Attentive *might*

Floris Roelofsen

based on joint work with Jeroen Groenendijk and Ivano Ciardelli

San Diego, March 4, 2011

www.illc.uva.nl/inquisitive-semantics

• Two puzzles for the standard modal account of might

- Attentive *might* in inquisitive semantics
- Attentive *might* in inquisitive pragmatics
- Comparison with modal and dynamic accounts

Puzzle 1: might meets disjunction and conjunction

Zimmermann's (2000)

The following are all equivalent:

(1) John might be in London or in Paris. $\Diamond (p \lor q)$

- (2) John might be in London or he might be in Paris. $\Diamond p \lor \Diamond q$
- (3) John might be in London and he might be in Paris. $\Diamond p \land \Diamond q$

Puzzle 1: might meets disjunction and conjunction

Crucially

- *Might* behaves differently in this respect from clear-cut epistemic modals
- The following are clearly not equivalent:
 - (4) It is consistent with my beliefs that John is in London or it is consistent with my beliefs that he is in Paris.
 - (5) It is consistent with my beliefs that John is in London and it is consistent with my beliefs that he is in Paris.
- This is problematic if *might* is analyzed as an epistemic modal

Puzzle 1: might meets disjunction and conjunction

Further observation

• For the equivalence to go through, it is crucial that John cannot be both in London and in Paris at the same time

Szabolcsi's scenario

• We need an English-French translator, i.e., someone who speaks *both* languages. In that context, (8) is perceived as a useful recommendation, while (6) and (7) are not.

(6) John might speak English or French. $\Diamond (p \lor q)$ (7) John might speak English or he might speak French. $\Diamond p \lor \Diamond q$ (8) John might speak English and he might speak French. $\Diamond p \land \Diamond q$

Puzzle 2: might meets negation

Basic observation

Standard sentential negation never takes scope over might

(9) John might not be in London.

Crucially

Might \neq 'it is consistent with my information that'

(10) It is not consistent with my information that John is in London. \neg CONSISTENT p

o¬n

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Main point

• The notion of meaning that we are exploring in inquisitive semantics is not only suited to capture informative and inquisitive content in a uniform way, but also a sentence's potential to draw attention to certain possibilities

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

This allows for a novel analysis of might

Driving intuition

- (11) John might be in London.
- (12) John is in London.
- (13) Is John in London?

Main contrasts

- (11) differs from (12) in that it does not provide the information that John is in London
- (11) differs from (13) in that it does not request information
- 'ok' is an appropriate response to (11), but not to (13)

Main intuition

• The semantic contribution of (11) lies in its potential to draw attention to the possibility that John is in London

Attentive content in inquisitive semantics

- The conception of a proposition as a set of possibilities is ideally suited to capture attentive content
- We can simply think of a sentence φ as drawing attention to all the possibilities in [φ]

- At the same time, we can still think of φ as providing and requesting information, just as before
 - ⇒ informative, inquisitive, and attentive content are all captured by a single semantic object

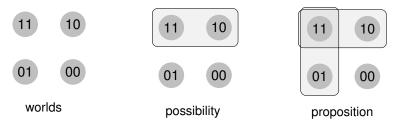
A propositional language

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Basic ingredients

- Finite set of atomic sentences *A*
- Connectives ¬, ∧, ∨, ◊

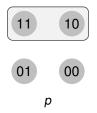
Question and assertion operators


•
$$!\varphi \coloneqq \varphi \lor \neg \neg \varphi$$

•
$$?\varphi := !\varphi \lor \neg \varphi$$

Worlds, possibilities, and propositions

- Possible worlds: functions from \mathcal{A} to $\{0, 1\}$
- Possibilities: sets of possible worlds
- Propositions: sets of possibilities


Illustration

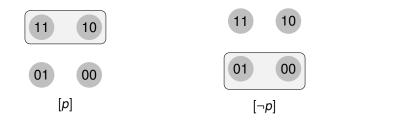
◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Atomic sentences

For any atomic sentence p: $[p] = \{ \{w \mid w(p) = 1\} \}$ Example:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Negation, disjunction, conjunction, and might

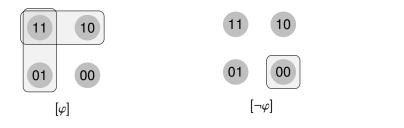

- We will consider here a straightforward analysis of
 ¬, ∨, ∧, and ◊ that solves the puzzles we started out with
 (from Ciardelli, Groenendijk and Roelofsen, SALT 2009)
- It must be noted, however, that the analysis has certain undesirable consequences
- We are currently working on a more principled account that avoids these problems

Negation

Definition

- $[\neg \varphi] = \{ \overline{\bigcup[\varphi]} \}$
- Take the union of all the possibilities for φ; then take the complement

Example, φ classical:

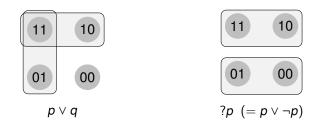

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Negation

Definition

- $[\neg \varphi] = \{ \overline{\bigcup[\varphi]} \}$
- Take the union of all the possibilities for φ; then take the complement

Example, φ inquisitive:

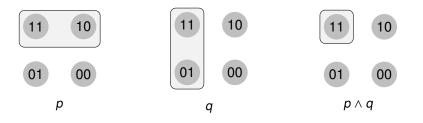

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Disjunction

Definition

• $[\varphi \lor \psi] = [\varphi] \cup [\psi]$

Examples:

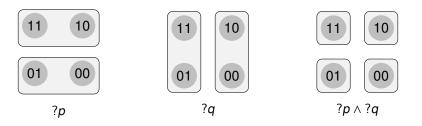

・ロト・日本・日本・日本・日本・日本

Conjunction

Definition

- $[\varphi \land \psi] = \{\alpha \cap \beta \mid \alpha \in [\varphi] \text{ and } \beta \in [\psi]\}$
- Pointwise intersection

Example, φ and ψ classical:

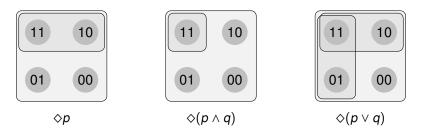

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Conjunction

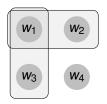
Definition

- $[\varphi \land \psi] = \{\alpha \cap \beta \mid \alpha \in [\varphi] \text{ and } \beta \in [\psi]\}$
- Pointwise intersection

Example, φ and ψ inquisitive:

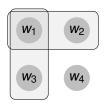


◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○


Might

- $[\Diamond \varphi] = [\varphi] \cup \{W\}$
- Intuition: ◊φ proposes exactly the same updates as φ, but also offers the option to keep the common ground just as it is

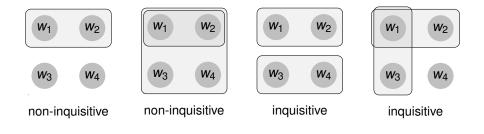
Examples


Informative, inquisitive, and attentive content

- A sentence φ draws attention to all the possibilities in $[\varphi]$
- Moreover, it provides the information that the actual world is contained in at least one of the possibilities in $[\varphi]$
- and it requests a response that provides enough information to establish at least one of these possibilities

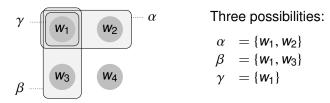
◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Informative, inquisitive, and attentive content

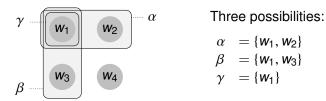


- A sentence φ draws attention to all the possibilities in $[\varphi]$
- Moreover, it provides the information that the actual world is contained in at least one of the possibilities in $[\varphi]$
- and it requests a response that provides enough information to establish at least one of these possibilities

 \Rightarrow a single semantic object embodies informative, inquisitive, and attentive content


Inquisitive content

- φ requests a response that provides enough information to establish at least one of the possibilities in [φ]
- Sometimes, it suffices to accept the information that φ itself already provides
- If additional information is required, we call φ inquisitive


ション 小田 マイビット ビー シックション

Alternative and residual possibilities

- Providing the information that at least one of {α, β, γ} contains the actual world is the same as providing the information that at least one of {α, β} contains the actual world
- Requesting a response that establishes at least one of {α, β, γ} is the same as requesting a response that establishes at least one of {α, β}
- So γ does not play a role in determining the informative or inquisitive content of this proposition

Alternative and residual possibilities

- In general, for any proposition $[\varphi]$, we can distinguish:
- Alternative possibilities
 - not properly contained in a maximal possibility in $[\varphi]$
 - completely determine the informative & inquisitive content of φ
- Residual possibilities
 - properly contained in a maximal possibility in $[\varphi]$
 - only play a role in capturing the attentive content of φ

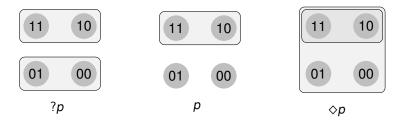
Inquisitive, informative, and attentive sentences

Definitions

- φ is informative iff it eliminates at least one world, i.e., $\bigcup [\varphi] \neq W$
- φ is inquisitive iff $[\varphi]$ contains at least two alternative possibilities
- φ is attentive iff $[\varphi]$ contains at least one residual possibility

Example

p ∨ *q* ∨ (*p* ∧ *q*) "*p* or *q* or both" informative, inquisitive, and attentive

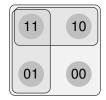

ション 小田 マイビット ビー シックション

Questions, Assertions, and Conjectures

Definitions

- φ is a question iff it is neither informative nor attentive
- φ is an assertion iff it is neither inquisitive nor attentive
- φ is a conjecture iff it is neither informative nor inquisitive

Examples



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Might and conjectures

Every might sentence is a conjecture

- $\Diamond \varphi$ is never informative
- $\Diamond \varphi$ is never inquisitive
- So $\Diamond \varphi$ is always a conjecture

 $\diamond(p \lor q)$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Every conjecture can be expressed by a *might* sentence

• φ is a conjecture if and only if $\varphi \equiv \Diamond \varphi$

Closure properties of conjectures

For any φ and ψ :

- $\Diamond \varphi$ is a conjecture;
- if φ and ψ are conjectures, then so is φ ∧ ψ;
- if at least one of φ and ψ is a conjecture, so is φ ∨ ψ;
- if ψ is a conjecture, then so is $\varphi \to \psi$.

Examples

(14)John might be in London. $\Diamond p$ (15)John might be in London and Bill in Paris. $\Diamond p \land \Diamond q$ (16)John is in London, or he might be in Paris. $p \lor \Diamond q$ (17)If John is in London, Bill might be in Paris. $p \to \Diamond q$

Might meets disjunction and conjunction

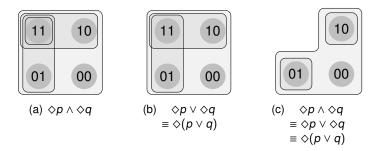
Zimmermann's (2000)

The following are all equivalent:

- (1) John might be in London or in Paris. $\Diamond (p \lor q)$
- (2) John might be in London or he might be in Paris. $\Diamond p \lor \Diamond q$
- (3) John might be in London and he might be in Paris. $\Diamond p \land \Diamond q$

Might meets disjunction and conjunction

Further observation


• For the equivalence to go through, it is crucial that John cannot be both in London and in Paris at the same time

Szabolcsi's scenario

• We need an English-French translator, i.e., someone who speaks *both* languages. In that context, (8) is perceived as a useful recommendation, while (6) and (7) are not.

(6) John might speak English or French. $\Diamond (p \lor q)$ (7) John might speak English or he might speak French. $\Diamond p \lor \Diamond q$ (8) John might speak English and he might speak French. $\Diamond p \land \Diamond q$

Might meets disjunction and conjunction

- Whenever the disjuncts are mutually exclusive, as in (c), all three sentences are indeed equivalent
- If the disjuncts are not mutually exclusive, then ◇p ∧ ◇q differs from the other two in that it draws attention to the possibility that p and q both hold.
- This is what makes ◊p ∧ ◊q a useful recommendation in Szabolcsi's scenario

Might meets negation

o∽p

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Basic observation

Standard sentential negation never takes scope over might

(18) John might not be in London.

Crucially

Might \neq 'it is consistent with my information that'

(19) It is not consistent with my information that John is in London. \neg CONSISTENT p

Explanation

 $\neg \diamondsuit \varphi$ is always a contradiction

See the paper for similar, but more complex effects in conditionals

- Gricean pragmatics generally assumes a truth-conditional semantics, which captures only informative content
- Gricean pragmatics is a pragmatics of providing information
- Inquisitive semantics enriches the notion of semantic meaning

- This requires an enrichment of the pragmatics as well
- We need not just a pragmatics of providing information, but rather a pragmatics of exchanging information

Inquisitive pragmatics (sketch)

Quality

Maintain the common ground and your own information state.

• Be sincere

(speaker oriented)

- Only assert what you take yourself to know
- Only ask what you don't know
- · Only draw attention to 'live' possibilities
- Be transparent: signal inconsistency Reject an update if it is inconsistent with your information state

(hearer oriented)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Inquisitive pragmatics (sketch)

Relatedness/compliance

• The semantics naturally gives rise to a formal notion of relatedness/compliance

Quantity

• Among all the compliant and sincere responses to a given (possibly implicit) question under discussion, there is a general preference for more informative responses

Back to *might*: three basic observations

(20) John might be in London.

Possibility

• (20) signals that the speaker considers it possible that John is in London

 \Rightarrow point of departure for a modal analysis of *might*

Back to *might*: three basic observations

(20) John might be in London.

Consistency test

- (20) imposes a consistency test on the hearer: if her information state is inconsistent with John being in London, she must report this
 - \Rightarrow point of departure for Veltman's update semantics of might

Back to *might*: three basic observations

(20) John might be in London.

Ignorance

• (20) typically signals that the speaker is ignorant as to whether John is in London or not

 \Rightarrow typically analyzed as a Gricean implicature

The inquisitive account

(20) John might be in London.

Possibility

- (20) signals that the speaker considers it possible that John is in London
- Follows directly from sincerity
- Unlike the modal analysis, this account directly extends to:

(21) John might be in London or in Paris.

The inquisitive account

(20) John might be in London.

Consistency test

- (21) imposes a consistency test on the hearer: if her information state is inconsistent with John being in London, she must report this
- Follows directly from transparency
- Unlike update semantics, this account directly extends to:

ション 小田 マイビット ビー シックション

(21) John might be in London or in Paris.

The inquisitive account

(20) John might be in London.

Ignorance

• (21) typically signals that the speaker is ignorant as to whether John is in London or not

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• Follows from the quantitative preference for more informative compliant moves

Division of labor

Inquisitive semantics

Specifies which proposals are expressed by which sentences

Inquisitive pragmatics

- Specifies what a context—in particular, the common ground and the speaker's information state—must be like in order for a certain proposal to be made
- ... and how a hearer is supposed to react to a given proposal, depending on the common ground and her own information state.

Final remarks

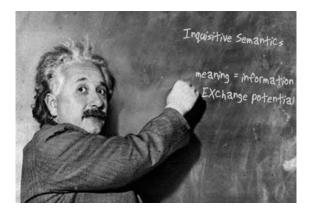
- The idea that the core semantic contribution of *might-\varphi* lies in its potential to draw attention to certain possibilities has been entertained before
- For instance, Groenendijk, Stokhof, and Veltman (1996) write:

"in many cases, a sentence of the form might- φ will have the effect that one becomes aware of the possibility of φ ."

- Similar ideas can be found in more recent work:
 e.g. Swanson (2006), Franke and de Jager (2008),
 Brumwell (2009), Dekker (2009)
- Related ideas in the literature on evidentials (Murray, 2010; Faller, 2002)

Final remarks

 However, Groenendijk, Stokhof, and Veltman continue to point out that their framework


> "is one in which possible worlds are total objects, and in which growth of information about the world is explicated in terms of elimination of worlds. Becoming aware of a possibility cannot be accounted for in a natural fashion in such an eliminative approach. It would amount to extending partial worlds, rather than eliminating total ones. To account for that aspect of the meaning of might a constructive approach seems to be called for."

Final remarks

- We have taken a different route
- Possible worlds are still total objects
- Growth of information still amounts to eliminating worlds
- What has changed is the very notion of meaning
- No truth-conditions, no information change potential, but rather information *exchange* potential
- This shift in perspective immediately facilitates a perspicuous account of *might*, and of attentive content more generally

ション 小田 マイビット ビー シックション

Thank you

www.illc.uva.nl/inquisitive-semantics

(ロト (個) (E) (E) (E) (9)