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Duality in General

“Duality underlines the world”

• “Most human things go in pairs” (Alcmaeon, 450 BC)

Existence of an entity in seemingly di↵erent forms, which are
strongly related.

• Dualism forms a part of the philosophy of eastern religions.

• In Physics : Wave-particle duality, electro-magnetic duality,
Quantum Physics,. . .



Duality in Mathematics

• Back and forth mappings between dual classes of
mathematical objects.

• Lattices are self-dual objects
• Projective Geometry
• Vector Spaces

• In logic, dualities have been used for relating syntactic and
semantic approaches.



Algebras and Spaces

Logic fits very well in between.



Algebras

• Equational classes having a domain and operations .

• Eg. Groups, Lattices, Boolean Algebras, Heyting Algebras . . .,

• Homomorphism, Subalgebras, Direct Products, Variety, . . .

Power Set Lattice (BDL)

• BA = (BDL + ¬) s.t. a _ ¬a = 1



(Topological) Spaces

• Topology is the study of spaces.
A toplogy on a set X is a collection of subsets (open sets) of
X , closed under arbitrary union and finite intersection.

R
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Open Sets correspond to neighbourhoods of points in space.

• Metric topology, Product topology, Discrete topology . . .

• Continuous maps, Homeomorphisms, Connectedness,
Compactness, Hausdor↵ness,. . .

“I dont consider this algebra, but this doesn’t mean that
algebraists cant do it.” (Birkho↵)



A brief history of Propositional Logic

• Boole’s The Laws of Thought
(1854) introduced an algebraic
system for propositional reasoning.

• Boolean algebras are algebraic
models for Classical Propositional
logic.

• Propositional logic formulas
correspond to terms of a BA.
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George Boole (1815-1864)



Representation in Finite case

• Representation Theorems every element of the class of
structures X is isomorphic to some element of the proper
subclass Y of X

• Important and Useful (algebraic analogue of completeness)
• Cayley’s theorem, Riesz’s theorem, . . .

• Representation for Finite case (Lindembaum-Tarski 1935)
Easy !

��
�⌧
FBA ��

�⌧
Set

q

i

Atoms

PowerSet

• Map every element of the algebra to the set of atoms below it
f (b) = {a 2 At(B) | a  b} for all b 2 B
FBA ⇠= P(Atoms)
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Stone Duality

‘A cardinal principle of modern mathematical research maybe be
stated as a maxim: “One must always topologize” ’.

-Marshall H. Stone
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Stone’s Representation Theorem (1936)
M. H. Stone (1903-1989)



From Spaces to Algebras and back

• Stone spaces Compact, Hausdor↵, Totally disconnected
eg. 2A, Cantor set, Q \ [0, 1]

• Stone space to BA
Lattice of clopen sets of a Stone space form a Boolean algebra

• BA to Stone space
Key Ideas :
(i) Boolean algebra can be seen a Boolean ring (Idempotent)
(ii) Introducing a topology on the space of ultrafilters of the
Boolean ring

What is an ultrafilter ?



From Spaces to Algebras and back

• Stone spaces Compact, Hausdor↵, Totally disconnected
eg. 2A, Cantor set, Q \ [0, 1]

• Stone space to BA
Lattice of clopen sets of a Stone space form a Boolean algebra

• BA to Stone space
Key Ideas :
(i) Boolean algebra can be seen a Boolean ring (Idempotent)
(ii) Introducing a topology on the space of ultrafilters of the
Boolean ring

What is an ultrafilter ?



From Spaces to Algebras and back

• A filter on a BA is a subset F of BA such that
• 1 2 F , 0 /2 F ;
• if u 2 F and v 2 F , then u ^ v 2 F ;
• if u, v 2 B , u 2 F and u  v , then v 2 F .

In short, its an upset, closed under meets.
An ultrafilter U, is a filter such that either a 2 U or ¬a 2 U.

• Example: Let P(X ) be a powerset algebra Then the subset
" {x} = {A 2 P(X ) | x 2 A} is an ultrafilter.
Non-principal ultrafilters exist (Axiom of Choice)

• (i) Map an element of B to the set of ultrafilters containing it
f (b) = {u 2 S(B) | a 2 u}
(ii) Topology on S(B), is generated by the following basis
{u 2 S(B) | b 2 u} where b 2 B

• Morphisms and Opposite (contravariant) Duality
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The Complete Duality
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• Canonical extensions

• Stone-Céch Compactification



Modal logic as we know it

Kripke had been introduced to Beth by Haskell
B. Curry, who wrote the following to Beth in
1957

“I have recently been in communication with a
young man in Omaha Nebraska, named Saul
Kripke. . . This young man is a mere boy of 16
years; yet he has read and mastered my Notre
Dame Lectures and writes me letters which would
do credit to many a professional logician. I have
suggested to him that he write you for preprints of
your papers which I have already mentioned. These
of course will be very di�cult for him, but he
appears to be a person of extraordinary brilliance,
and I have no doubt something will come of it.”

Saul Kripke

Saul Kripke, A Completeness Theorem in Modal Logic. J. Symb. Log.

24(1): 1-14 (1959)
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Modal logic before the Kripke Era

• C.I. Lewis, Survey of Symbolic Logic, 1918
(Axiomatic system S1-S5)

• Syntactic era (1918-59)
Algebraic semantics, JT Duality, . . .

• The Classical era (1959-72)
”Revolutionary” Kripke semantics, Frame completeness,. . .

• Modern era (1972- present)
Incompleteness results (FT ’72, JvB ’73), Universal algebras in
ML, CS applications,. . .

• Modal Algebra (MA) = Boolean Algebra + Unary operator ⌃
1. ⌃(a _ b) = ⌃a _ ⌃b
2. ⌃? = ?
3. ⌃(a ! b) ! (⌃a ! ⌃b) (Monotonicity of ⌃)



Jóhsson-Tarski Duality
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Jóhnsson-Tarski Duality (1951-52)

Bjarni Jóhnsson

Alfred Tarski (1901-1983)



Modal Spaces and Kripke Frames

• Key Idea: We already know, ultrafilter frame of the BA forms
a Stone space. For BAO, we add the following relation
between ultrafilters

Ruv i↵ fa 2 u for all a 2 v

• Descriptive General Frames
• Unify relational and algebraic semantics
• DGF = KFr + admissible or clopen valuations
• Validity on DGF ) Validity on KFr

Converse (Persistence) only true for Sahlqvist formulas



Algebraic Soundness and Completeness

• Theorem: Let ⌃ set of modal formulas. Define

V⌃ = {A 2 BAO | 8'(' 2 � ) A |= ' = >)}

Then for every  , `
K

 i↵ V⌃ |=  = >.

Soundness: By induction on the depth of proof of  .
Completeness: Assume 0

K

 . To show: 9A 2 V⌃ and
A |= ( 6= >).The Lindenbaum-Tarski algebra is the
canonical witness (Define  ⌘  0 i↵ `

K

( $  0).

• Canonical Models are Ultrafilter frames of Lindenbaum-Tarski
algebra

• Disjoint Union $ Product
Bounded Morphic image $ Subalgebras
Generated subframe $ Homomorphic image
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Esakia Duality
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Esakia Duality (1974)

• Useful in characterizing Intermidiate
logics.

Leo Esakia
(1934-2010)



List of Dual Structures in Logic

Duality Algebra Space Logic

Priestly Duality DL Priestly negation free CL
Esakia Duality HA Esakia IPL
Stone Dualtiy BA Stone CPL
Jóhnsson-Tarski Duality MA MS ML
. . .



Frame Definability and Correspondence

• Elementary class of frames

• Reflexive, Transitive,
Antisymmetric, . . .

• Modally def. class of frames

• p ! ⇤p, ⇤p ! ⇤⇤p,
⇤(⇤p ! p) ! ⇤p,. . .

• Which Elementary class of frames are Modally definable?
Goldblatt-Thomason Theorem [GT ’74] (Duality + Birkho↵’s
Thm)

• Which Modally definable class of frames are elementary?
Van Benthem’s Theorem [JvB ’76]

• Which modal formulas define elementary class of frames?

• T, 4, B etc define elementary class of frames
• Innocent looking McKinsey (⇤⌃p ! ⌃⇤p) does not !
• It’s an undecidable problem [Chagrova ’89]
• Sahlqvist formulas provide su�cient conditions
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Correspondence Theory

• Johan’s PhD thesis Modal
Correspondence Theory in 1976.

• Correspondence
Provides su�cient syntactic
conditions for first order frame
correspondence eg. Sahlqvist
formulas.

• Completeness
Sahlqvist formulas are canonical
and hence axiomatization by
Sahlqvist axioms is complete.



Classical Correspondence
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Correspondence via Duality
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Correspondence via Duality

Key Ideas
(i) Use the properties of the algebra to drive the correspondence
mechanism.
(ii) Use the (order theoretic) properties of the operators to define
sahlqvist formulas

Eg. ⇤p ! p
iif ⇤p  p
i↵ p  (⇤)�1p (⇤ as SRA)
i↵ 8i 8j i  p & (⇤)�1p  m
i↵ 8i 8j (⇤)�1i  j
i↵ 8x , x 2 R[x ]

SLR

SRA/SLR

SRA

Sahlqvist formula

Advantages
(i) Counter-intuitive frame conditons can be easily obtained (eg.
Löb’s axiom)
(ii) The approach generalizes to a wide variety of logics.



Point Free Topology

• Point free Topology
• Open sets are first class citizens
• Lattice theoretic (algebraic)

approach to topology
• Sober spaces and Spatial locales

• Gelfand dualtiy
• locally KHaus and the C*-algebra

of continuous complex-valued
functions on X

• Understanding spaces by maps.

• Algebraic Topology?

Peter T. Johnstonne

Israel Gelfand (1913-2009)



Coalgebras

• Modal logics are Colagebraic [CKPSV ’08]
Kripke frames as transition systems.

• Coalgebraic Stone Duality
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The Beatles

“Within You Without You” is a song written by George Harrison,
released on The Beatles’ 1967 album, Sgt. Pepper’s Lonely Hearts
Club Band.



The Beatles

“. . . And the time will come when you see
We’re all one, and life flows on within you and without you”



The Beatles

“. . . And the time will come when you see
We’re all one, and logic flows on within you and without you”
(summarizes duality theory quite well !)


