A \rightarrow f[]) \in P : f[] \in yield(A)$,
 - ② For every $(A \to f[A_1,...,A_k]) \in P(k \ge 1)$ and all tuples $\tau_1 \in yield(A_1)...\tau_k \in yield(A_k) : f[\tau_1,...,\tau_k] \in yield(A)$.
 - 3 Nothing else is in yield(A).
- The string language of G is $L(G) = \{w | \langle w \rangle \in yield(S)\}.$

Grammar

Closure Properties

Theorem

For every k, the class of k-MCFL $_{(wn)}s$ is closed under:

- substitution
- homomorphism and inverse homomorphism
- union,concatenation and Kleene closure
- intersection with a regular language

So the class of k-MCFL $_{(wn)}$ s forms a substitution closed full Abstract Family of Languages.

Mild Context Sensitivity

- Every MCFL_(wn) is semilinear,
- The (fixed) recognition problem for k-MCFG_(wn)s is polynomial,
- $count_k = \{a_1^n...a_k^n | n \ge 0\} \in (k-1)$ -MCFL for k odd, (k-2)-MCFL o.w.
- $cross_k = \{a_1^n b_1^m ..., a_k^n b_k^m | I, k \ge 0\} \in k\text{-MCFL},$
- $copy_k = \{w^k | w \in \Sigma^*\} \in k\text{-MCFL}.$

Mild Context Sensitivity

- Every MCFL_(wn) is semilinear,
- The (fixed) recognition problem for k-MCFG_(wn)s is polynomial,
- $count_k = \{a_1^n...a_k^n | n \ge 0\} \in (k-1)$ -MCFL for k odd, (k-2)-MCFL o.w.
- $cross_k = \{a_1^n b_1^m ..., a_k^n b_k^m | I, k \ge 0\} \in k\text{-MCFL},$
- $copy_k = \{w^k | w \in \Sigma^*\} \in k\text{-MCFL}.$

So, mild context-sensitivity?

Generative Capacity

MIX is a MCFL

• $MIX_k = \{w \in \{a_1, ..., a_k\} | |a_1|_w = ... = |a_k|_w\}.$ $MIX_3 \in 2\text{-}MCFL$ (Salvati 2011).

MIX is a MCFL

- $MIX_k = \{w \in \{a_1, ..., a_k\} | |a_1|_w = ... = |a_k|_w\}.$ $MIX_3 \in 2\text{-}MCFL \text{ (Salvati 2011)}.$
- It is shown in (Kanazawa, Salvati 2012) that MIX₃ is not a well-nested 2-MCFL.
- So, is MCFG_{wn} a *better* candidate for Mild Context-Sensitivity?

Introduction

Lexicalization is important for our purposes because categorial grammar is by definition lexicalized.

- Displacement grammars are an extension of Lambek grammars
- Displacement grammars extend Lambek grammars by allowing wrapping.
- For concatenation, we have 0 as the unit, for wrapping we have 1 (separator) as unit.
- Let $|_k$ denote insertion at the k-th separator, e.g. $a1bc1d \mid_2 ef = a1bcefd$.

Definition

Let T be a set of atomic types. Then the set T^* of general displacement types is defined as follows:

- If $A \in T$, then $A \in T^*$,
- If $A, B \in T^*$, then

 - $A \bullet B, B/A, A \backslash B, \qquad A \odot_k B, A \uparrow_k B, B \downarrow_k A \in T^*.$

Displacement Calculus

Definition

A Displacement grammar is a triple (W, δ, S) such that:

- W is a set of words.
- $\delta \subseteq W \times T^*$ is a type assignment relation,
- $S \in T^*$ is a distinguished start symbol.

Proof Theory of $D_{I,J}$

$$\frac{\delta(\alpha) = A}{\alpha : A} \text{ Lex.} \qquad \frac{0 : I}{0 : I} \text{ Ax.} I \qquad \frac{1 : J}{1 : J} \text{ Ax.} J$$

$$\frac{\alpha : A}{\alpha : A} \beta : B \qquad \alpha : A \qquad \alpha :$$

Proof Theory of D^1

$$\frac{\delta(\alpha) = A}{\alpha \cdot A}$$
 Lex.

$$\frac{1}{0:I}$$
 Ax.I

$$\frac{}{1:J}$$
 Ax.J

$$\frac{\alpha:A \quad \beta:B}{\alpha+\beta:A\bullet B} \quad I\bullet$$

$$\frac{\alpha: A \quad \gamma: A \backslash B}{\alpha + \gamma: B} \quad E \backslash$$

$$\frac{\gamma + \alpha : B}{\gamma : B/A}$$
 // $\frac{\gamma : B/A \quad \alpha : A}{\gamma + \alpha : B}$ E/

$$\frac{\alpha: A \quad \beta: B}{\alpha|_k \beta: A \odot_k B} \quad I \odot_k$$

$$\frac{\alpha: A \quad \gamma: A \downarrow_k B}{\alpha \mid_{Y} \gamma: B} \quad E \downarrow_k$$

$$\frac{\gamma|_k \alpha : B}{\gamma|_k B \uparrow_k A} = \frac{\gamma : B \uparrow_k A \quad \alpha : A}{\gamma|_k \alpha : B} = E \uparrow_k$$

Proof Theory of $1-D_I$

$$\frac{\delta(\alpha) = A}{\alpha : A} \text{ Lex.} \qquad \frac{1 : J}{0 : I} Ax.I \qquad \frac{1 : J}{1 : J} Ax.J$$

$$\frac{\alpha : A}{\alpha : A} \beta : B \qquad \frac{\alpha : A}{\beta : B} \beta : C \qquad \frac{\alpha : A}{\alpha : A \cdot B} \beta : C \qquad \alpha : A$$

$$\frac{\alpha : A}{\alpha : A \cdot B} A \Rightarrow B \qquad \frac{\alpha : A}{\alpha : A \cdot \gamma : A \cdot B} E \qquad \frac{\alpha : A}{\gamma : B \cdot A} \beta : C \qquad \frac{\alpha : A}{\gamma : A \cdot B} E$$

$$\frac{\alpha : A}{\alpha : A} \beta : B \qquad \frac{\alpha : A}{\alpha : A \cdot \beta : B} \beta : C \qquad \frac{\alpha : A}{\alpha : A \cdot \beta : B} \beta : C \qquad \alpha : A \qquad \alpha :$$

Toy Grammars

Copy Language in D^1

$$S' = S \odot_1 I$$

 $a : A$ $a : J \setminus (A \setminus S)$ $a : J \setminus (S \downarrow_1 (A \setminus S))$
 $b : B$ $b : J \setminus (B \setminus S)$ $b : J \setminus (S \downarrow_1 (B \setminus S))$

•0

Copy Language in D^1

$$S' = S \odot_1 I$$

$$a : A \qquad a : J \setminus (A \setminus S) \quad a : J \setminus (S \downarrow_1 (A \setminus S))$$

$$b : B \qquad b : J \setminus (B \setminus S) \quad b : J \setminus (S \downarrow_1 (B \setminus S))$$

Example derivation:

$$b:B \xrightarrow{\begin{array}{c} a:A \\ \hline a:A \\ \hline \\ \hline a1a:S \\ \hline \\ a1ba:S \\ \hline \\ baba:S \\ \hline \\ 0:I \\ \hline \end{array}}$$

Toy Grammars

Copy Language in $1-D_J$

$$S = (P \uparrow X) \odot I \qquad x : X$$

$$a : A \qquad a : X \setminus (A \setminus P) \qquad a : X \setminus ((P \uparrow X) \downarrow (A \setminus P))$$

$$b : B \qquad b : X \setminus (B \setminus P) \qquad b : X \setminus ((P \uparrow X) \downarrow (B \setminus P))$$

Toy Grammars

Copy Language in $1-D_J$

$$S = (P \uparrow X) \odot I \qquad x : X$$

$$a : A \qquad a : X \setminus (A \setminus P) \qquad a : X \setminus ((P \uparrow X) \downarrow (A \setminus P))$$

$$b : B \qquad b : X \setminus (B \setminus P) \qquad b : X \setminus ((P \uparrow X) \downarrow (B \setminus P))$$

Example derivation:

$$\frac{a:A \xrightarrow{x:X \quad a:X \setminus (A \setminus P)}{xa:A \setminus P}}{\underbrace{\frac{axa:P}{a1a:P \uparrow X}} \underbrace{x:X \quad b:X \setminus ((P \uparrow X) \downarrow (B \setminus P))}_{xb:(P \uparrow X) \downarrow (B \setminus P)}}{\underbrace{\frac{baxba:P}{ba1ba:P \uparrow X}}}$$

$$\underbrace{\frac{baba:(P \uparrow X) \odot I}{baba:(P \uparrow X) \odot I}}$$

b : B

 $L(MCFG_{wn}) = L(D^1)$ (Wijnholds, 2011)

$$L(MCFG_{wn}) \subseteq L(D^1)$$
 (Wijnholds, 2011)

 From left to right: Given a lexicalized rule $A(\alpha_1 a \alpha_2) \rightarrow B_1(\beta_1)...B_n(\beta_n)$, we can always (nondeterministically) find a type assignment a: T such that precisely the following derivation is allowed:

$$\overline{\alpha : T}$$
 Lex. $\beta_1 \stackrel{:}{:} B \dots \beta_n \stackrel{:}{:} B$ $\overline{\alpha_1 a \alpha_2 : A}$

$$L(MCFG_{wn}) \subseteq L(D^1)$$
 (Wijnholds, 2011)

Examples:

- $A(aXY,Z) \rightarrow B(X,Z) C(Y)$ \rightsquigarrow a: $A/(B \odot_1 (C \bullet J))$
- $A(Xa, YZ) \rightarrow B(X, Z) C(Y)$ \rightsquigarrow a: $((B \odot_1 (J \bullet C)) \downarrow_1 A)/J$

 $L(MCFG_{wn}) = L(D^1)$ (Wiinholds, 2011)

$L(MCFG_{wn}) \supseteq L(D^1)$ (Wijnholds, 2011)

- From right to left: a construction in stages. In the first stage, we construct the set $P_0 = \{R^A(w) \to \epsilon \mid \delta(w) = A\}$.
- In each following stage, we decompose the types, e.g. for any $R^{A\setminus B}(\alpha_1,...,\alpha_n)\to\gamma$, we add a rule $R^{B}(Y_{1},...,Y_{m}X_{1},...,X_{n}) \rightarrow R^{A}(Y_{1},...,Y_{k}) R^{A\setminus B}(X_{1},...,X_{n}),$

and for any
$$\gamma_0 \to \gamma_1 R^{A \bullet B}(Z_1, ..., Z_k) \gamma_2$$
 we add a rule $R^{A \bullet B}(X_1, ..., X_n Y_1, ..., Y_m) \to R^A(X_1, ..., X_n) R^B(Y_1, ..., Y_m)$

(respecting sorts)

• The fixed point of the staged construction plus a rule for the start symbol gives us the wanted grammar.


```
L(MCFG_{wn}) = L(D^1) (Wijnholds, 2011)
```

```
\begin{array}{lll} S' = S \odot_1 I \\ a:A & a:J\backslash(A\backslash S) & a:J\backslash(S\downarrow_1(A\backslash S)) \\ b:B & b:J\backslash(B\backslash S) & b:J\backslash(S\downarrow_1(B\backslash S)) \end{array}
```



```
L(MCFG_{wn}) = L(D^1) (Wijnholds, 2011)
```

```
\begin{array}{lll} S' = S \odot_1 I & & & \\ a:A & a:J\backslash(A\backslash S) & a:J\backslash(S\downarrow_1(A\backslash S)) \\ b:B & b:J\backslash(B\backslash S) & b:J\backslash(S\downarrow_1(B\backslash S)) \end{array}
```

```
 \begin{array}{ccc} S'(XY) \to S(X,Y) & & & & \\ R^A(a). & & R^{J\setminus (A\setminus S)}(a). & & R^{J\setminus (S\downarrow_1(A\setminus S))}(a). & & \\ R^B(b). & & R^{J\setminus (B\setminus S)}(b). & & R^{J\setminus (S\downarrow_1(B\setminus S))}(b). & \end{array}
```

```
L(MCFG_{wn}) = L(D^1) (Wijnholds, 2011)
```

```
\begin{array}{lll} S' = S \odot_1 I \\ a:A & a:J\backslash(A\backslash S) & a:J\backslash(S\downarrow_1(A\backslash S)) \\ b:B & b:J\backslash(B\backslash S) & b:J\backslash(S\downarrow_1(B\backslash S)) \end{array}
```

$$\begin{array}{ll} R^{A\backslash S}(\epsilon,X)\to R^{J\backslash(A\backslash S)}(X) & R^{S\downarrow_1(A\backslash S)}(\epsilon,X)\to R^{J\backslash(S\downarrow_1(A\backslash S))}(X) \\ R^{B\backslash S}(\epsilon,X)\to R^{J\backslash(B\backslash S)}(X) & R^{S\downarrow_1(B\backslash S)}(\epsilon,X)\to R^{J\backslash(S\downarrow_1(B\backslash S))}(X) \end{array}$$

$$\begin{array}{lll} S' = S \odot_1 I \\ a:A & a:J\backslash(A\backslash S) & a:J\backslash(S\downarrow_1(A\backslash S)) \\ b:B & b:J\backslash(B\backslash S) & b:J\backslash(S\downarrow_1(B\backslash S)) \end{array}$$

$$\begin{array}{ccc} S'(XY) \to S(X,Y) & & & & \\ R^A(a). & & R^{J\setminus (A\setminus S)}(a). & & R^{J\setminus (S\downarrow_1(A\setminus S))}(a). & & \\ R^B(b). & & R^{J\setminus (B\setminus S)}(b). & & R^{J\setminus (S\downarrow_1(B\setminus S))}(b). & \end{array}$$

$$\begin{array}{ll} R^{A\backslash S}(\epsilon,X) \to R^{J\backslash (A\backslash S)}(X) & R^{S\downarrow_1(A\backslash S)}(\epsilon,X) \to R^{J\backslash (S\downarrow_1(A\backslash S))}(X) \\ R^{B\backslash S}(\epsilon,X) \to R^{J\backslash (B\backslash S)}(X) & R^{S\downarrow_1(B\backslash S)}(\epsilon,X) \to R^{J\backslash (S\downarrow_1(B\backslash S))}(X) \end{array}$$

$$\begin{array}{ll} R^{S}(ZY,X) \rightarrow R^{A}(Z)R^{A \setminus S}(Y,X) & R^{A \setminus S}(XZ,WY) \rightarrow R^{S}(X,Y)R^{S \downarrow_{1}(A \setminus S)}(Z,W) \\ R^{S}(ZY,X) \rightarrow R^{B}(Z)R^{B \setminus S}(Y,X) & R^{B \setminus S}(XZ,WY) \rightarrow R^{S}(X,Y)R^{S \downarrow_{1}(B \setminus S)}(Z,W) \end{array}$$

Plan

- We show $L(MCFG_{wn}) \subseteq L(1-D_J) \subseteq L(D^1)$.
- By the first characterization, then, we have the second one: $L(MCFG_{wn}) = L(1-D_J)$.

$$L(MCFG_{wn}) \subseteq L(1-D_J)$$

- Basically the same construction as for $L(MCFG_{wn}) \subseteq L(D^1)$, but:
- For each rule labeled with A of dimension n, we add $x_i^A: X_i^A$ for $1 \le i \le n-1$.
- Whenever we introduce the kth separator J^k for an A tuple, we instead introduce x_k^A .
- Whenever we introduce a $A \odot_k B$ construction, we instead use $(A \uparrow X_k^A) \odot B$. Similarly for $A \downarrow_k B$.
- We have 'flattened' types such that we only have two-dimensional strings,
- We use higher-order constructions to do intercalation.

$$L(MCFG_{wn}) \subseteq L(1-D_J)$$

Examples:

- $A(aXY,Z) \rightarrow B(X,Z) C(Y)$ $\rightsquigarrow a: A/(B \odot_1 (C \bullet J))$ $\rightsquigarrow a: A/((B \uparrow X_1^B) \odot (C \bullet X_1^A))$
- $A(Xa, YZ) \rightarrow B(X, Z) C(Y)$ \rightarrow a: $((B \odot_1 (J \bullet C)) \downarrow_1 A)/J$ $\rightsquigarrow a: ((((B \uparrow X_1^B) \odot (X_1^B \bullet C)) \uparrow X_1^B) \downarrow A)/X_1^A$

$$L(MCFG_{wn}) = L(1-D_J)$$

$$L(1-D_J)\subseteq L(D^1)$$

- An expression of type $A \uparrow B$ is an expression of type A with an expression of type B extracted out.
- We say that a type $A \uparrow B$ is in input position iff it occurs as one of the following types: $(A \uparrow B) \setminus C$, $C/(A \uparrow B)$, $(A \uparrow B) \bullet C$, $C \bullet (A \uparrow B)$, $(A \uparrow B) \downarrow C$.
- Why? Because in these cases we need to use the $I \uparrow$ rule to get an expression of type $A \uparrow B$ and we want to eliminate exactly these derivations.
- Idea: We can replace $A \uparrow B$ in input position by A' and add type assignments such that all derivable expressions of type A'mimick the behaviour of $A \uparrow B$.

$$L(MCFG_{wn}) = L(1-D_J)$$

Example: Copy language (again)

```
L(MCFG_{wn}) = L(1-D_I)
```

Example: Copy language (again)

```
S = (P \uparrow X) \odot I \qquad x : X
a : A \qquad a : X \setminus (A \setminus P) \qquad a : X \setminus ((P \uparrow X) \downarrow (A \setminus P))
b : B \qquad b : X \setminus (B \setminus P) \qquad b : X \setminus ((P \uparrow X) \downarrow (B \setminus P))
```

```
\begin{array}{lll} S = P' \odot I & & x : X \\ a : A & & a : X \backslash (A \backslash P) & & a : X \backslash (P' \downarrow_1 (A \backslash P)) \\ b : B & & b : X \backslash (B \backslash P) & & b : X \backslash (P' \downarrow_1 (B \backslash P)) \end{array}
```

```
L(MCFG_{wn}) = L(1-D_I)
```

Example: Copy language (again)

```
S = (P \uparrow X) \odot I \qquad x : X
a : A \qquad a : X \setminus (A \setminus P) \qquad a : X \setminus ((P \uparrow X) \downarrow (A \setminus P))
b : B \qquad b : X \setminus (B \setminus P) \qquad b : X \setminus ((P \uparrow X) \downarrow (B \setminus P))
```

```
\begin{array}{lll} S = P' \odot I & x : X \\ a : A & a : X \backslash (A \backslash P) & a : X \backslash (P' \downarrow_1 (A \backslash P)) \\ b : B & b : X \backslash (B \backslash P) & b : X \backslash (P' \downarrow_1 (B \backslash P)) \end{array}
```

```
\begin{array}{ll} a: J \backslash (A \backslash P') & a: J \backslash (P' \downarrow_1 (A \backslash P')) \\ b: J \backslash (B \backslash P') & b: J \backslash (P' \downarrow_1 (B \backslash P')) \end{array}
```

Conclusion

- We have shown two logical characterizations of the Mildly Context-Sensitive Languages
- We have a choice between a (bounded) high number of connectives but only first-order constructions or a fixed number of connectives but allowing higher-order constructions.
- Which system is favorable?
- Open problem: is there a variant of D that relates to MCFG?
 If so, how exactly?

