Searchable List of Research Output

Filter Publications
  • Yang, F., & Väänänen, J. (2017). Propositional team logics. Annals of Pure and Applied Logic, 168(7), 1406-1441. https://doi.org/10.1016/j.apal.2017.01.007 >>>
  • Yu, J., Amores, J., Sebe, N., & Tian, Q. (2006). Ranking Metrics and Evaluation Measures. In Advances in Imaging and Electron Physics (pp. 291). (144). Elsevier. >>>
  • Yu, J., Amores, J., Sebe, N., & Tian, Q. (2006). Toward Robust Distance Metric Analysis for Similarity Estimation. In C. Schmid, S. Soatto, & C. Tomasi (Eds.), IEEE Computer Vision and Pattern Recognition (CVPR) >>>
  • Yu, J., Amores, J., Sebe, N., & Tian, Q. (2006). A New Study on Distance Metrics as Similarity Measurement. In IEEE International Conference on Multimedia and Expo (ICME) >>>
  • Zadorozhny, K., Thoral, P., Elbers, P., & Cinà, G. (2023). Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation. In A. Shaban-Nejad, M. Michalowski, & S. Bianco (Eds.), Multimodal AI in Healthcare: A Paradigm Shift in Health Intelligence (pp. 137-153). (Studies in Computational Intelligence; Vol. 1060). Springer. https://doi.org/10.1007/978-3-031-14771-5_10 >>>
  • Zajenkowski, M., Styla, R., & Szymanik, J. (2011). A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. Journal of Communication Disorder, 44(6), 595-600. https://doi.org/10.1016/j.jcomdis.2011.07.005 >>>
  • Zajenkowski, M., Szymanik, J., & Garraffa, M. (2014). Working Memory Mechanism in Proportional Quantifier Verification. Journal of Psycholinguistic Research, 43(6), 839-853. https://doi.org/10.1007/s10936-013-9281-3 >>>
  • Zajenkowski, M., & Szymanik, J. (2013). MOST intelligent people are accurate and SOME fast people are intelligent: Intelligence, working memory, and semantic processing of quantifiers from a computational perspective. Intelligence, 41(5), 456-466. https://doi.org/10.1016/j.intell.2013.06.020 >>>
  • Zakharyaschev, M., Segerberg, K., de Rijke, M., & Wansing, H. (2001). The Roots of Modality. In M. Rijke, de Zakharyaschev, & K. Wansing Segerberg (Eds.), Advances in Modal Logic, Vol. 2 CSLI Publications. >>>
  • Zakharyaschev, M., Segerberg, K., de Rijke, M., & Wansing, H. (2001). Advances in Modal Logic, Vol. 2. (CSLI lecture notes; No. 119). CSLI Publications. http://www.aiml.net/volumes/volume2/ >>>
  • Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., & Kamps, J. (2018). From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing. 17. Abstract from 17th Dutch-Belgian Information Retrieval Workshop, Leiden, Netherlands. https://arxiv.org/abs/1812.04265 >>>
  • Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., & Kamps, J. (2018). From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing. In M. Atzmueller, & W. Duivesteijn (Eds.), 30th Benelux Conference on Artificial Intelligence: BNAIC 2018 Preproceedings : November 8-9, 2018, Jheronimus Academy of Data Science (JADS), 's-Hertogenbosch, The Netherlands (pp. 43-44). (BNAIC; Vol. 30). Jheronimus Academy of Data Science. >>>
  • Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., & Kamps, J. (2018). From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing. In CIKM'18: proceedings of the 2018 ACM International Conference on Information and Knowledge Management : October 22-26, 2018, Torino, Italy (pp. 497-506). The Association for Computing Machinery. https://doi.org/10.1145/3269206.3271800 >>>
  • Zambella, D. (1994). Shavrukov's theorem on the subalgebras of diagonalizable algebras for theories containing I\Delta_0+ exp. Notre Dame Journal of Formal Logic, 35, 147-157. >>>
  • Zambella, D. (1994). Chapters on bounded arithmetic & on provability logic. [Thesis, fully internal, Universiteit van Amsterdam]. >>>
  • Zambella, D. (1995). Algebraic methods and bounded formulas. (Research report ftp site). onbekend (FdL). >>>
  • Zambella, D. (1995). End extensions of models of linearly bounded arithmetic. (Research report ftp site). onbekend (FdL). >>>
  • Zambella, D. (1995). Notes on polynomially bounded arithmetic. (Research report ftp site). onbekend (FdL). >>>
  • Zambella, D. (1996). Notes on polynomially bounded arithmetic. Journal of Symbolic Logic, 61, 942-966. https://doi.org/10.2307/2275794 >>>
  • Zambella, D. (1997). Algebraic methods and bounded formulas. Notre Dame Journal of Formal Logic, 38, 37-48. >>>

The data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact