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Descriptive set theory and the Baire space Why DST, why NN?

Descriptive set theory

The real line R can have some pathologies (in ZFC): for example, not every set of
reals is Lebesgue measurable, there may be sets of reals of cardinality strictly
between |N| and |R|, etc.

Descriptive set theory, the theory of definable sets of real numbers, was developed
in part to try to fill in the template

“No definable set of reals of complexity c can have pathology P”



Descriptive set theory and the Baire space Why DST, why NN?

Baire space NN

For a lot of questions which interest set theorists, working with R is unnecessarily
clumsy.

It is often better to work with other (Cauchy-)complete topological spaces of
cardinality |R| which have bases of cardinality |N| (a.k.a. Polish spaces), and this is
enough (in a technically precise way).

The Baire space NN is especially nice, as I hope to show you, and set theorists
often (usually?) mean this when they say “real numbers”.



Descriptive set theory and the Baire space The topology of NN and its many flavors

The topology of NN

We consider NN with the product topology of discrete N.

. . .

This topology is generated by the complete metric

d(x, y) =
{

0 if x = y
2−n if x 6= y and n is least such that x(n) 6= y(n).

For each σ ∈ N<N, we denote

[σ] := {x ∈ NN ; σ is a prefix of x}

Then
{[σ] ; σ ∈ N<N}

is a (countable) basis for the topology of NN.
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Descriptive set theory and the Baire space The topology of NN and its many flavors

The topology of NN

We consider NN with the product topology of discrete N.

. . .

This topology is generated by the complete metric

d(x, y) =
{

0 if x = y
2−n if x 6= y and n is least such that x(n) 6= y(n).

For each σ ∈ N<N, we denote

[σ] := {x ∈ NN ; σ ⊂ x}

Then
{[σ] ; σ ∈ N<N}

is a (countable) basis for the topology of NN.



Descriptive set theory and the Baire space The topology of NN and its many flavors

The computational flavor of NN

Thus a set X ⊆ NN is open iff there exists some A ⊆ N<N such that

X ∈
⋃
σ∈A

[σ].

Hence, if X is open and we want to decide if some given x is in X , then we can
inspect longer and longer finite prefixes of x,

〈x0〉
〈x0, x1〉
〈x0, x1, x2〉
...

and in case x ∈ X is indeed true, at some finite stage we will “know” this
(if x 6∈ X then all bets are off).
This is analogous to the recursively enumerable sets in computability theory.



Descriptive set theory and the Baire space The topology of NN and its many flavors

The combinatorial flavor of NN

A tree is a set T ⊆ N<N which is closed under prefixes.

An element x ∈ NN is an infinite path of a tree T if all finite prefixes of x are in T .
The body of T is the set of all its infinite paths, denoted [T ].

Theorem
The closed sets of NN are exactly the bodies of trees.



Descriptive set theory and the Baire space The topology of NN and its many flavors

The combinatorial flavor of NN

A tree is a set T ⊆ N<N which is closed under prefixes.

An element x ∈ NN is an infinite path of a tree T if all finite prefixes of x are in T .
The body of T is the set of all its infinite paths, denoted [T ].

Theorem
The closed sets of NN are exactly the bodies of trees.



Descriptive set theory and the Baire space The topology of NN and its many flavors

Notation clash?

We use the same notation for basic open sets, [σ], as for bodies of trees, [T ].

But actually [σ] is also the body of a certain tree:

Thus every basic open set is also closed, in stark contrast to R which has only two
clopen sets, ∅ and R.
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The Borel hierarchy

A set is Borel iff it belongs to
⋃
α<ω1
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The Borel hierarchy

A set is Borel iff it belongs to
⋃
α<ω1

∆0
α



Gale-Stewart games and the Axiom of Determinacy

Presentation outline

[0]

1 Descriptive set theory and the Baire space
Why DST, why NN?
The topology of NN and its many flavors

2 Gale-Stewart games and the Axiom of Determinacy

3 Games for classes of functions
The classical games
The tree game
Games for finite Baire classes



Gale-Stewart games and the Axiom of Determinacy

Gale-Stewart games

Given A ⊆ NN, the Gale-Stewart game for A is played between two players, I and
II, in N rounds.
Player I plays in even rounds, II in odd rounds.
At round n the corresponding player picks xn ∈ N (with perfect information).

Round

0 1 2 3 4 · · ·

I

x0 x2 x4

II

x1 x3

Player I wins iff x = 〈x0, x1, x2, . . .〉 ∈ A, and A is determined if one of the players
has a winning strategy in the game for A.
Note that the determinacy of A is a kind of infinitary De Morgan law:

¬
[
∃x0∀x1∃x2∀x3 · · · 〈x0, x1, . . .〉 ∈ A

]
iff

∀x0∃x1∀x2∃x3 · · · 〈x0, x1, . . .〉 6∈ A.
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Gale-Stewart games and the Axiom of Determinacy

The Axiom of Determinacy

In ZFC, the following is the best one can prove.

Theorem (Gale and Stewart; Martin)
Every Borel set is determined.

The Axiom of Determinacy is the statement “every subset of NN is determined”.
In ZFC this is straight-up false:

Theorem (ZFC)
There exists a non-determined set.

But this uses the axiom of choice in an essential way; there is a statement φ
involving large cardinals such that:

Theorem (Woodin)
If ZFC + φ is consistent, then so is ZF + AD.



Gale-Stewart games and the Axiom of Determinacy

The Axiom of Determinacy

Life in ZF + AD is very different from that in ZFC.

Theorem (ZF + AD)
1 The Continuum Hypothesis holds*;
2 every set of reals is Lebesgue measurable (likewise for many other pathologies);
3 ℵ1 and ℵ2 are measurable cardinals (!), but all other ℵn have cofinality ℵ2 (!!).

...

We move back to the safe haven of ZFC for the rest of the talk.
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Games for classes of functions

A hierarchy of functions

One way to measure the complexity of a function f : NN → NN is by how much it
deforms the Borel hierarchy (under preimages).

Hence continuous functions are “simple”, but Baire class 1 functions (pointwise
limits of continuous functions) are slightly more complex, and so on.

We define
Λα,β := {f : NN → NN ; ∀X ∈ Σ0

α. f−1[X ] ∈ Σ0
β}

Today we will mainly focus on the Baire classes Λ1,α.



Games for classes of functions

The general framework

In the games we will consider, players I (male) and II (female) are given a
function f : NN → NN and again play in N rounds with perfect information.

However, now both I and II play at each round n:
I plays a natural number xn, and II plays some yn from a certain set M of moves.

Therefore in the long run they build x = 〈x0, x1, . . .〉 ∈ NN and
y = 〈y0, y1, . . .〉 ∈ MN, respectively.

There is a set R ⊆ MN of rules, and II loses if y 6∈ R.

There is an interpretation function i : R→ NN, and player II wins a run of the
game iff y ∈ R and i(y) = f (x).

We say that a game characterizes a class C of functions if

A function f is in C
iff

Player II has a winning strategy in the game for f .



Games for classes of functions The classical games

The Wadge game

In the Wadge game for f , player II’s moves are
I play a natural number; or
I pass.

The rule is that she must play natural numbers infinitely often.

Theorem (Wadge (Duparc?))
The Wadge game characterizes the continuous functions (i.e., Λ1,1).



Games for classes of functions The classical games

The eraser game

In the eraser game for f , player II’s moves are
I play a natural number;
I pass; or
I erase a past move.

The rules are that she must
I play natural numbers infinitely often; and
I only erase each position of her sequence finitely many times.

Theorem (Duparc)
The eraser game characterizes Λ1,2.



Games for classes of functions The classical games

The backtrack game

In the backtrack game for f , player II’s moves are
I play a natural number;
I pass; or
I start over from scratch (backtrack).

The rules are that she must
I play natural numbers infinitely often; and
I backtrack finitely many times.

Theorem (Andretta)
The backtrack game characterizes Λ2,2.



Games for classes of functions The tree game

The tree game

In his PhD thesis at the ILLC, Brian Semmes introduced the tree game.

At round n, player II plays a finite tree Tn and a function φn : Tn → N (called a
labelling)

The rules are
I For all n we must have Tn ⊆ Tn+1 and φn ⊆ φn+1; and
I T :=

⋃
n Tn must be an infinite tree with a unique infinite path.

The interpretation function is “the labels along the infinite path of T”.

Theorem (Semmes)
The tree game characterizes the Borel functions, i.e.,
those for which the preimage of any Borel set is a Borel set.



Games for classes of functions Games for finite Baire classes

A new template

Note that each Baire class Λ1,α is a subset of the Borel functions.

Problem
Given α < ω1, find a property Φα of trees such that adding

T must have property Φα

as a rule to the tree game results in a game which characterizes Λ1,α.

Examples
1 Φ1 is “T is linear” (i.e. each node has exactly one immediate child).
2 Φ2 is “T is finitely branching”.
3 (Semmes) Φ3 is “T is finitely branching outside of its infinite path”.



Games for classes of functions Games for finite Baire classes

Games for finite Baire classes

Given a tree T , define its pruning derivative by

T ′ := {σ ∈ T ; the subtree of T rooted at σ has infinite height}.

Theorem (N.)
I Φ2n+1 is “T (n) is linear”; and
I Φ2n+2 is “T (n) is finitely branching”.

Interestingly, this gives a different Φ3 than the one found by Semmes.
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Infinite Baire classes?

We can extend T (α) into the transfinite by defining

T (0) := T
T (α+1) := (T (α))′

T (λ) :=
⋂
α<λ

T (α) for limit λ.

Conjecture
For any limit λ < ω1,

I Φλ+2n+1 is “T (λ+n) is linear”.
I Φλ+2n+2 is “T (λ+n) is finitely branching”.



Games for classes of functions Games for finite Baire classes

Full disclosure

Game characterizations of all Baire classes Λ1,α have independently been found by
Alain Louveau, who was building on/working with Semmes after the latter’s PhD.

These results have never been published.

Thanks for your attention!
Questions?
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